Citation: | Amir Shahzad, George Kontakiotis, Thierry Adatte, Khawaja Shoaib Ahmed, Muhammad Tayyib Riaz, Hammad Tariq Janjuhah, Evangelia Besiou. Multi-Elemental Chemostratigraphy, Sequence Development, Depositional History, and Environmental Importance of Early Eocene Red Beds (Kuldana Formation) in NW Himalayas, Pakistan. Journal of Earth Science, 2024, 35(2): 349-375. doi: 10.1007/s12583-023-1860-6 |
The Eocene Kuldana Formation (KF) in the Yadgar area of Pakistan, comprises a diverse range of sedimentary facies, including variegated red beds of shales, mudstones, and sandstones, as well as interbedded limestone and marl. In this study, we conducted an integrated micropaleontological, sedimentological, mineralogical, and geochemical investigation to determine the depositional setting, biochronology, provenance, and paleoclimate of the KF. The study identified six lithofacies and six microfacies, which indicate a variety of environments ranging from floodplains and channels to the margins and shallow marine settings. The nannofossil biostratigraphy places the KF in the Early Eocene, more precisely the NP10 zone (Ypresian), and the fossil zone of benthic foraminifera classifies the study section as the Shallow Benthic Zone SBZ-8 (Middle Ilerdian 2). In terms of petrography, the KF sandstone was classified as litharenite and feldspathic litharenite, while the QtFL diagram suggests a recycled orogen. Geochemical proxies indicate an oxidizing environment, a high-to-low regular sedimentation rate, moderate-to-intense chemical weathering in the source region, and a warm-humid to dry climate during the deposition of KF. Overall, the findings suggest that the deposition of KF marks the end of Neo-Tethys due to the Early Eocene Indian–Kohistan collision and that the uplifting of the Himalayas provided the source for the deposition of KF in the foreland basin. The study provides new insights into the depositional environment, biochronology, provenance, and paleoclimate of KF, and highlights the potential for red beds as reliable indicators of oxygenation levels in proximity to mineral deposits.
Adatte, T., Stinnesbeck, W., Keller, G., 1996. Lithostratigraphic and Mineralogic Correlations of near K/T Boundary Clastic Sediments in Northeastern Mexico: Implications for Origin and Nature of Deposition. The Cretaceous–Tertiary Event and Other Catastrophes in Earth History, Geological Society of America, 307: 221–226. https://doi.org/10.1130/0-8137-2307-8.211 |
Agnini, C., Fornaciari, E., Raffi, I., et al., 2014. Biozonation and Biochronology of Paleogene Calcareous Nannofossils from Low and Middle Latitudes. Newsletters on Stratigraphy, 47(2): 131–181. https://doi.org/10.1127/0078-0421/2014/0042 |
Agnini, C., Macrì, P., Backman, J., et al., 2009. An Early Eocene Carbon Cycle Perturbation at ~52.5 Ma in the Southern Alps: Chronology and Biotic Response. Paleoceanography, 24(2): PA2209. https://doi.org/10.1029/2008pa001649 |
Agnini, C., Monechi, S., Raffi, I., 2017. Calcareous Nannofossil Biostratigraphy: Historical Background and Application in Cenozoic Chronostratigraphy. Lethaia, 50(3): 447–463. https://doi.org/10.1111/let.12218 |
Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A., et al., 2021. Turnover and Stability in the Deep Sea: Benthic Foraminifera as Tracers of Paleogene Global Change. Global and Planetary Change, 196: 103372. https://doi.org/10.1016/j.gloplacha.2020.103372 |
Algeo, T. J., Liu, J. S., 2020. A Re-Assessment of Elemental Proxies for Paleoredox Analysis. Chemical Geology, 540: 119549. https://doi.org/10.1016/j.chemgeo.2020.119549 |
Ali, S. K., Ahmad Lashari, R., Sahito, A. G., et al., 2023. Sedimentological and Petrographical Characterization of the Cambrian Abbottabad Formation in Kamsar Section, Muzaffarabad Area: Implications for Proto-Tethys Ocean Evolution. Journal of Marine Science and Engineering, 11(3): 526. https://doi.org/10.3390/jmse11030526 |
Aranda-Gómez, J. J., McDowell, F. W., 1998. Paleogene Extension in the Southern Basin and Range Province of Mexico: Syndepositional Tilting of Eocene Red Beds and Oligocene Volcanic Rocks in the Guanajuato Mining District. International Geology Review, 40(2): 116–134. https://doi.org/10.1080/00206819809465201 |
Arenillas, I., Molina, E., Schmitz, B., 1999. Planktic Foraminiferal and 13C Isotopic Changes across the Paleocene/Eocene Boundary at Possagno (Italy). International Journal of Earth Sciences, 88(2): 352–364. https://doi.org/10.1007/s005310050270 |
Arreguín-Rodríguez, G. J., Thomas, E., D'haenens, S., et al., 2018. Early Eocene Deep-Sea Benthic Foraminiferal Faunas: Recovery from the Paleocene Eocene Thermal Maximum Extinction in a Greenhouse World. PLoS One, 13(2): e0193167. https://doi.org/10.1371/journal.pone.0193167 |
Aubry, M. P., Cramer, B. S., Miller, K. G., et al., 2000. Late Paleocene Event Chronology; Unconformities, not Diachrony. Bulletin de la Société Géologique de France, 171(3): 367–378. https://doi.org/10.2113/171.3.367 |
Baig, M. S., Lawrence, R. D., 1987. Precambrian to Early Paleozoic Orogenesis in the Himalaya. Kashmir Journal of Geology, 5: 1–22 |
Baig, M. S., Munir, M. -U. -H., 2007. Foraminiferal Biostratigraphy of Yadgar Area, Muzaffarabad Azad Kashmir, Pakistan. Journal of Himalayan Earth Sciences, 40: 33–43 |
Baiyegunhi, C., Liu, K. W., Gwavava, O., 2017. Modal Composition and Tectonic Provenance of the Sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosciences, 9(1): 491–508. https://doi.org/10.1515/geo-2017-0038 |
Bankole, O. M., El Albani, A., Meunier, A., et al., 2016. Origin of Red Beds in the Paleoproterozoic Franceville Basin, Gabon, and Implications for Sandstone-Hosted Uranium Mineralization. American Journal of Science, 316(9): 839–872. https://doi.org/10.2475/09.2016.02 |
Basharat, M., Qasim, M., Shafique, M., et al., 2018. Regolith Thickness Modeling Using a GIS Approach for Landslide Distribution Analysis, NW Himalayas. Journal of Mountain Science, 15(11): 2466–2479. https://doi.org/10.1007/s11629-018-4840-6 |
Basu, A., 2003. A Perspective on Quantitative Provenance Analysis: Quantitative Provenance Studies in Italy. Memorie Descrittive Della Carta Geologica dell'Italia, 61: 11–22 |
Basu, A., Young, S. W., Suttner, L. J., et al., 1975. Re-Evaluation of the Use of Undulatory Extinction and Polycrystallinity in Detrital Quartz for Provenance Interpretation. SEPM Journal of Sedimentary Research, 45: 873–882. https://doi.org/10.1306/212f6e6f-2b24-11d7-864800010 2c1865d doi: 10.1306/212f6e6f-2b24-11d7-8648000102c1865d |
Bekker, A., Holland, H. D., 2012. Oxygen Overshoot and Recovery during the Early Paleoproterozoic. Earth and Planetary Science Letters, 317/318: 295–304. https://doi.org/10.1016/j.epsl.2011.12.012 |
Berggren, W. A., Kent, D. V., Flynn, J. J., et al., 1985. Cenozoic Geochronology. Geological Society of America Bulletin, 96(11): 1407. https://doi.org/10.1130/0016-7606(1985)961407:cg>2.0.co;2 doi: 10.1130/0016-7606(1985)961407:cg>2.0.co;2 |
Berggren, W. A., Kent, D. V., Swisher, C. C., et al., 1995. A Revised Cenozoic Geochronology and Chronostratigraphy. SEPM Special Publication, 54: 129–212. https://doi.org/10.2110/pec.95.04.0129 |
Bian, W. W., Yang, T. S., Jiang, Z. L., et al., 2020. Paleomagnetism of the Late Cretaceous Red Beds from the Far Western Lhasa Terrane: Inclination Discrepancy and Tectonic Implications. Tectonics, 39(8): e2020tc006280. https://doi.org/10.1029/2020tc006280 |
Bilal, A., Mughal, M. S., Janjuhah, H. T., et al., 2022. Petrography and Provenance of the Sub-Himalayan Kuldana Formation: Implications for Tectonic Setting and Palaeoclimatic Conditions. Minerals, 12(7): 794. https://doi.org/10.3390/min12070794 |
Bjørlykke, K., 1974. Geochemical and Mineralogical Influence of Ordovician Island Arcs on Epicontinental Clastic Sedimentation. A Study of Lower Palaeozoic Sedimentation in the Oslo Region, Norway. Sedimentology, 21(2): 251–272. https://doi.org/10.1111/j.1365-3091.1974.tb02058.x |
Blatt, H., Christie, J. M., 1963. Undulatory Extinction in Quartz of Igneous and Metamorphic Rocks and Its Significance in Provenance Studies of Sedimentary Rocks. SEPM Journal of Sedimentary Research, 33: 559–579. https://doi.org/10.1306/74d70ebb-2b21-11d7-8648000102c1865d |
Bolle, M. P., Adatte, T., 2001. Palaeocene–Early Eocene Climatic Evolution in the Tethyan Realm: Clay Mineral Evidence. Clay Minerals, 36(2): 249–261. https://doi.org/10.1180/000985501750177979 |
Bown, P. R., 1998. Calcareous Nannofossil Biostratigraphy. Springer, Dordrecht Netherlands |
Bown, P. R., 2005. Cenozoic Calcareous Nannofossil Biostratigraphy, ODP Leg 198 Site 1208 (Shatsky Rise, Northwest Pacific Ocean). In: Bralower, T. J., Premoli Silva, I., Malone, M. J., eds., Proc. ODP, Sci. Results, 198. |
Carmichael, M. J., Inglis, G. N., Badger, M. P. S., et al., 2017. Hydrological and Associated Biogeochemical Consequences of Rapid Global Warming during the Paleocene–Eocene Thermal Maximum. Global and Planetary Change, 157: 114–138. https://doi.org/10.1016/j.gloplacha.2017.07.014 |
Chen, C., Guerit, L., Foreman, B. Z., et al., 2018. Estimating Regional Flood Discharge during Palaeocene–Eocene Global Warming. Scientific Reports, 8: 13391. https://doi.org/10.1038/s41598-018-31076-3 |
Chen, J. S., Huang, B. C., Sun, L. S., 2010. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489(1/2/3/4): 189–209. https://doi.org/10.1016/j.tecto.2010.04.024 |
Chima, P., Baiyegunhi, C., Liu, K. W., et al., 2018. Petrography, Modal Composition and Tectonic Provenance of some Selected Sandstones from the Molteno, Elliot and Clarens Formations, Karoo Supergroup, in the Eastern Cape Province, South Africa. Open Geosciences, 10(1): 821–833. https://doi.org/10.1515/geo-2018-0064 |
Cole, W. S., 1960. The Genus Camerina. Bulletins of American Paleontology, 190: 22 |
Collinson, J. D., 1996. Alluvial Sediments. In: Reading, H. G., ed., Sedimentary Environments: Processes, Facies and Stratigraphy, Blackwell Science, Oxford |
Colombera, L., Arévalo, O. J., Mountney, N. P., 2017. Fluvial-System Response to Climate Change: The Paleocene–Eocene Tremp Group, Pyrenees, Spain. Global and Planetary Change, 157: 1–17. https://doi.org/10.1016/j.gloplacha.2017.08.011 |
Condie, K. C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology, 104(1/2/3/4): 1–37. https://doi.org/10.1016/0009-2541(93)90140-e |
Coward, M. P., Rex, D. C., Asif Khan, M., et al., 1986. Collision Tectonics in the NW Himalayas. Geological Society, London, Special Publications, 19(1): 203–219. https://doi.org/10.1144/gsl.sp.1986.019.01.11 |
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9 |
Cramer, B. S., Wright, J. D., Kent, D. V., et al., 2003. Orbital Climate Forcing of δ13C Excursions in the Late Paleocene–Early Eocene (Chrons C24n-C25n). Paleoceanography, 18(4): 1097. https://doi.org/10.1029/2003pa000909 |
Dabbagh, M. E., Rogers, J. J. W., 1983. Depositional Environments and Tectonic Significance of the Wajid Sandstone of Southern Saudi Arabia. Journal of African Earth Sciences, 1(1): 47–57. https://doi.org/10.1016/0899-5362(83)90031-3 |
Dickens, G. R., 2011. Down the Rabbit Hole: Toward Appropriate Discussion of Methane Release from Gas Hydrate Systems during the Paleocene–Eocene Thermal Maximum and other Past Hyperthermal Events. Climate of the Past, 7(3): 831–846. https://doi.org/10.5194/cp-7-831-2011 |
Dickens, G. R., O'Neil, J. R., Rea, D. K., et al., 1995. Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene. Paleoceanography, 10(6): 965–971. https://doi.org/10.1029/95pa02087 |
Dickinson, W. R., 1985. Interpreting Provenance Relations from Detrital Modes of Sandstones. Provenance of Arenites. Springer, Dordrecht. |
Dickinson, W. R., 1988. Provenance and Sediment Dispersal in Relation to Paleotectonics and Paleogeography of Sedimentary Basins. In: Kleinspehn, K. L., Paola, C., eds. Frontiers in Sedimentary Geology. Springer, New York. |
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., et al., 1983. Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2): 222. https://doi.org/10.1130/0016-7606(1983)94222:ponaps>2.0.co;2 doi: 10.1130/0016-7606(1983)94222:ponaps>2.0.co;2 |
Ding, L., Qasim, M., Jadoon, I. A. K., et al., 2016. The India-Asia Collision in North Pakistan: Insight from the U-Pb Detrital Zircon Provenance of Cenozoic Foreland Basin. Earth and Planetary Science Letters, 455: 49–61. https://doi.org/10.1016/j.epsl.2016.09.003 |
Dolezal, D. A., 2004. Depositional Environments and Sequence Stratigraphy of the Rockwell-Price Formation in Western Maryland, South-Central Pennsylvania, and Northern West Virginia: [Dissertations]. West Virginia University, Morgantown. |
Duane, M. J., Pigozzi, G., Harris, C., 1997. Geochemistry of Some Deep Gold Mine Waters from the Western Portion of the Witwatersrand Basin, South Africa. Journal of African Earth Sciences, 24(1/2): 105–123. https://doi.org/10.1016/S0899-5362(97)00030-4 |
Dunham, R. J., 1962. Classification of Carbonate Rocks According to Depositional Textures. In: Ham, W. E., Classification of Carbonate Rocks—A Symposium, American Association of Petroleum Geologists, McLean |
Ekosse, G., 2001. Provenance of the Kgwakgwe Kaolin Deposit in Southeastern Botswana and Its Possible Utilization. Applied Clay Science, 20(3): 137–152. https://doi.org/10.1016/s0169-1317(01)0006 4-3 doi: 10.1016/s0169-1317(01)00064-3 |
Embry, A. F., Klovan, J. E., 1971. A Late Devonian Reef Tract on Northeastern Banks Island, NWT. Bulletin of Canadian Petroleum Geology, 19: 730–781 |
Eriksson, P. G., Condie, K. C., Tirsgaard, H., et al., 1998. Precambrian Clastic Sedimentation Systems. Sedimentary Geology, 120(1/2/3/4): 5–53. https://doi.org/10.1016/s0037-0738(98)00026-8 |
Fagel, N., André, L., Chamley, H., et al., 1992. Clay Sedimentation in the Japan Sea since the Early Miocene: Influence of Source-Rock and Hydrothermal Activity. Sedimentary Geology, 80(1/2): 27–40. https://doi.org/10.1016/0037-0738(92)90029-q |
Fazal, A., Umar, M., Shah, F., et al., 2022. Geochemical Analysis of Cretaceous Shales from the Hazara Basin, Pakistan: Provenance Signatures and Paleo-Weathering Conditions. Journal of Marine Science and Engineering, 10(6): 800. https://doi.org/10.3390/jmse10060800 |
Fedo, C. M., Eriksson, K. A., Krogstad, E. J., 1995. Geochemistry of Shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for Provenance and Source-Area Weathering. Geochimica et Cosmochimica Acta, 60(10): 1751–1763. https://doi.org/10.1016/0016-7037(96)00058-0 |
Flügel, E., Munnecke, A., 2010. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin |
Folk, R. L., 1968. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin |
Folk, R. L., 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin |
Folk, R. L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin |
Foster, L. C., Schmidt, D. N., Thomas, E., et al., 2013. Surviving Rapid Climate Change in the Deep Sea during the Paleogene Hyperthermals. Proceedings of the National Academy of Sciences of the United States of America, 110(23): 9273–9276. https://doi.org/10.1073/pnas.1300579110 |
Fralick, P. W., Kronberg, B. I., 1997. Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sedimentary Geology, 113(1/2): 111–124. https://doi.org/10.1016/s0037-0738(97)00049-3 |
Garzanti, E., 2019. Petrographic Classification of Sand and Sandstone. Earth-Science Reviews, 192: 545–563. https://doi.org/10.1016/j.earscirev.2018.12.014 |
Garzanti, E., Andó, S., France-Lanord, C., et al., 2011. Mineralogical and Chemical Variability of Fluvial Sediments 2. Suspended-Load Silt (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 302(1/2): 107–120. https://doi.org/10.1016/j.epsl.2010.11.043 |
Garzanti, E., Dinis, P., Vermeesch, P., et al., 2018. Dynamic Uplift, Recycling, and Climate Control on the Petrology of Passive-Margin Sand (Angola). Sedimentary Geology, 375: 86–104. https://doi.org/10.1016/j.sedgeo.2017.12.009 |
Geel, T., 2000. Recognition of Stratigraphic Sequences in Carbonate Platform and Slope Deposits: Empirical Models Based on Microfacies Analysis of Palaeogene Deposits in Southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(3/4): 211–238. https://doi.org/10.1016/s0031-0182(99)00117-0 |
Ghazanfar, M., Chaudhry, M. N., 1986. Reporting MCT in Northwest Himalaya, Geological Bulletin of the University of Punjab, 21: 10–18 |
Ghose, B. K., 1977. Paleoecology of the Cenozoic Reefal Foraminifers and Algae—A Brief Review. Palaeogeography, Palaeoclimatology, Palaeoecology, 22(3): 231–256. https://doi.org/10.1016/0031-0182(77)90030-x |
Gibbs, S. J., Bown, P. R., Murphy, B. H., et al., 2012. Scaled Biotic Disruption during Early Eocene Global Warming Events. Biogeosciences, 9(11): 4679–4688. https://doi.org/10.5194/bg-9-4679-2012 |
Gingerich, P. D., 2003. Stratigraphic and Micropaleontological Constraints on the Middle Eocene Age of the Mammal-Bearing Kuldana Formation of Pakistan. Journal of Vertebrate Paleontology, 23(3): 643–651. https://doi.org/10.1671/2409 |
Gingerich, P. D., 2006. Environment and Evolution through the Paleocene-Eocene Thermal Maximum. Trends in Ecology & Evolution, 21(5): 246–253. https://doi.org/10.1016/j.tree.2006.03.006 |
Goldsmith, J. R., Graf, D. L., 1958. Structural and Compositional Variations in Some Natural Dolomites. The Journal of Geology, 66(6): 678–693. https://doi.org/10.1086/626547 |
Goldsmith, J. R., Heard, H. C., 1961. Subsolidus Phase Relations in the System CaCO3-MgCO3. The Journal of Geology, 69(1): 45–74. https://doi.org/10.1086/626715 |
Gradstein, F., Ogg, J., Schmitz, M., et al., 2012. The Geologic Time Scale 2012. Elsevier. |
Griffith, E. M., Thomas, E., Lewis, A. R., et al., 2021. Bentho-Pelagic Decoupling: The Marine Biological Carbon Pump during Eocene Hyperthermals. Paleoceanography and Paleoclimatology, 36(3): e2020pa004053. https://doi.org/10.1029/2020pa004053 |
Hakro, A. A., Xiao, W., Yan, Z., et al., 2018. Provenance and Tectonic Setting of Early Eocene Sohnari Member of Laki Formation from Southern Indus Basin of Pakistan. Geological Journal, 53(2): 1854–1870. https://doi.org/10.1002/gj.3011 |
Hallberg, R. O., 1976. A Geochemical Method for Investigation of Palaeoredox Conditions in Sediments. Ambio Special Report, 4: 139–147 |
Hanif, M., 2011. Stratigraphy and Palaeoenvironment of the Paleocene/Eocene Boundary Interval in the Indus Basin, Pakistan: [Dissertation]. University of Plymouth, Plymouth. |
Hassan, M. M., Jones, B. G., Buckman, S., et al., 2014. Provenance of Paleocene–Eocene Red Beds from NE Iraq: Constraints from Framework Petrography. Geological Magazine, 151(6): 1034–1050. https://doi.org/10.1017/s0016756813001064 |
Hayek, L., Buzas, M., Thomas, E., 2019. Identifying Disruptions to the Ecological Balance of Nature: A Foraminiferal Example across the Initiation of the Paleocene–Eocene Thermal Maximum. Paleobiology, 45: 98–113 doi: 10.1017/pab.2018.45 |
Herb, R., 1988. Evolution of Diversity, Paleoenvironment and Extinction in Large Nummulitids. Revue Paléobiologie, 2: 663 |
Hohenegger, J., 2000. Remarks on West Pacific Nummulitidae (Foraminifera). The Journal of Foraminiferal Research, 30(1): 3–28. https://doi.org/10.2113/0300003 |
Hollis, C. J., Taylor, K. W. R., Handley, L., et al., 2012. Early Paleogene Temperature History of the Southwest Pacific Ocean: Reconciling Proxies and Models. Earth and Planetary Science Letters, 349/350: 53–66. https://doi.org/10.1016/j.epsl.2012.06.024 |
Hottinger, L., 1960. Recherches sur les Alvéolines du Paléocène et de l'Eocène. Schweizerische Paläontologische Abhandlungen, 75–76: 243 |
Hottinger, L., 1983. Processes Determining the Distribution of Larger Foraminifera in Space and Time. Utrecht Micropaleontological Bulletins, 30: 239–253 |
Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 160: 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014 |
Jennions, S. M., Thomas, E., Schmidt, D. N., et al., 2015. Changes in Benthic Ecosystems and Ocean Circulation in the Southeast Atlantic across Eocene Thermal Maximum 2. Paleoceanography, 30(8): 1059–1077. https://doi.org/10.1002/2015pa002821 |
Jian, X., Guan, P., Zhang, W., et al., 2013. Geochemistry of Mesozoic and Cenozoic Sediments in the Northern Qaidam Basin, Northeastern Tibetan Plateau: Implications for Provenance and Weathering. Chemical Geology, 360/361: 74–88. https://doi.org/10.1016/j.chemgeo.2013.10.011 |
John, E. H., Wilson, J. D., Pearson, P. N., et al., 2014. Temperature-Dependent Remineralization and Carbon Cycling in the Warm Eocene Oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 413: 158–166. https://doi.org/10.1016/j.palaeo.2014.05.019 |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1/2/3/4): 111–129. https://doi.org/10.1016/0009-2541(94)90085-x |
Joo, Y. J., Lee, Y. I., Bai, Z., 2005. Provenance of the Qingshuijian Formation (Late Carboniferous), NE China: Implications for Tectonic Processes in the Northern Margin of the North China Block. Sedimentary Geology, 177(1/2): 97–114. https://doi.org/10.1016/j.sedgeo.2005.02.003 |
Kazmi, A. H., Abbasi, I. A., 2008. Stratigraphy & Historical Geology of Pakistan. Department & National Centre of Excellence in Geology Peshawar, University of Peshawar, Peshawar |
Kazmi, A. H., Jan, M. Q., 1997. Geology and Tectonics of Pakistan. Graphic Publishers, Karachi |
Kennett, J. P., Stott, L. D., 1991. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 353(6341): 225–229. https://doi.org/10.1038/353225a0 |
Koch, P. L., Zachos, J. C., Gingerich, P. D., 1992. Correlation between Isotope Records in Marine and Continental Carbon Reservoirs near the Palaeocene/Eocene Boundary. Nature, 358(6384): 319–322. https://doi.org/10.1038/358319a0 |
Konta, J., 1995. Clay and Man: Clay Raw Materials in the Service of Man. Applied Clay Science, 10(4): 275–335. https://doi.org/10.1016/0169-1317(95)00029-4 |
Kontakiotis, G., Moforis, L., Karakitsios, V., et al., 2020. Sedimentary Facies Analysis, Reservoir Characteristics and Paleogeography Significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece). Journal of Marine Science and Engineering, 8(9): 706. https://doi.org/10.3390/jmse8090706 |
Kovani, A., Botziolis, C., Maravelis, A. G., et al., 2023. Provenance and Statistical Analysis of the Lower Oligocene Gravelly Deposits in Central Pindos Foreland Basin, Western Greece: Implications for Orogenic Build-up and Unroofing. Geological Journal, 58(1): 497–521. https://doi.org/10.1002/gj.4608 |
Kraus, M. J., Hasiotis, S. T., 2006. Significance of Different Modes of Rhizolith Preservation to Interpreting Paleoenvironmental and Paleohydrologic Settings: Examples from Paleogene Paleosols, Bighorn Basin, Wyoming, U. S. A. Journal of Sedimentary Research, 76(4): 633–646. https://doi.org/10.2110/jsr.2006.052 |
Kübler, B., 1987. Cristallinité de L'illite: Méthodes Normalisées de Préparation, Méthode Normalisé e de Mesure, Méthode Automatique Normalisé e de Mesure: Neuchâtel, Switzerland, Cahiers de l'Institut de Géologie, Université de Neuchâtel, Suisse, Série ADX, 2: 1–10 |
Langer, M. R., Hottinger, L., 2000. Biogeography of Selected "Larger" Foraminifera. Micropaleontology, 46: 105–126 |
Lasaga, A. C., Soler, J. M., Ganor, J., et al., 1994. Chemical Weathering Rate Laws and Global Geochemical Cycles. Geochimica et Cosmochimica Acta, 58(10): 2361–2386. https://doi.org/10.1016/0016-7037(94)90016-7 |
Latif, M. A., 1970. Explanatory Notes on the Geology of South Eastern Hazara, to Accompany the Revised Geological Map. Jahrbuch der Geologischen Bundesanstalt, Sonderband, 15: 5–19 |
Lauretano, V., Littler, K., Polling, M., et al., 2015. Frequency, Magnitude and Character of Hyperthermal Events at the Onset of the Early Eocene Climatic Optimum. Climate of the Past, 11(10): 1313–1324. https://doi.org/10.5194/cp-11-1313-2015 |
Lee, Y. I., 2002. Provenance Derived from the Geochemistry of Late Paleozoic-Early Mesozoic Mudrocks of the Pyeongan Supergroup, Korea. Sedimentary Geology, 149(4): 219–235. https://doi.org/10.1016/S0037-0738(01)00174-9 |
Lerman, A., 1978. Lakes: Chemistry, Geology, Physics: Limnology and Oceanography, Springer-Verlag, New York. 25: 363. |
Levin, H. L., 1957. Micropaleontology of the Oldsmar Limestone (Eocene) of Florida. Micropaleontology, 3(2): 137. https://doi.org/10.2307/1484194 |
Liu, J. B., Wang, Y., Zhang, X. L., et al., 2016. Early Telychian (Silurian) Marine Siliciclastic Red Beds in the Eastern Yangtze Platform, South China: Distribution Pattern and Controlling Factors. Canadian Journal of Earth Sciences, 53(7): 712–718. https://doi.org/10.1139/cjes-2015-0209 |
Lourens, L. J., Sluijs, A., Kroon, D., et al., 2005. Astronomical Pacing of Late Palaeocene to Early Eocene Global Warming Events. Nature, 435(7045): 1083–1087. https://doi.org/10.1038/nature03814 |
Luciani, V., D'Onofrio, R., Dickens, G. R., et al., 2017. Planktic Foraminiferal Response to Early Eocene Carbon Cycle Perturbations in the Southeast Atlantic Ocean (ODP Site 1263). Global and Planetary Change, 158: 119–133. https://doi.org/10.1016/j.gloplacha.2017.09.007 |
Lupker, M., France-Lanord, C., Galy, V., et al., 2012. Predominant Floodplain over Mountain Weathering of Himalayan Sediments (Ganga Basin). Geochimica et Cosmochimica Acta, 84: 410–432. https://doi.org/10.1016/j.gca.2012.02.001 |
Luterbacher, H., 1999. Sequence Stratigraphy and the Limitations of Biostratigraphy in the Marine Paleogene Strata of the Tremp Basin (Central Part of the Southern Pyrenean Foreland Basin, Spain). Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Society for Sedimentary Geology. |
Maravelis, A., Zelilidis, A., 2012. Paleoclimatology and Paleoecology across the Eocene/Oligocene Boundary, Thrace Basin, Northeast Aegean Sea, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 365/366: 81–98. https://doi.org/10.1016/j.palaeo.2012.09.015 |
Maravelis, A. G., Catuneanu, O., Nordsvan, A., et al., 2018. Interplay of Tectonism and Eustasy during the Early Permian Icehouse: Southern Sydney Basin, Southeast Australia. Geological Journal, 53(4): 1372–1403. https://doi.org/10.1002/gj.2962 |
Maravelis, A., Makrodimitras, G., Pasadakis, N., et al., 2014. Stratigraphic Evolution and Source Rock Potential of a Lower Oligocene to Lower–Middle Miocene Continental Slope System, Hellenic Fold and Thrust Belt, Ionian Sea, Northwest Greece. Geological Magazine, 151(3): 394–413. https://doi.org/10.1017/s0016756813000289 |
Maravelis, A. G., Offler, R., Pantopoulos, G., et al., 2021. Provenance and Tectonic Setting of the Early Permian Sedimentary Succession in the Southern Edge of the Sydney Basin, Eastern Australia. Geological Journal, 56(4): 2258–2276. https://doi.org/10.1002/gj.4051 |
Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation, Proceedings of the 2nd Planktonic Conference, Roma, 739–785 |
Mattern, F., Scharf, A., Al-Sarmi, M., et al., 2021. Lithostratigraphy, Microfacies and Paleogeography of the Shallow Marine Middle Limestone Member of the Early Eocene Rusayl Formation, Oman: Relationship to the Early Eocene Climatic Optimum, Sea-Level Changes and Regional Uplift. Journal of African Earth Sciences, 184: 104312. https://doi.org/10.1016/j.jafrearsci.2021.104312 |
McInerney, F. A., Wing, S. L., 2011. The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future. Annual Review of Earth and Planetary Sciences, 39: 489–516. https://doi.org/10.1146/annurev-earth-040610-133431 |
McLennan, S. M., Hemming, S., McDaniel, D. K., et al., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Special Paper of the Geological Society of America, 284: 21–40 |
Mehmood, M., Ali Naseem, A., Saleem, M., et al., 2023. Sedimentary Facies, Architectural Elements, and Depositional Environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan. Journal of Marine Science and Engineering, 11(4): 726. https://doi.org/10.3390/jmse11040726 |
Melehan, S., Botziolis, C., Maravelis, A. G., et al., 2021. Sedimentology and Stratigraphy of an Upper Permian Sedimentary Succession: Northern Sydney Basin, Southeastern Australia. Geosciences, 11(7): 273. https://doi.org/10.3390/geosciences11070273 |
Metcalfe, R., Rochelle, C. A., Savage, D., et al., 1994. Fluid-Rock Interactions during Continental Red Bed Diagenesis: Implications for Theoretical Models of Mineralization in Sedimentary Basins. Geological Society, London, Special Publications, 78(1): 301–324. https://doi.org/10.1144/gsl.sp.1994.078.01.21 |
Miall, A. D., 1988. Architectural Elements and Bounding Surfaces in Fluvial Deposits: Anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado. Sedimentary Geology, 55(3/4): 233–262. https://doi.org/10.1016/0037-0738(88)90133-9 |
Miall, A. D., 1996. Sedimentary Facies, Basin Analysis, and Petroleum Geology: The Geology of Fluvial Deposits, Springer, Berlin, Heidelberg. |
Middlemiss, C. S., 1896. The Geology of Hazara and the Black Mountain: Memoirs of the Geological Survey of India. Geological Survey of India, 26: 302 |
Moforis, L., Kontakiotis, G., Janjuhah, H. T., et al., 2022. Sedimentary and Diagenetic Controls across the Cretaceous—Paleogene Transition: New Paleoenvironmental Insights of the External Ionian Zone from the Pelagic Carbonates of the Gardiki Section (Epirus, Western Greece). Journal of Marine Science and Engineering, 10(12): 1948. https://doi.org/10.3390/jmse10121948 |
Mohebati, S. H., 2016. Organic, Inorganic Geochemistry and Sedimentology of the Second White Specks Formation, Eastern Margin of the Western Interior Seaway: [Dissertation]. University of Calgary, Calgary. |
Mücke, A., Badejoko, T. A., Akande, S. O., 1999. Petrographic-Microchemical Studies and Origin of the Agbaja Phanerozoic Ironstone Formation, Nupe Basin, Nigeria: A Product of a Ferruginized Ooidal Kaolin Precursor not Identical to the Minette-Type. Mineralium Deposita, 34(3): 284–296. https://doi.org/10.1007/s001260050204 |
Mughal, M. S., Zhang, C. J., Du, D. D., et al., 2018. Petrography and Provenance of the Early Miocene Murree Formation, Himalayan Foreland Basin, Muzaffarabad, Pakistan. Journal of Asian Earth Sciences, 162: 25–40. https://doi.org/10.1016/j.jseaes.2018.04.018 |
Mujtaba, M., Abbas, G., 2001. Diagenetic Control on Porosity Development in Early Eocene Carbonate Reservoirs of Potwar Sub-Basin, Pakistan Journal of Hydrocarbon Research, 12: 65–72 |
Munir, M. -U. -H., 2000. Biostratigraphy and Paleoecology of Upper Cretaceous to Paleogene Rocks of Hazara and Azad Kashmir: [Dissertation]. University of Punjab, Pakistan |
Najman, Y., Pringle, M., Godin, L., et al., 2002. A Reinterpretation of the Balakot Formation: Implications for the Tectonics of the NW Himalaya, Pakistan. Tectonics, 21(5): 9–1. https://doi.org/10.1029/2001tc001337 |
Nagender Nath, B., Bau, M., Ramalingeswara Rao, B., et al., 1997. Trace and Rare Earth Elemental Variation in Arabian Sea Sediments through a Transect across the Oxygen Minimum Zone. Geochimica et Cosmochimica Acta, 61(12): 2375–2388. https://doi.org/10.1016/s0016-7037(97)00094-x |
Nesbitt, H. W., Fedo, C. M., Young, G. M., 1997. Quartz and Feldspar Stability, Steady and Non-Steady-State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. The Journal of Geology, 105(2): 173–192. https://doi.org/10.1086/515908 |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715–717. https://doi.org/10.1038/299715a0 |
Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129–147. https://doi.org/10.1086/629290 |
Odewumi, S. C., 2013. Mineralogy and Geochemistry of Geophagic Clays from Share Area, Northern Bida Sedimentary Basin, Nigeria. Journal of Geology & Geosciences, 2(1): 1000108. https://doi.org/10.4172/2329-6755.1000108 |
Okada, H., 1980. Calcareous Nannofossils from Deep Sea Drilling Project Sites 442 through 446, Philippine Sea. Initial Reports of the Deep Sea Drilling Project, 58: 549–565. https://doi.org/10.2973/dsdp.proc.58.107.1980 |
Olsen, H., 1988. The Architecture of a Sandy Braided-Meandering River System: an Example from the Lower Triassic Soiling Formation (M. Buntsandstein) in W-Germany. Geologische Rundschau, 77(3): 797–814. https://doi.org/10.1007/bf01830186 |
Passow, U., Carlson, C. A., 2012. The Biological Pump in a High CO2 World. Marine Ecology Progress Series, 470: 249–271. https://doi.org/10.3354/meps09985 |
Perch-Nielsen, K., Bolli, H. M., Saunders, J. B., 1985. Mesozoic Calcareous Nannofossils. Plankton Stratigraphy, 1: 329–426 |
Pettijohn, F. J., 1975. Sedimentary Rocks, Harper and Row, New York |
Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Sand and Sandstone. Springer, New York. |
Phartiyal, B., Nag, D., 2022. Sedimentation, Tectonics and Climate in Ladakh, NW Trans-Himalaya-with a Special Reference to Late Quaternary Period. Geosystems and Geoenvironment, 1(4): 100031. https://doi.org/10.1016/j.geogeo.2022.100031 |
Pinfold, E. S., 1918. Notes on Structure and Stratigraphy in the North-West Punjab. Records of the Geological Survey of India, 49: 137–160 |
Pollack, G. D., Krogstad, E. J., Bekker, A., 2009. U-Th-Pb-REE Systematics of Organic-Rich Shales from the Ca. 2.15 Ga Sengoma Argillite Formation, Botswana: Evidence for Oxidative Continental Weathering during the Great Oxidation Event. Chemical Geology, 260(3/4): 172–185. https://doi.org/10.1016/j.chemgeo.2008.10.038 |
Potter, P. E., Maynard, J. B., Pryor, W., 1984. Sedimentology of Shale: Study Guide and Reference Source. Springer-Verlag, New York, Heidelberg, Berlin. |
Potter, P. E., Maynard, J. B., Pryor, W. A., 2012, Sedimentology of Shale: Study Guide and Reference Source, Springer Science & Business Media, New York. |
Price, J. R., Velbel, M. A., 2003. Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks. Chemical Geology, 202(3/4): 397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001 |
Pujalte, V., Schmitz, B., Payros, A., 2022. A Rapid Sedimentary Response to the Paleocene–Eocene Thermal Maximum Hydrological Change: New Data from Alluvial Units of the Tremp-Graus Basin (Spanish Pyrenees). Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110818. https://doi.org/10.1016/j.palaeo.2021.110818 |
Pujol, F., Berner, Z., Stüben, D., 2006. Palaeoenvironmental Changes at the Frasnian/Famennian Boundary in Key European Sections: Chemostratigraphic Constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1/2): 120–145. https://doi.org/10.1016/j.palaeo.2006.03.055 |
Qasim, M., Ding, L., Khan, M. A., et al., 2018. Tectonic Implications of Detrital Zircon Ages from Lesser Himalayan Mesozoic-Cenozoic Strata, Pakistan. Geochemistry, Geophysics, Geosystems, 19(5): 1636–1659. https://doi.org/10.1002/2017gc006895 |
Quade, J., Cerling, T. E., 1995. Expansion of C4 Grasses in the Late Miocene of Northern Pakistan: Evidence from Stable Isotopes in Paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 115(1/2/3/4): 91–116. https://doi.org/10.1016/0031-0182(94)00108-k |
Racey, A., 1994. Biostratigraphy and Palaeobiogeographic Significance of Tertiary Nummulitids (Foraminifera) from Northern Oman: in Micropalaeontology and Hydrocarbon Exploration in the Middle East, Simmons M. D., ed., Chapman & Hall, London, 343: 370 |
Racey, A., 2001. A Review of Eocene Nummulite Accumulations: Structure, Formation and Reservoir Potential. Journal of Petroleum Geology, 24(1): 79–100. https://doi.org/10.1111/j.1747-5457.2001.tb00662.x |
Raymond, L. A., 1995. The Study Of Igneous, Sedimentary and Metamorphic Rocks. Waveland Pr Inc; 2nd edition, USA, 736 |
Raza, S. M., 2001. The Eocene Redbeds of the Kala Chitta Range (Northern Pakistan) and Its Stratigraphic Implications on Himalayan Foreseep Basin. Journal of Himalayan Earth Sciences, 34: 83–104 |
Reynolds, A. J., 1980. Geochemical and Mineralogical Aspects of the Molteno Formation, South Africa: [Dissertation]. Rhodes University, England, 124. |
Riaz, M. T., Basharat, M., Brunetti, M. T., 2022. Assessing the Effectiveness of Alternative Landslide Partitioning in Machine Learning Methods for Landslide Prediction in the Complex Himalayan Terrain. Progress in Physical Geography: Earth and Environment: 030913332211136. https://doi.org/10.1177/03091333221113660 |
Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3/4): 373–391. https://doi.org/10.1016/j.chemgeo.2003.12.029 |
Royer, D. L., Pagani, M., Beerling, D. J., 2011. Geologic Constraints on Earth System Sensitivity to CO2 during the Cretaceous and Early Paleogene. Earth System Dynamics Discussions, 2: 211–240 |
Schreiber, B. C., 1987. Section 3: Environments of Subaqueous Gypsum Deposition, In: Walter, E., Dean, B., Charlotte, S., eds., Marine Evaporites, SEPM Society for Sedimentary Geology, Tulsa. |
Searle, M. P., Treloar, P. J., 2019. Introduction to Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publications, 483(1): 1–17. https://doi.org/10.1144/sp483-2019-20 |
Serra-Kiel, J., Hottinger, L., Caus, E., et al., 1998. Larger Foraminiferal Biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société Géologique de France, 169: 281–299 |
Shah, S. M. I., 1977. Stratigraphy of Pakistan. Geological Survey of Pakistan Records, 12: 138 |
Shahzad, A., Khan, J., Hanif, M., et al., 2023. Eocene Nannofossils and Paleoenvironmental Reconstruction of the Kuldana Formation in Yadgar Area, Muzaffarabad, Northern Pakistan. Palaeoworld, https://doi.org/10.1016/j.palwor.2023.01.003 |
Shahzad, A., Munir, M. U. H., Adatte, T., et al., 2022. Multi-Proxy Approach of the Stratigraphy, Geochemistry, and Sedimentology of Eocene Margalla Hill Limestone: Case Study from Muzaffarabad Area, Sub-Himalayas, Pakistan. Geological Journal, 57(1): 186–207. https://doi.org/10.1002/gj.4291 |
Singh, S., Awasthi, A. K., Khanna, Y., et al., 2021. Sediment Colour as Recorder of Climate and Tectonics: Cenozoic Continental Red Beds of the Himalayan Foreland Basin in NW India. Catena, 203: 105298. https://doi.org/10.1016/j.catena.2021.105298 |
Slotnick, B. S., Dickens, G. R., Hollis, C. J., et al., 2015. The Onset of the Early Eocene Climatic Optimum at Branch Stream, Clarence River Valley, New Zealand. New Zealand Journal of Geology and Geophysics, 58(3): 262–280. https://doi.org/10.1080/00288306.2015.1063514 |
Song, M. S., 2005. Sedimentary Environment Geochemistry in the Shasi Section of Southern Ramp, Dongying Depression: Journal of Mineralogy and Petrology, 25: 67–73 |
Speijer, R. P., Scheibner, C., Stassen, P., et al., 2012. Response of Marine Ecosystems to Deep-Time Global Warming: A Synthesis of Biotic Patterns across the Paleocene–Eocene Thermal Maximum. Austrian Journal of Earth Sciences, 105: 6–16 |
Stoll, H. M., Rosenthal, Y., Falkowski, P., 2002. Climate Proxies from Sr/Ca of Coccolith Calcite: Calibrations from Continuous Culture of Emiliania Huxleyi. Geochimica et Cosmochimica Acta, 66(6): 927–936. https://doi.org/10.1016/s0016-7037(01)00836-5 |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 |
Thomas, E., 2007. Cenozoic Mass Extinctions in the Deep Sea: What Perturbs the Largest Habitat on Earth?. Large Ecosystem Perturbations: Causes and Consequences. In: Monechi, S., Coccioni, R., Rampino, M., eds., Large Ecosystem Perturbations: Causes and Consequences, Geological Society of America Special Papers, 424: 2. |
Thomas, E., Shackleton, N. J., 1996. The Paleocene-Eocene Benthic Foraminiferal Extinction and Stable Isotope Anomalies. Geological Society, London, Special Publications, 101(1): 401–441. https://doi.org/10.1144/gsl.sp.1996.101.01.20 |
Thomas, E., Boscolo-Galazzo, F., Balestra, B., et al., 2018. Early Eocene Thermal Maximum 3: Biotic Response at Walvis Ridge (SE Atlantic Ocean). Paleoceanography and Paleoclimatology, 33(8): 862–883. https://doi.org/10.1029/2018pa003375 |
Tong, Y. B., Yang, Z. Y., Mao, C. P., et al., 2017. Paleomagnetism of Eocene Red-Beds in the Eastern Part of the Qiangtang Terrane and Its Implications for Uplift and Southward Crustal Extrusion in the Southeastern Edge of the Tibetan Plateau. Earth and Planetary Science Letters, 475: 1–14. https://doi.org/10.1016/j.epsl.2017.07.026 |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1/2): 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
Tucker, M. E., Wright, V. P., 1990. Diagenetic Processes, Products and Environments, Carbonate Sedimentology. Blackwell Publishing Ltd., Oxford, 314–364. https://doi.org/10.1002/9781444314175.ch7 |
Turner, P., 1980. Continental Red Beds, Elsevier, Amsterdam |
Ullah, K., Arif, M., Shah, M. T., 2006. Petrography of Sandstones from the Kamlial and Chinji Formations, Southwestern Kohat Plateau, NW Pakistan: Implications for Source Lithology and Paleoclimate. Journal of Himalayan Earth Sciences, 39: 1–13 |
Weaver, C. E., 1989. Clays, Muds, and Shales, Elsevier, Amsterdam |
Wells, N. A., 1984. Marine and Continental Sedimentation in the Early Cenozoic Kohat Basin and Adjacent Northwestern Indo-Pakistan: [Dissertation]. University of Michigan, Ann Arbor. |
Wells, N. A., Gingerich, P. D., 1987. Paleoenvironmental Interpretation of Paleogene Strata near Kotli, Azad Kashmir, Northeastern Pakistan. Kashmir Journal of Geology, 5: 23–41 |
West, R. M., 1984. Siwalik Faunas from Nepal: Paleoecologic and Paleoclimatic Implications, In: Whyte, R. O., ed., The Evolution of the East Asian Environment, 2: 724–744 |
Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth's Climate and Its Predictability over the Last 66 Million Years. Science, 369(6509): 1383–1387. https://doi.org/10.1126/science.aba6853 |
Westerhold, T., Röhl, U., Laskar, J., 2012. Time Scale Controversy: Accurate Orbital Calibration of the Early Paleogene. Geochemistry, Geophysics, Geosystems, 13(6): Q06015. https://doi.org/10.1029/2012gc004096 |
Westerhold, T., Röhl, U., Donner, B., et al., 2018. Global Extent of Early Eocene Hyperthermal Events: A New Pacific Benthic Foraminiferal Isotope Record from Shatsky Rise (ODP Site 1209). Paleoceanography and Paleoclimatology, 33(6): 626–642. https://doi.org/10.1029/2017pa003306 |
Westerhold, T., Röhl, U., Frederichs, T., et al., 2017. Astronomical Calibration of the Ypresian Timescale: Implications for Seafloor Spreading Rates and the Chaotic Behavior of the Solar System? Climate of the Past, 13(9): 1129–1152. https://doi.org/10.5194/cp-13-1129-2017 |
Widiatama, A. J., Fahruddin, A., Dwita Santy, L., 2021. Characteristics of Polymetallic Enrichment on Oceanic Red Bed in Matano Formation, Baturubei, Central Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 882(1): 012045. https://doi.org/10.1088/1755-1315/882/1/012045 |
Wilson, J. L., 1975. The Lower Carboniferous Waulsortian Facies. Carbonate Facies in Geologic History. Springer, New York. |
Wynne, A. B., 1874. Notes on the Geology of Neighbourhood of Mari Hill Station in the Punjab. Memoirs of the Geological Survey of India, 7: 64–74 |
Yan, K., Wang, C. L., Mischke, S., et al., 2021. Major and Trace-Element Geochemistry of Late Cretaceous Clastic Rocks in the Jitai Basin, Southeast China. Scientific Reports, 11(1): 13846. https://doi.org/10.1038/s41598-021-93125-8 |
Yan, Y., Xia, B., Lin, G., et al., 2007. Geochemistry of the Sedimentary Rocks from the Nanxiong Basin, South China and Implications for Provenance, Paleoenvironment and Paleoclimate at the K/T Boundary. Sedimentary Geology, 197(1/2): 127–140. https://doi.org/10.1016/j.sedgeo.2006.09.004 |
Yerino, L. N., Maynard, J. B., 1984. Petrography of Modern Marine Sands from the Peru-Chile Trench and Adjacent Areas. Sedimentology, 31(1): 83–89. https://doi.org/10.1111/j.1365-3091.1984.tb00724.x |
Zachos, J., Pagani, M., Sloan, L., et al., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292(5517): 686–693. https://doi.org/10.1126/science.1059412 |
Zachos, J. C., Dickens, G. R., Zeebe, R. E., 2008. An Early Cenozoic Perspective on Greenhouse Warming and Carbon-Cycle Dynamics. Nature, 451(7176): 279–283. https://doi.org/10.1038/nature06588 |
Zachos, J. C., Röhl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611–1615. https://doi.org/10.1126/science.1109004 |
Zaid, S. M., 2015. Geochemistry of Sandstones from the Pliocene Gabir Formation, North Marsa Alam, Red Sea, Egypt: Implication for Provenance, Weathering and Tectonic Setting. Journal of African Earth Sciences, 102: 1–17. https://doi.org/10.1016/j.jafrearsci.2014.1 0.016 doi: 10.1016/j.jafrearsci.2014.10.016 |