Citation: | Zhensheng Wang, Junfeng Zhang, Keqing Zong, Timothy M. Kusky, Yanxin Wang. Plate Tectonics: The Stabilizer of Earth's Habitability. Journal of Earth Science, 2023, 34(6): 1645-1662. doi: 10.1007/s12583-023-1864-9 |
Earth is the only planet known to be habitable, and is also unique with its liquid water, and the operation of plate tectonics. The geological record shows that the habitability of our planet can rapidly recover from major disasters or catastrophes, even those that cause mass extinctions. We suggest that plate tectonics, which acts as a link between the shallow and deep, is pivotal for the formation, evolution, and long-term stability of the hydrosphere, atmosphere, lithosphere, and thus life. Plate tectonics links the surface environment with the deep interior of high viscosity, low Reynolds number, low entropy, and low chaos, able to produce a strong healing effect to neutralize catastrophic events. It can transfer the bio-essential elements from the deep interior to the near-surface environment and can recycle toxic elements to the deep. This unique planetary energy and material transfer process of Earth is a continuous, slow-release, and bidirectional cycle, where a change in the surface is slowly buffered by a reaction from the deep, shaping a long-term and stable habitable environment. Therefore, it is considered that plate tectonics is the basic condition for the long-term stable evolution of the Earth's biosphere and the stabilizer of the Earth's habitability.
Anderson, D. L., 2000. The Thermal State of the Upper Mantle: No Role for Mantle Plumes. Geophysical Research Letters, 27(22): 3623–3626. https://doi.org/10.1029/2000gl011533 |
Anderson, D. L., Natland, J. H., 2005. A Brief History of the Plume Hypothesis and Its Competitors: Concept and Controversy. In: Foulger, G. R., Natland, J. H., Presnall, D. C., et al., eds., Plates, Plumes and Paradigms. Geological Society of America. |
Aulbach, S., Stagno, V., 2016. Evidence for a Reducing Archean Ambient Mantle and Its Effects on the Carbon Cycle. Geology, 44(9): 751–754. https://doi.org/10.1130/g38070.1 |
Ballmer, M. D., Schmerr, N. C., Nakagawa, T., et al., 2015. Compositional Mantle Layering Revealed by Slab Stagnation at ~1 000-km Depth. Science Advances, 1(11): e1500815. https://doi.org/10.1126/sciadv.1500815 |
Barley, M. E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1/2): 156–171. https://doi.org/10.1016/j.epsl.2005.06.062 |
Benner, S. A., Bell, E. A., Biondi, E., et al., 2020. When did Life Likely Emerge on Earth in an RNA-First Process? ChemSystemsChem, 2(2): e1900035. https://doi.org/10.1002/syst.201900035 |
Bercovici, D., Karato, S. I., 2003. Whole-Mantle Convection and the Transition-Zone Water Filter. Nature, 425(6953): 39–44. https://doi.org/10.1038/nature01918 |
Boukaré, C. E., Parmentier, E. M., Parman, S. W., 2018. Timing of Mantle Overturn during Magma Ocean Solidification. Earth and Planetary Science Letters, 491: 216–225. https://doi.org/10.1016/j.epsl.2018.03.037 |
Bradley, D. C., 2008. Passive Margins through Earth History. Earth-Science Reviews, 91(1/2/3/4): 1–26. https://doi.org/10.1016/j.earscirev.2008. 08.001 doi: 10.1016/j.earscirev.2008.08.001 |
Broadley, M. W., Barry, P. H., Ballentine, C. J., et al., 2018. End-Permian Extinction Amplified by Plume-Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11(9): 682–687. https://doi.org/10.1038/s41561-018-0215-4 |
Brown, M., Johnson, T., Gardiner, N. J., 2020. Plate Tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences, 48: 291–320. https://doi.org/10.1146/annurev-earth-081619-052705 |
Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181–196. https://doi.org/10.2138/am-2018-6166 |
Brown, M. T., Ulgiati, S., 2010. Updated Evaluation of Exergy and Emergy Driving the Geobiosphere: A Review and Refinement of the Emergy Baseline. Ecological Modelling, 221(20): 2501–2508. https://doi.org/10.1016/j.ecolmodel.2010.06.027 |
Brune, S., Williams, S. E., Müller, R. D., 2017. Potential Links between Continental Rifting, CO2 Degassing and Climate Change through Time. Nature Geoscience, 10(12): 941–946. https://doi.org/10.1038/s41561-017-0003-6 |
Burke, K., 2011. Plate Tectonics, the Wilson Cycle, and Mantle Plumes: Geodynamics from the Top. Annual Review of Earth and Planetary Sciences, 39: 1–29. https://doi.org/10.1146/annurev-earth-040809-152521 |
Calvert, A. J., Doublier, M. P., Sellars, S. E., 2021. Seismic Reflections from a Lithospheric Suture Zone below the Archaean Yilgarn Craton. Nature Communications, 12: 7245. https://doi.org/10.1038/s41467-021-27516-w |
Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1(8): 554–558. https://doi.org/10.1038/ngeo259 |
Campbell, I. H., Squire, R. J., 2010. The Mountains that Triggered the Late Neoproterozoic Increase in Oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74(15): 4187–4206. https://doi.org/10.1016/j.gca.2010.04.064 |
Campbell, I. H., Taylor, S. R., 1983. No Water, no Granites—no Oceans, no Continents. Geophysical Research Letters, 10(11): 1061–1064. https://doi.org/10.1029/gl010i011p01061 |
Capitanio, F. A., Nebel, O., Cawood, P. A., 2020. Thermochemical Lithosphere Differentiation and the Origin of Cratonic Mantle. Nature, 588(7836): 89–94. https://doi.org/10.1038/s41586-020-2976-3 |
Catling, D. C., Kasting, J. F., 2017. Atmospheric Evolution on Inhabited and Lifeless Worlds. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781139020558 |
Catling, D. C., Zahnle, K. J., 2020. The Archean Atmosphere. Science Advances, 6(9): eaax1420. https://doi.org/10.1126/sciadv.aax1420 |
Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2): 14–32. https://doi.org/10.1130/b30722.1 |
Cawood, P. A., Hawkesworth, C. J., 2014. Earth's Middle Age. Geology, 42(6): 503–506. https://doi.org/10.1130/g35402.1 |
Cawood, P. A., Hawkesworth, C. J., Pisarevsky, S. A., et al., 2018. Geological Archive of the Onset of Plate Tectonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132): 20170405. https://doi.org/10.1098/rsta.2017.0405 |
Ceballos, G., Ehrlich, P. R., Barnosky, A. D., et al., 2015. Accelerated Modern Human-Induced Species Losses: Entering the Sixth Mass Extinction. Science Advances, 1(5): e1400253. https://doi.org/10.1126/sciadv.1400253 |
Chambers, J. E., 2004. Planetary Accretion in the Inner Solar System. Earth and Planetary Science Letters, 223(3/4): 241–252. https://doi.org/10.1016/j.epsl.2004.04.031 |
Chassefière, E., 1996. Hydrodynamic Escape of Oxygen from Primitive Atmospheres: Applications to the Cases of Venus and Mars. Icarus, 124(2): 537–552. https://doi.org/10.1006/icar.1996.0229 |
Chen, G. X., Cheng, Q. M., Lyons, T. W., et al., 2022. Reconstructing Earth's Atmospheric Oxygenation History Using Machine Learning. Nature Communications, 13: 5862. https://doi.org/10.1038/s41467-022-33388-5 |
Chen, K., Tang, M., Lee, C. T. A., et al., 2020. Sulfide-Bearing Cumulates in Deep Continental Arcs: The Missing Copper Reservoir. Earth and Planetary Science Letters, 531: 115971. https://doi.org/10.1016/j.epsl.2019.115971 |
Chen, L., Wang, X., Liang, X. F., et al., 2020. Subduction Tectonics vs. Plume Tectonics—Discussion on Driving Forces for Plate Motion. Science China Earth Sciences, 63(3): 315–328. https://doi.org/10.1007/s11430-019-9538-2 |
Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375–383. https://doi.org/10.1038/ngeo1475 |
Cheng, Q. M., 2018. Extrapolations of Secular Trends in Magmatic Intensity and Mantle Cooling: Implications for Future Evolution of Plate Tectonics. Gondwana Research, 63: 268–273. https://doi.org/10.1016/j.gr.2018.08.001 |
Ćirković, M. M., 2004. A Comment on Tectonics and the Future of Life on Terrestrial Planets. Precambrian Research, 130(1/2/3/4): 289–291. https://doi.org/10.1016/j.precamres.2003.12.003 |
Čížková, H., Bina, C. R., 2019. Linked Influences on Slab Stagnation: Interplay between Lower Mantle Viscosity Structure, Phase Transitions, and Plate Coupling. Earth and Planetary Science Letters, 509: 88–99. https://doi.org/10.1016/j.epsl.2018.12.027 |
Coffin, M. F., Eldholm, O., 1994. Large Igneous Provinces: Crustal Structure, Dimensions, and External Consequences. Reviews of Geophysics, 32(1): 1–36. https://doi.org/10.1029/93rg02508 |
Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection? Earth and Planetary Science Letters, 163(1/2/3/4): 97–108. https://doi.org/10.1016/s0012-821x(98)00178-2 |
Cui, Y., Li, M. S., van Soelen, E. E., et al., 2021. Massive and Rapid Predominantly Volcanic CO2 Emission during the End-Permian Mass Extinction. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2014701118. https://doi.org/10.1073/pnas.2014701118 |
Dasgupta, R., 2013. Ingassing, Storage, and Outgassing of Terrestrial Carbon through Geologic Time. Reviews in Mineralogy and Geochemistry, 75(1): 183–229. https://doi.org/10.2138/rmg.2013.75.7 |
Dasgupta, S., Laplante, B., Mamingi, N., 2001. Pollution and Capital Markets in Developing Countries. Journal of Environmental Economics and Management, 42(3): 310–335. https://doi.org/10.1006/jeem.2000.1161 |
Davaille, A., Smrekar, S. E., Tomlinson, S., 2017. Experimental and Observational Evidence for Plume-Induced Subduction on Venus. Nature Geoscience, 10(5): 349–355. https://doi.org/10.1038/ngeo2928 |
Davies, G. F., 1990. Mantle Plumes, Mantle Stirring and Hotspot Chemistry. Earth and Planetary Science Letters, 99(1/2): 94–109. https://doi.org/10.1016/0012-821x(90)90073-7 |
Davies, P., 2001. The Origin of Life. Ⅰ: When and where did it Begin? Science Progress, 84(1): 1–16. https://doi.org/10.3184/003685001783239069 |
Ding, Z. L., Duan, X. N., Ge, Q. S., et al., 2010. On the Major Proposals for Carbon Emission Reduction and some Related Issues. Science China Earth Sciences, 53(2): 159–172. https://doi.org/10.1007/s11430-010-0012-4 |
Djokic, T., Van Kranendonk, M. J., Campbell, K. A., et al., 2017. Earliest Signs of Life on Land Preserved in ca. 3.5 Ga Hot Spring Deposits. Nature Communications, 8: 15263. https://doi.org/10.1038/ncomms15263 |
Dodd, M. S., Papineau, D., Grenne, T., et al., 2017. Evidence for Early Life in Earth's Oldest Hydrothermal Vent Precipitates. Nature, 543(7643): 60–64. https://doi.org/10.1038/nature21377 |
Du, Z. X., Deng, J., Miyazaki, Y., et al., 2019. Fate of Hydrous Fe-Rich Silicate Melt in Earth's Deep Mantle. Geophysical Research Letters, 46(16): 9466–9473. https://doi.org/10.1029/2019gl083633 |
Duncan, M. S., Dasgupta, R., 2017. Rise of Earth's Atmospheric Oxygen Controlled by Efficient Subduction of Organic Carbon. Nature Geoscience, 10(5): 387–392. https://doi.org/10.1038/ngeo2939 |
East, M., Müller, R. D., Williams, S., et al., 2020. Subduction History Reveals Cretaceous Slab Superflux as a Possible Cause for the Mid-Cretaceous Plume Pulse and Superswell Events. Gondwana Research, 79: 125–139. https://doi.org/10.1016/j.gr.2019.09.001 |
Eldholm, O., Coffin, M., 2000. Large Igneous Provinces and Plate Tectonics. Geophysical Monograph, 121: 309–326. https://doi.org/10.1029/gm121p0309 |
Ernst, R. E., Buchan, K. L., 2003. Recognizing Mantle Plumes in the Geological Record. Annual Review of Earth and Planetary Sciences, 31: 469–523. https://doi.org/10.1146/annurev.earth.31.100901.145500 |
Ernst, R. E., Grosfils, E. B., Mège, D., 2001. Giant Dike Swarms: Earth, Venus, and Mars. Annual Review of Earth and Planetary Sciences, 29: 489–534. https://doi.org/10.1146/annurev.earth.29.1.489 |
Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30–52. https://doi.org/10.1016/j.palaeo.2017.03.014 |
Ernst, W. G., 2017. Earth's Thermal Evolution, Mantle Convection, and Hadean Onset of Plate Tectonics. Journal of Asian Earth Sciences, 145: 334–348. https://doi.org/10.1016/j.jseaes.2017.05.037 |
Evans, D. A. D., 2003. True Polar Wander and Supercontinents. Tectonophysics, 362(1/2/3/4): 303–320. https://doi.org/10.1016/s0040-1951(02)000642-x |
Faccenda, M., 2014. Water in the Slab: A Trilogy. Tectonophysics, 614: 1–30. https://doi.org/10.1016/j.tecto.2013.12.020 |
Faccenda, M., Gerya, T. V., Burlini, L., 2009. Deep Slab Hydration Induced by Bending-Related Variations in Tectonic Pressure. Nature Geoscience, 2(11): 790–793. https://doi.org/10.1038/ngeo656 |
Farnetani, C. G., Samuel, H., 2005. Beyond the Thermal Plume Paradigm. Geophysical Research Letters, 32(7): L07311. https://doi.org/10.1029/2005gl022360 |
Fedo, C. M., Whitehouse, M. J., Kamber, B. S., 2006. Geological Constraints on Detecting the Earliest Life on Earth: A Perspective from the Early Archaean (Older than 3.7 Gyr) of Southwest Greenland. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 361(1470): 851–867. https://doi.org/10.1098/rstb.2006.1836 |
Feulner, G., 2012. The Faint Young Sun Problem. Reviews of Geophysics, 50(2): RG2006. https://doi.org/10.1029/2011rg000375 |
Foley, B. J., Bercovici, D., Elkins-Tanton, L. T., 2014. Initiation of Plate Tectonics from Post-Magma Ocean Thermochemical Convection. Journal of Geophysical Research: Solid Earth, 119(11): 8538–8561. https://doi.org/10.1002/2014jb011121 |
Foley, S. F., Fischer, T. P., 2017. An Essential Role for Continental Rifts and Lithosphere in the Deep Carbon Cycle. Nature Geoscience, 10(12): 897–902. https://doi.org/10.1038/s41561-017-0002-7 |
Fu, H. R., Zhang, S. H., Condon, D. J., et al., 2022. Secular Change of True Polar Wander over the Past Billion Years. Science Advances, 8(41): eabo2753. https://doi.org/10.1126/sciadv.abo2753 |
Fuentes, J. J., Crowley, J. W., Dasgupta, R., et al., 2019. The Influence of Plate Tectonic Style on Melt Production and CO2 Outgassing Flux at Mid-Ocean Ridges. Earth and Planetary Science Letters, 511: 154–163. https://doi.org/10.1016/j.epsl.2019.01.020 |
Furnes, H., Dilek, Y., 2022. Archean versus Phanerozoic Oceanic Crust Formation and Tectonics: Ophiolites through Time. Geosystems and Geoenvironment, 1(1): 100004. https://doi.org/10.1016/j.geogeo.2021.09.004 |
Gaillard, F., Scaillet, B., Arndt, N. T., 2011. Atmospheric Oxygenation Caused by a Change in Volcanic Degassing Pressure. Nature, 478(7368): 229–232. https://doi.org/10.1038/nature10460 |
Ganne, J., Feng, X. J., 2017. Primary Magmas and Mantle Temperatures through Time. Geochemistry, Geophysics, Geosystems, 18(3): 872–888. https://doi.org/10.1002/2016gc006787 |
Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221–225. https://doi.org/10.1038/nature15752 |
Godolt, M., Tosi, N., Stracke, B., et al., 2019. The Habitability of Stagnant-Lid Earths around Dwarf Stars. Astronomy & Astrophysics, 625: A12 |
Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam. xv–xvi. https://doi.org/10.1016/b978-0-444-59425-9.05001-0 |
Grasby, S. E., Them, T. R., Chen, Z. H., et al., 2019. Mercury as a Proxy for Volcanic Emissions in the Geologic Record. Earth-Science Reviews, 196: 102880. https://doi.org/10.1016/j.earscirev.2019.102880 |
Green, T., Renne, P. R., Keller, C. B., 2022. Continental Flood Basalts Drive Phanerozoic Extinctions. Proceedings of the National Academy of Sciences of the United States of America, 119(38): e2120441119. https://doi.org/10.1073/pnas.2120441119 |
Griffin, W. L., O'Reilly, S. Y., 2019. The Earliest Subcontinental Lithospheric Mantle. Earth's Oldest Rocks. Elsevier, Amsterdam. 81–102. |
Grindrod, P. M., Nimmo, F., Stofan, E. R., et al., 2005. Strain at Radially Fractured Centers on Venus. Journal of Geophysical Research: Planets, 110(E12): E12002. https://doi.org/10.1029/2005je002416 |
Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J., et al., 2020. Corona Structures Driven by Plume-Lithosphere Interactions and Evidence for Ongoing Plume Activity on Venus. Nature Geoscience, 13(8): 547–554. https://doi.org/10.1038/s41561-020-0606-1 |
Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4): 501–516. https://doi.org/10.1016/j.epsl.2011.05.024 |
Hansen, U., Yuen, D. A., 1988. Numerical Simulations of Thermal-Chemical Instabilities at the Core-Mantle Boundary. Nature, 334(6179): 237–240. https://doi.org/10.1038/334237a0 |
Hao, J. H., Glein, C. R., Huang, F., et al., 2022. Abundant Phosphorus Expected for Possible Life in Enceladus's Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(39): e2093579177. https://doi.org/10.1073/pnas.2201388119 |
Harrison, T. M., 2020. Hadean Earth. Springer. |
Helmstaedt, H., Schulze, D. J., 1989. Southern African Kimberlites and Their Mantle Sample: Implications for Archean Tectonics and Lithos-phere Evolution. In: Ross, J., ed., Kimberlites and Related Rocks. Proceedings of the 4th International Kimberlite Conference, Perth. Geological Society of Australia Special Publication, 14: 358–368 |
Herndon, J., Whiteside, M., Baldwin, I., 2018. Fifty Years after "How to Wreck the Environment": Anthropogenic Extinction of Life on Earth. Journal of Geography, Environment and Earth Science International, 16(3): 1–15. https://doi.org/10.9734/jgeesi/2018/42006 |
Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters, 292(1/2): 79–88. https://doi.org/10.1016/j.epsl.2010.01.022 |
Hickel, J., 2019. The Contradiction of the Sustainable Development Goals: Growth versus Ecology on a Finite Planet. Sustainable Development, 27(5): 873–884. https://doi.org/10.1002/sd.1947 |
Hirschmann, M. M., 2006. Water, Melting, and the Deep Earth H2O Cycle. Annual Review of Earth and Planetary Sciences, 34: 629–653. https://doi.org/10.1146/annurev.earth.34.031405.125211 |
Hoggard, M. J., Parnell-Turner, R., White, N., 2020. Hotspots and Mantle Plumes Revisited: Towards Reconciling the Mantle Heat Transfer Discrepancy. Earth and Planetary Science Letters, 542: 116317. https://doi.org/10.1016/j.epsl.2020.116317 |
Holder, R. M., Viete, D. R., Brown, M., et al., 2019. Metamorphism and the Evolution of Plate Tectonics. Nature, 572(7769): 378–381. https://doi.org/10.1038/s41586-019-1462-2 |
Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058–1063. https://doi.org/10.1126/science.1208277 |
Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature, 534(7606): 241–244. https://doi.org/10.1038/nature18018 |
Huang, J. P., Liu, X. Y., He, Y. S., et al., 2021. The Oxygen Cycle and a Habitable Earth. Science China Earth Sciences, 64(4): 511–528. https://doi.org/10.1007/s11430-020-9747-1 |
Iwamori, H., 2007. Transportation of H2O beneath the Japan Arcs and Its Implications for Global Water Circulation. Chemical Geology, 239(3/4): 182–198. https://doi.org/10.1016/j.chemgeo.2006.08.011 |
Jannasch, H. W., Mottl, M. J., 1985. Geomicrobiology of Deep-Sea Hydrothermal Vents. Science, 229(4715): 717–725. https://doi.org/10.1126/science.229.4715.717 |
Javaux, E. J., 2019. Challenges in Evidencing the Earliest Traces of Life. Nature, 572(7770): 451–460. https://doi.org/10.1038/s41586-019-1436-4 |
Javaux, E. J., Dehant, V., 2010. Habitability: From Stars to Cells. The Astronomy and Astrophysics Review, 18(3): 383–416. https://doi.org/10.1007/s00159-010-0030-4 |
Jellinek, A. M., Jackson, M. G., 2015. Connections between the Bulk Composition, Geodynamics and Habitability of Earth. Nature Geoscience, 8(8): 587–593. https://doi.org/10.1038/ngeo2488 |
Jiao, S. J., Brown, M., Mitchell, R. N., et al., 2023. Mechanisms to Generate Ultrahigh-Temperature Metamorphism. Nature Reviews Earth & Environment, 4(5): 298–318. https://doi.org/10.1038/s43017-023-00403-2 |
Kadoya, S., Catling, D. C., Nicklas, R. W., et al., 2020. Mantle Data Imply a Decline of Oxidizable Volcanic Gases could Have Triggered the Great Oxidation. Nature Communications, 11: 2774. https://doi.org/10.1038/s41467-020-16493-1 |
Kaygusuz, K., 2012. Energy for Sustainable Development: A Case of Developing Countries. Renewable and Sustainable Energy Reviews, 16(2): 1116–1126. https://doi.org/10.1016/j.rser.2011.11.013 |
Kelemen, P. B., Manning, C. E., 2015. Reevaluating Carbon Fluxes in Subduction Zones, what Goes down, mostly Comes up. Proceedings of the National Academy of Sciences of the United States of America, 112(30): E3997–E4006. https://doi.org/10.1073/pnas.1507889112 |
Keller, T., Katz, R. F., Hirschmann, M. M., 2017. Volatiles beneath Mid-Ocean Ridges: Deep Melting, Channelised Transport, Focusing, and Metasomatism. Earth and Planetary Science Letters, 464: 55–68. https://doi.org/10.1016/j.epsl.2017.02.006 |
Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273(5274): 452–457. https://doi.org/10.1126/science.273.5274.452 |
Knoll, A. H., Bambach, R. K., Payne, J. L., et al., 2007. Paleophysiology and End-Permian Mass Extinction. Earth and Planetary Science Letters, 256(3/4): 295–313. https://doi.org/10.1016/j.epsl.2007.02.018 |
Kolbert, E., 2014. The Sixth Extinction: An Unnatural History. Henry Holt and Company, New York |
Konatham, S., Martin-Torres, J., Zorzano, M. P., 2020. Atmospheric Composition of Exoplanets Based on the Thermal Escape of Gases and Implications for Habitability. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2241): 20200148. https://doi.org/10.1098/rspa.2020.0148 |
Koppers, A. A. P., Becker, T. W., Jackson, M. G., et al., 2021. Mantle Plumes and Their Role in Earth Processes. Nature Reviews Earth & Environment, 2(6): 382–401. https://doi.org/10.1038/s43017-021-00168-6 |
Korenaga, J., 2008. Urey Ratio and the Structure and Evolution of Earth's Mantle. Reviews of Geophysics, 46(2): RG2007. https://doi.org/10.1029/2007rg000241 |
Korenaga, J., 2012. Plate Tectonics and Planetary Habitability: Current Status and Future Challenges. Annals of the New York Academy of Sciences, 1260(1): 87–94. https://doi.org/10.1111/j.1749-6632.2011.06276.x |
Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41: 117–151. https://doi.org/10.1146/annurev-earth-050212-124208 |
Korenaga, J., 2021. Hadean Geodynamics and the Nature of Early Continental Crust. Precambrian Research, 359: 106178. https://doi.org/10.1016/j.precamres.2021.106178 |
Korenaga, J., Planavsky, N. J., Evans, D. A. D., 2017. Global Water Cycle and the Coevolution of the Earth's Interior and Surface Environment. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 375(2094): 20150393 |
Kreemer, C., Blewitt, G., Klein, E. C., 2014. A Geodetic Plate Motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10): 3849–3889. https://doi.org/10.1002/2014gc005407 |
Krissansen-Totton, J., Arney, G. N., Catling, D. C., 2018. Constraining the Climate and Ocean pH of the Early Earth with a Geological Carbon Cycle Model. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4105–4110. https://doi.org/10.1073/pnas.1721296115 |
Kusky, T. M., 2020. Plate Tectonics in Relation to Mantle Temperatures and Metamorphic Properties. Science China Earth Sciences, 63(5): 634–642. https://doi.org/10.1007/s11430-020-9597-5 |
Kusky, T. M., Wang, L., Robinson, P. T., et al., 2021. Ultra-High Pressure Inclusion in Archean Ophiolitic Podiform Chromitite in Mélange Block Suggests Deep Subduction on Early Earth. Precambrian Research, 362: 106318. https://doi.org/10.1016/j.precamres.2021.106318 |
Kusky, T. M., Huang, Y., Wang, L., et al., 2022. Vestiges of Early Earth's Deep Subduction and CHONSP Cycle Recorded in Archean Ophiolitic Podiform Chromitites. Earth-Science Reviews, 227: 103968. https://doi.org/10.1016/j.earscirev.2022.103968 |
Kusky, T. M., Wang, L., 2022. Growth of Continental Crust in Intra-Oceanic and Continental-Margin Arc Systems: Analogs for Archean Systems. Science China Earth Sciences, 65(9): 1615–1645. https://doi.org/10.1007/s11430-021-9964-1 |
Kusky, T. M., 1993. Collapse of Archean Orogens and the Generation of Late- to Postkinematic Granitoids. Geology, 21(10): 925–928. https://doi.org/10.1130/0091-7613(1993)0210925:coaoat>2.3.co;2 doi: 10.1130/0091-7613(1993)0210925:coaoat>2.3.co;2 |
Kusky, T. M., 2022. Déjà vu: Might Future Eruptions of Hunga Tonga-Hunga Ha'apai Volcano be a Repeat of the Devastating Eruption of Santorini, Greece (1650 BC)? Journal of Earth Science, 33(2): 229–235. https://doi.org/10.1007/s12583-022-1624-2 |
Kusky, T. M., Cullen, K. E., 2010. Encyclopedia of Earth and Space Science. Infobase Publishing, New York |
Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6 |
Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501–547. https://doi.org/10.1016/j.gr.2013.01.004 |
Lammer, H., Bredehöft, J. H., Coustenis, A., et al., 2009. What Makes a Planet Habitable? The Astronomy and Astrophysics Review, 17(2): 181–249. https://doi.org/10.1007/s00159-009-0019-z |
Lammer, H., Zerkle, A. L., Gebauer, S., et al., 2018. Origin and Evolution of the Atmospheres of Early Venus, Earth and Mars. The Astronomy and Astrophysics Review, 26(1): 2. https://doi.org/10.1007/s00159-018-0108-y |
Langmuir, C. H., Broecker, W., 2012. How to Build a Habitable Planet. Princeton University Press, Princeton |
Lee, C. T. A., Anderson, D. L., 2015. Continental Crust Formation at Arcs, the Arclogite "Delamination" Cycle, and one Origin for Fertile Melting Anomalies in the Mantle. Science Bulletin, 60(13): 1141–1156. https://doi.org/10.1007/s11434-015-0828-6 |
Lee, C. T. A., Yeung, L. Y., McKenzie, N. R., et al., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience, 9(6): 417–424. https://doi.org/10.1038/ngeo2707 |
Lee, C. T. A., Luffi, P., Plank, T., et al., 2009. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 279(1/2): 20–33. https://doi.org/10.1016/j.epsl.2008.12.020 |
Lee, C. T. A., 2006. Geochemical/Petrologic Constraints on the Origin of Cratonic Mantle. Archean Geodynamics and Environments. American Geophysical Union, Washington, D. C. 89–114. |
Lenardic, A., 2018. The Diversity of Tectonic Modes and Thoughts about Transitions between Them. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2132): 20170416. https://doi.org/10.1098/rsta.2017.0416 |
Li, J. H., Kusky, T. M., 2007. World's Largest Known Precambrian Fossil Black Smoker Chimneys and Associated Microbial Vent Communities, North China: Implications for Early Life. Gondwana Research, 12(1/2): 84–100. https://doi.org/10.1016/j.gr.2006.10.024 |
Li, Z. X., Zhong, S. J., 2009. Supercontinent-Superplume Coupling, True Polar Wander and Plume Mobility: Plate Dominance in Whole-Mantle Tectonics. Physics of the Earth and Planetary Interiors, 176(3/4): 143–156. https://doi.org/10.1016/j.pepi.2009.05.004 |
Liu, J. G., Pearson, D. G., Wang, L. H., et al., 2021. Plume-Driven Recratonization of Deep Continental Lithospheric Mantle. Nature, 592(7856): 732–736. https://doi.org/10.1038/s41586-021-03395-5 |
Liu, Y. S., Chen, W., Foley, S. F., et al., 2021. The Largest Negative Carbon Isotope Excursions in Neoproterozoic Carbonates Caused by Recycled Carbonatite Volcanic Ash. Science Bulletin, 66(18): 1925–1931. https://doi.org/10.1016/j.scib.2021.04.021 |
Liu, Y. S., He, D. T., Gao, C. G., et al., 2015. First Direct Evidence of Sedimentary Carbonate Recycling in Subduction-Related Xenoliths. Scientific Reports, 5: 11547. https://doi.org/10.1038/srep11547 |
Loerting, T., Fuentes-Landete, V., Tonauer, C. M., et al., 2020. Open Questions on the Structures of Crystalline Water Ices. Communications Chemistry, 3: 109. https://doi.org/10.1038/s42004-020-00349-2 |
Lunine, J. I., 2013. Earth: Evolution of a Habitable World. Cambridge University Press, Cambridge |
Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134 |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307–315. https://doi.org/10.1038/nature13068 |
Marchi, S., Drabon, N., Schulz, T., et al., 2021. Delayed and Variable Late Archaean Atmospheric Oxidation Due to High Collision Rates on Earth. Nature Geoscience, 14(11): 827–831. https://doi.org/10.1038/s41561-021-00835-9 |
Margulis, L., 1981. Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth. W. H. Freeman & Company, New York |
Maruyama, S., Santosh, M., Azuma, S., 2018. Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment. Geoscience Frontiers, 9(4): 1033–1048. https://doi.org/10.1016/j.gsf.2016.11.009 |
Masuda, H., 2018. Arsenic Cycling in the Earth's Crust and Hydrosphere: Interaction between Naturally Occurring Arsenic and Human Activities. Progress in Earth and Planetary Science, 5(1): 1–11. https://doi.org/10.1186/s40645-018-0224-3 |
Merian, E., 1984. Introduction on Environmental Chemistry and Global Cycles of Chromium, Nickel, Cobalt Beryllium, Arsenic, Cadmium and Selenium, and Their Derivatives. Toxicological & Environmental Chemistry, 8(1): 9–38. https://doi.org/10.1080/02772248409357038 |
Mikhail, S., Sverjensky, D. A., 2014. Nitrogen Speciation in Upper Mantle Fluids and the Origin of Earth's Nitrogen-Rich Atmosphere. Nature Geoscience, 7(11): 816–819. https://doi.org/10.1038/ngeo2271 |
Mitchell, R. N., Thissen, C. J., Evans, D. A. D., et al., 2021a. A Late Cretaceous True Polar Wander Oscillation. Nature Communications, 12: 3629. https://doi.org/10.1038/s41467-021-23803-8 |
Mitchell, R. N., Zhang, N., Salminen, J., et al., 2021b. The Supercontinent Cycle. Nature Reviews Earth & Environment, 2(5): 358–374. https://doi.org/10.1038/s43017-021-00160-0 |
Miyazaki, Y., Korenaga, J., 2022. A Wet Heterogeneous Mantle Creates a Habitable World in the Hadean. Nature, 603(7899): 86–90. https://doi.org/10.1038/s41586-021-04371-9 |
Mound, J. E., Mitrovica, J. X., 1998. True Polar Wander as a Mechanism for Second-Order Sea-Level Variations. Science, 279(5350): 534–537. https://doi.org/10.1126/science.279.5350.534 |
Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148: 312–336. https://doi.org/10.1016/j.lithos.2012.06.010 |
Mukherjee, I., Large, R. R., Corkrey, R., et al., 2018. The Boring Billion, a Slingshot for Complex Life on Earth. Scientific Reports, 8: 4432. https://doi.org/10.1038/s41598-018-22695-x |
Mukhopadhyay, R., Rosen, B. P., Phung, L. T., et al., 2002. Microbial Arsenic: From Geocycles to Genes and Enzymes. Fems Microbiology Reviews, 26(3): 311–325. https://doi.org/10.1016/s0168-6445(02)00112-2 |
Müller, R. D., 2011. Plate Motion and Mantle Plumes. Nature, 475(7354): 40–41. https://doi.org/10.1038/475040a |
Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 |
Nakagawa, T., Iwamori, H., Yanagi, R., et al., 2018. On the Evolution of the Water Ocean in the Plate-Mantle System. Progress in Earth and Planetary Science, 5(1): 1–16. https://doi.org/10.1186/s40645-018-0209-2 |
Nance, R. D., Worsley, T. R., Moody, J. B., 1988. The Supercontinent Cycle. Scientific American, 259(1): 72–79. https://doi.org/10.1038/scientificamerican0788-72 |
Ni, H. W., Zhang, L., Xiong, X. L., et al., 2017. Supercritical Fluids at Subduction Zones: Evidence, Formation Condition, and Physicoche-mical Properties. Earth-Science Reviews, 167: 62–71. https://doi.org/10.1016/j.earscirev.2017.02.006 |
Nicklas, R. W., Puchtel, I. S., Ash, R. D., et al., 2019. Secular Mantle Oxidation across the Archean-Proterozoic Boundary: Evidence from V Partitioning in Komatiites and Picrites. Geochimica et Cosmochimica Acta, 250: 49–75. https://doi.org/10.1016/j.gca.2019.01.037 |
Noack, L., Godolt, M., von Paris, P., et al., 2014. Can the Interior Structure Influence the Habitability of a Rocky Planet? Planetary and Space Science, 98: 14–29. https://doi.org/10.1016/j.pss.2014.01.003 |
Ohtani, E., 2005. Water in the Mantle. Elements, 1(1): 25–30. https://doi.org/10.2113/gselements.1.1.25 |
Ohtani, E., 2020. The Role of Water in Earth's Mantle. National Science Review, 7(1): 224–232. https://doi.org/10.1093/nsr/nwz071 |
O'Neill, C., Brown, M., Schaefer, B., et al., 2022. Earth's Anomalous Middle-Age Magmatism Driven by Plate Slowdown. Scientific Reports, 12: 10460. https://doi.org/10.1038/s41598-022-13885-9 |
O'Neill, C., Debaille, V., 2014. The Evolution of Hadean-Eoarchaean Geodynamics. Earth and Planetary Science Letters, 406: 49–58. https://doi.org/10.1016/j.epsl.2014.08.034 |
O'Neill, C., Jellinek, A. M., Lenardic, A., 2007. Conditions for the Onset of Plate Tectonics on Terrestrial Planets and Moons. Earth and Planetary Science Letters, 261(1/2): 20–32. https://doi.org/10.1016/j.epsl.2007.05.038 |
Papineau, D., She, Z. B., Dodd, M. S., et al., 2022. Metabolically Diverse Primordial Microbial Communities in Earth's Oldest Seafloor-Hydrothermal Jasper. Science Advances, 8(15): eabm2296. https://doi.org/10.1126/sciadv.abm2296 |
Parai, R., Mukhopadhyay, S., 2012. How Large is the Subducted Water Flux? New Constraints on Mantle Regassing Rates. Earth and Planetary Science Letters, 317/318: 396–406. https://doi.org/10.1016/j.epsl.2011.11.024 |
Pearson, D. G., 1999. The Age of Continental Roots. Lithos, 48(1/2/3/4): 171–194. https://doi.org/10.1016/s0024-4937(99)00026-2 |
Pearson, D. G., Scott, J. M., Liu, J. G., et al., 2021. Deep Continental Roots and Cratons. Nature, 596(7871): 199–210. https://doi.org/10.1038/s41586-021-03600-5 |
Peng, Y. Y., Kusky, T. M., Wang, L., et al., 2022. Passive Margins in Accreting Archaean Archipelagos Signal Continental Stability Promoting Early Atmospheric Oxygen Rise. Nature Communications, 13: 7821. https://doi.org/10.1038/s41467-022-35559-w |
Perchuk, A. L., Gerya, T. V., Zakharov, V. S., et al., 2020. Building Cratonic Keels in Precambrian Plate Tectonics. Nature, 586(7829): 395–401. https://doi.org/10.1038/s41586-020-2806-7 |
Peslier, A. H., Schönbächler, M., Busemann, H., et al., 2017. Water in the Earth's Interior: Distribution and Origin. Space Science Reviews, 212(1): 743–810. https://doi.org/10.1007/s11214-017-0387-z |
Phipps Morgan, J., Reston, T. J., Ranero, C. R., 2004. Contemporaneous Mass Extinctions, Continental Flood Basalts, and 'Impact Signals': Are Mantle Plume-Induced Lithospheric Gas Explosions the Causal Link? Earth and Planetary Science Letters, 217(3/4): 263–284. https://doi.org/10.1016/s0012-821x(03)00602-2 |
Piper, J. D. A., 2013. Continental Velocity through Precambrian Times: The Link to Magmatism, Crustal Accretion and Episodes of Global Cooling. Geoscience Frontiers, 4(1): 7–36. https://doi.org/10.1016/j.gsf.2012.05.008 |
Polat, A., 2012. Growth of Archean Continental Crust in Oceanic Island Arcs. Geology, 40(4): 383–384. https://doi.org/10.1130/focus042012.1 |
Prokoph, A., Ernst, R., Buchan, K., 2004. Time-Series Analysis of Large Igneous Provinces: 3 500 Ma to Present. Journal of Geology, 112(1): 1–22. https://doi.org/10.1086/379689 |
Rampino, M. R., Prokoph, A., 2013. Are Mantle Plumes Periodic? Eos, Transactions American Geophysical Union, 94(12): 113–114. https://doi.org/10.1002/2013eo120001 |
Ranero, C. R., Phipps Morgan, J., McIntosh, K., et al., 2003. Bending-Related Faulting and Mantle Serpentinization at the Middle America Trench. Nature, 425(6956): 367–373. https://doi.org/10.1038/nature01961 |
Raup, D. M., 1986. Biological Extinction in Earth History. Science, 231(4745): 1528–1533. https://doi.org/10.1126/science.11542058 |
Rozel, A. B., Golabek, G. J., Jain, C., et al., 2017. Continental Crust Formation on Early Earth Controlled by Intrusive Magmatism. Nature, 545(7654): 332–335. https://doi.org/10.1038/nature22042 |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. 1–64. |
Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557): 571–578. https://doi.org/10.1038/378571a0 |
Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267–309. https://doi.org/10.1029/95rg01302 |
Schaefer, L., Fegley, B. Jr, 2017. Redox States of Initial Atmospheres Outgassed on Rocky Planets and Planetesimals. The Astrophysical Journal Letters, 843(2): 120. https://doi.org/10.3847/1538-4357/aa784f |
Schidlowski, M., 2001. Carbon Isotopes as Biogeochemical Recorders of Life over 3.8 Ga of Earth History: Evolution of a Concept. Precambrian Research, 106(1/2): 117–134. https://doi.org/10.1016/s0301-9268(00)00128-5 |
Servali, A., Korenaga, J., 2018. Oceanic Origin of Continental Mantle Lithosphere. Geology, 46(12): 1047–1050. https://doi.org/10.1130/g45180.1 |
Shaw, G. H., 2016. Evolution of the Atmosphere during the Hadean and Archean. In: Earth's Early Atmosphere and Oceans, and the Origin of Life. SpringerBriefs in Earth Sciences. Springer, Cham. 63–67. |
Shen, B., Jacobsen, B., Lee, C. T. A., et al., 2009. The Mg Isotopic Systematics of Granitoids in Continental Arcs and Implications for the Role of Chemical Weathering in Crust Formation. Proceedings of the National Academy of Sciences of the United States of America, 106(49): 20652–20657. https://doi.org/10.1073/pnas.0910663106 |
Shen, H., Zhao, L., Guo, Z. T., et al., 2023. Dynamic Link between Neo-Tethyan Subduction and Atmospheric CO2 Changes: Insights from Seismic Tomography Reconstruction. Science Bulletin, 68(6): 637–644. https://doi.org/10.1016/j.scib.2023.03.007 |
Shen, J., Yin, R. S., Zhang, S., et al., 2022. Intensified Continental Chemical Weathering and Carbon-Cycle Perturbations Linked to Volcanism during the Triassic-Jurassic Transition. Nature Communications, 13: 299. https://doi.org/10.1038/s41467-022-27965-x |
Sizova, E., Gerya, T., Stüwe, K., et al., 2015. Generation of Felsic Crust in the Archean: A Geodynamic Modeling Perspective. Precambrian Research, 271: 198–224. https://doi.org/10.1016/j.precamres.2015.10.005 |
Sleep, N. H., 1990. Hotspots and Mantle Plumes: Some Phenomenology. Journal of Geophysical Research: Solid Earth, 95(B5): 6715–6736. https://doi.org/10.1029/jb095ib05p06715 |
Sleep, N. H., 2000. Evolution of the Mode of Convection within Terrestrial Planets. Journal of Geophysical Research: Planets, 105(E7): 17563–17578. https://doi.org/10.1029/2000je001240 |
Sleep, N. H., 2006. Mantle Plumes from Top to Bottom. Earth-Science Reviews, 77(4): 231–271. https://doi.org/10.1016/j.earscirev.2006.03.007 |
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312–316. https://doi.org/10.1038/nature10385 |
Sotiriou, P., Polat, A., Windley, B. F., et al., 2022. Temporal Variations in the Incompatible Trace Element Systematics of Archean Volcanic Rocks: Implications for Tectonic Processes in the Early Earth. Precambrian Research, 368: 106487. https://doi.org/10.1016/j.precamres.2021.106487 |
Stern, R. J., 2007. When and how did Plate Tectonics Begin? Theoretical and Empirical Considerations. Chinese Science Bulletin, 52(5): 578–591. https://doi.org/10.1007/s11434-007-0073-8 |
Stern, R. J., 2018. The Evolution of Plate Tectonics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2132): 20170406. https://doi.org/10.1098/rsta.2017.0406 |
Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366–370. https://doi.org/10.1126/science.1224126 |
Tang, M., Chu, X., Hao, J. H., et al., 2021. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728–731. https://doi.org/10.1126/science.abf1876 |
Tang, M., Chen, K., Rudnick, R. L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science, 351(6271): 372–375. https://doi.org/10.1126/science.aad5513 |
Thomas, C. D., 2017. Inheritors of the Earth: How Nature is Thriving in an Age of Extinction. Public Affairs, New York |
Tollefson, J., 2019. Humans are Driving one Million Species to Extinction. Nature, 569(7755): 171–172. https://doi.org/10.1038/d41586-019-01448-4 |
Torsvik, T. H., Smethurst, M. A., Burke, K., et al., 2006. Large Igneous Provinces Generated from the Margins of the Large Low-Velocity Provinces in the Deep Mantle. Geophysical Journal International, 167(3): 1447–1460. https://doi.org/10.1111/j.1365-246x.2006.03158.x |
Torsvik, T. H., Müller, R. D., van der Voo, R., et al., 2008. Global Plate Motion Frames: Toward a Unified Model. Reviews of Geophysics, 46(3): RG3004. https://doi.org/10.1029/2007rg000227 |
Tschauner, O., Huang, S., Greenberg, E., et al., 2018. Ice-Ⅶ Inclusions in Diamonds: Evidence for Aqueous Fluid in Earth's Deep Mantle. Science, 359: 1136–1139. https://doi.org/10.1126/science.aao3030 |
Turbet, M., Bolmont, E., Chaverot, G., et al., 2021. Day-Night Cloud Asymmetry Prevents Early Oceans on Venus but not on Earth. Nature, 598(7880): 276–280. https://doi.org/10.1038/s41586-021-03873-w |
van Keken, P. E., Hacker, B. R., Syracuse, E. M., et al., 2011. Subduction Factory: 4. Depth-Dependent Flux of H2O from Subducting Slabs Worldwide. Journal of Geophysical Research: Solid Earth, 116(B1): B01401. https://doi.org/10.1029/2010jb007922 |
Wang, R. M., Shen, B., Lang, X. G., et al., 2023. A Great Late Ediacaran Ice Age. National Science Review: nwad117. https://doi.org/10.1093/nsr/nwad117 |
Wang, W. Z., Li, Y. G., Brodholt, J. P., et al., 2021. Strong Shear Softening Induced by Superionic Hydrogen in Earth's Inner Core. Earth and Planetary Science Letters, 568: 117014. https://doi.org/10.1016/j.epsl.2021.117014 |
Wang, W., Cawood, P. A., Spencer, C. J., et al., 2022. Global-Scale Emergence of Continental Crust during the Mesoarchean–Early Neo-archean. Geology, 50(2): 184–188. https://doi.org/10.1130/g49418.1 |
Wang, Z. S., Kusky, T. M., Capitanio, F. A., 2018. Water Transportation Ability of Flat-Lying Slabs in the Mantle Transition Zone and Implications for Craton Destruction. Tectonophysics, 723: 95–106. https://doi.org/10.1016/j.tecto.2017.11.041 |
Wang, Z. S., Kusky, T. M., Capitanio, F. A., 2016. Lithosphere Thinning Induced by Slab Penetration into a Hydrous Mantle Transition Zone. Geophysical Research Letters, 43(22): 11567–11577. https://doi.org/10.1002/2016gl071186 |
Wang, Z. S., Capitanio, F., Wang, Z. C., et al., 2022a. Accretion of the Cratonic Mantle Lithosphere via Massive Regional Relamination. Proceedings of the National Academy of Sciences, 119(39): e2201226119. https://doi.org/10.1073/pnas.2201226119 |
Wang, Z. S., Kusky, T. M., Wang, L., 2022b. Long-Lasting Viscous Drainage of Eclogites from the Cratonic Lithospheric Mantle after Archean Subduction Stacking. Geology, 50(5): 583–587. https://doi.org/10.1130/g49793.1 |
Wang, Z. S., Liu, Y. S., Zong, K. Q., et al., 2020. Mantle Degassing Related to Changing Redox and Thermal Conditions during the Precambrian Supercontinent Cycle. Precambrian Research, 350: 105895. https://doi.org/10.1016/j.precamres.2020.105895 |
Wang, Z. X., Liu, S. G., Li, S. G., et al., 2022. Linking Deep CO2 Outgassing to Cratonic Destruction. National Science Review, 9(6): nwac001. https://doi.org/10.1093/nsr/nwac001 |
Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980 |
Wolf, E. T., Toon, O. B., 2014. Delayed Onset of Runaway and Moist Greenhouse Climates for Earth. Geophysical Research Letters, 41(1): 167–172. https://doi.org/10.1002/2013gl058376 |
Wood, J. M., 1974. Biological Cycles for Toxic Elements in the Environment. Science, 183(4129): 1049–1052. https://doi.org/10.1126/science.183.4129.1049 |
Wu, X. C., Ma, T., Wang, Y. X., 2020. Surface Water and Groundwater Interactions in Wetlands. Journal of Earth Science, 31(5): 1016–1028. https://doi.org/10.1007/s12583-020-1333-7 |
Xiang, G. J., Wang, Z. S., Kusky, T. M., 2021. Density and Viscosity Changes between Depleted and Primordial Mantle at ~1 000 km Depth Influence Plume Upwelling Behavior. Earth and Planetary Science Letters, 576: 117213. https://doi.org/10.1016/j.epsl.2021.117213 |
Xiao, L., Huang, J., Kusky, T., et al., 2023. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review. nwad137. https://doi.org/10.1093/nsr/nwad137 |
Xie, S. C., Pancost, R. D., Yin, H. F., et al., 2005. Two Episodes of Microbial Change Coupled with Permo/Triassic Faunal Mass Extinction. Nature, 434(7032): 494–497. https://doi.org/10.1038/nature03396 |
Yuen, D. A., Schubert, G., 1976. Mantle Plumes: A Boundary Layer Approach for Newtonian and Non-Newtonian Temperature-Dependent Rheologies. Journal of Geophysical Research, 81(14): 2499–2510. https://doi.org/10.1029/jb081i014p02499 |
Zahirovic, S., Müller, R. D., Seton, M., et al., 2015. Tectonic Speed Limits from Plate Kinematic Reconstructions. Earth and Planetary Science Letters, 418: 40–52. https://doi.org/10.1016/j.epsl.2015.02.037 |
Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a Habitable Planet. Space Science Reviews, 129(1): 35–78. https://doi.org/10.1007/s11214-007-9225-z |
Zeebe, R. E., 2012. History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification. Annual Review of Earth and Planetary Sciences, 40: 141–165. https://doi.org/10.1146/annurev-earth-042711-105521 |
Zhai, M. G., Peng, P., 2020. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970–973. https://doi.org/10.1016/j.scib.2020.03.022 |
Zhang, J. F., Green, H. W., Bozhilov, K., et al., 2004. Faulting Induced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust. Nature, 428(6983): 633–636. https://doi.org/10.1038/nature02475 |
Zhao, L. A., Guo, Z. T., Yuan, H. Y., et al., 2023. Dynamic Modeling of Tectonic Carbon Processes: State of the Art and Conceptual Workflow. Science China Earth Sciences, 66(3): 456–471. https://doi.org/10.1007/s11430-022-1038-5 |
Zhong, S. J., Zhang, N., Li, Z. X., et al., 2007. Supercontinent Cycles, True Polar Wander, and very Long-Wavelength Mantle Convection. Earth and Planetary Science Letters, 261(3/4): 551–564. https://doi.org/10.1016/j.epsl.2007.07.049 |
Zhong, Y. T., Kusky, T. M., Wang, L., et al., 2021. Alpine-Style Nappes Thrust over Ancient North China Continental Margin Demonstrate Large Archean Horizontal Plate Motions. Nature Communications, 12: 6172. https://doi.org/10.1038/s41467-021-26474-7 |
Zhu, R. X., Zhao, G. C., Xiao, W. J., et al., 2021. Origin, Accretion, and Reworking of Continents. Reviews of Geophysics, 59(3): e2019RG000689. https://doi.org/10.1029/2019rg000689 |