Bercovici, D., Ricard, Y., 2014. Plate Tectonics, Damage and Inheritance. Nature, 508(7497): 513–516. https://doi.org/10.1038/nature13072 |
Brown, M., Johnson, T., Gardiner, N. J., 2020. Plate Tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences, 48: 291–320. https://doi.org/10.1146/annurev-earth-081619-052705 |
Cawood, P. A., Hawkesworth, C. J., Pisarevsky, S. A., et al., 2018. Geological Archive of the Onset of Plate Tectonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2132): 20170405. https://doi.org/10.1098/rsta.2017.0405 |
Condie, K. C., Kröner, A., 2008. When did Plate Tectonics Begin? Evidence from the Geologic Record. Geological Society of America Special Papers, 440: 281–294. https://doi.org/10.1130/2008.2440(14) |
Fischer, R., Gerya, T., 2016a. Early Earth Plume-Lid Tectonics: A High-Resolution 3D Numerical Modelling Approach. Journal of Geodynamics, 100: 198–214. https://doi.org/10.1016/j.jog.2016.03.004 |
Fischer, R., Gerya, T., 2016b. Regimes of Subduction and Lithospheric Dynamics in the Precambrian: 3D Thermomechanical Modelling. Gondwana Research, 37: 53–70. https://doi.org/10.1016/j.gr.2016.06.002 |
Gerya, T., 2014. Precambrian Geodynamics: Concepts and Models. Gondwana Research, 25(2): 442–463. https://doi.org/10.1016/j.gr.2012.11.008 |
Grocolas, T., Bouilhol, P., Caro, G., et al., 2022. Eoarchean Subduction-Like Magmatism Recorded in 3750 Ma Mafic-Ultramafic Rocks of the Ukaliq Supracrustal Belt (Québec). Contributions to Mineralogy and Petrology, 177(3): 1–27. https://doi.org/10.1007/s00410-022-01904-x |
Hopkins, M., Harrison, T. M., Manning, C. E., 2008. Low Heat Flow Inferred from > 4 Gyr Zircons Suggests Hadean Plate Boundary Interactions. Nature, 456(7221): 493–496. https://doi.org/10.1038/nature07465 |
Kusky, T. M., Windley, B. F., Polat, A., 2018. Geological Evidence for the Operation of Plate Tectonics Throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 29(6): 1291–1303. https://doi.org/10.1007/s12583-018-0999-6 |
Lenardic, A., 2018. The Diversity of Tectonic Modes and Thoughts about Transitions between them. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2132): 20170416. https://doi.org/10.1098/rsta.2017.0416 |
Mallard, C., Coltice, N., Seton, M., et al., 2016. Subduction Controls the Distribution and Fragmentation of Earth's Tectonic Plates. Nature, 535(7610): 140–143. https://doi.org/10.1038/nature17992 |
Maruyama, S., Santosh, M., Azuma, S., 2018. Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment. Geoscience Frontiers, 9(4): 1033–1048. https://doi.org/10.1016/j.gsf.2016.11.009 |
National Academies of Sciences, Engineering, and Medicine (USA), 2020. A Vision for NSF Earth Sciences 2020–2030: Earth in Time. The National Academies Press, Washington, DC. 157. https://doi.org/10.17226/25761 |
Rey, P. F., Coltice, N., Flament, N., 2014. Spreading Continents Kick-Started Plate Tectonics. Nature, 513(7518): 405–408. https://doi.org/10.1038/nature13728 |
Ruiz, J., 2011. Giant Impacts and the Initiation of Plate Tectonics on Terrestrial Planets. Planetary and Space Science, 59(8): 749–753. https://doi.org/10.1016/j.pss.2011.02.014 |
Stern, R. J., Leybourne, M. I., Tsujimori, T., 2016. Kimberlites and the Start of Plate Tectonics. Geology, 44(10): 799–802. https://doi.org/10.1130/g38024.1 |
Tang, C. A., Webb, A. A. G., Moore, W. B., et al., 2020. Breaking Earth's Shell into a Global Plate Network. Nature Communications, 11: 3621. https://doi.org/10.1038/s41467-020-17480-2 |
The Committee on Grand Research Questions in the Solid-Earth Sciences, National Research Council, 2008. Origin and Evolution of Earth: Research Questions for a Changing Planet. National Academies Press, Washington, DC. 137 |
Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980 |
Yin, A., 2012. An Episodic Slab-Rollback Model for the Origin of the Tharsis Rise on Mars: Implications for Initiation of Local Plate Subduction and Final Unification of a Kinematically Linked Global Plate-Tectonic Network on Earth. Lithosphere, 4(6): 553–593. https://doi.org/10.1130/l195.1 |
Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329–334. https://doi.org/10.1016/j.scib.2018.12.029 |