Citation: | Shanshan Lu, Fujiang Liu, Yunshuang Ye, Jiayu Tang, Peng Li, Weihua Lin, Yan Guo, Ruqiang Ma, Jun Wang. Analysis of the Spatio-Temporal Characteristics of Winter Surface Urban Heat Island: A Case Study in Beijing, China. Journal of Earth Science, 2024, 35(5): 1640-1653. doi: 10.1007/s12583-023-1880-9 |
This study reveals the temporal and spatial evolution characteristics of the winter nighttime urban heat island (UHI) effect in the case of Beijing, China. The land surface temperature (LST) is retrieved by radiative transfer equation by using the remote sensing data from Landsat ETM+/OLI_TIRS from 2007 to 2017 for the winter nighttime period, and LST is then divided by the mean -standard deviation method into different levels of thermal landscapes. A combination of the migration calculation of gravity center and multi-directional profile analysis is used to study the directional differentiation characteristics of LST and the migratory characteristics of the gravity center of UHI. Finally, the overall temporal and spatial evolution characteristics of winter nighttime surface urban heat island (SUHI) in Beijing are studied, and the possible reasons for the changes are discussed. Results show that Beijing's UHI effect first increased and subsequently decreased from 2007 to 2017. The winter heat island in the urban area developed from low-density agglomeration to high-density agglomeration to low-density diffusion. Additionally, the high-level thermal landscapes migrated to the southwest along with the city center of gravity, and the expansion rate is fastest in the southwest, which is directly linked to the changes in the urban construction land. Moreover, the overall spatial distribution of winter nighttime LST is high in the east and south and low in the west and north, and is influenced by topography, land cover, urbanization, anthropogenic heat, and other factors as well.
Abbas, A., He, Q., Jin, L. L., et al., 2021. Spatio-Temporal Changes of Land Surface Temperature and the Influencing Factors in the Tarim Basin, Northwest China. Remote Sensing, 13(19): 3792. https://doi.org/10.3390/rs13193792 |
Aflaki, A., Mirnezhad, M., Ghaffarianhoseini, A., et al., 2017. Urban Heat Island Mitigation Strategies: A State-of-the-Art Review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62: 131–145. https://doi.org/10.1016/j.cities.2016.09.003 |
Alberti, M., Marzluff, J. M., Shulenberger, E., et al., 2008. Integrating Humans into Ecology: Opportunities and Challenges for Studying Urban Ecosystems. In: Marzluff, J. M., Shulenberger, E., Endlicher, W., et al., eds., Urban Ecology, Springer US, Boston. |
Bai, L. M., Xiu, C. L., Feng, X. H., et al., 2019. Influence of Urbanization on Regional Habitat Quality: A Case Study of Changchun City. Habitat International, 93: 102042. https://doi.org/10.1016/j.habitatint.2019.102042 |
Biggart, M., Stocker, J., Doherty, R. M., et al., 2021. Modelling Spatiotemporal Variations of the Canopy Layer Urban Heat Island in Beijing at the Neighbourhood Scale. Atmospheric Chemistry & Physics, 21(17): 13687–13711. https://doi.org/10.5194/acp-21-13687-2021 |
Cai, Q. K., Li, E. J., Zhang, Y. F., et al., 2021. Contributions of Land Utilization Differences and Changes in Zhongyuan Urban Agglomeration to Regional Thermal Environment. Nature Environment and Pollution Technology, 20(3): 1147–1156. https://doi.org/10.46488/nept.2021.v20i03.022 |
Chakraborti, S., Banerjee, A., Sannigrahi, S., et al., 2019. Assessing the Dynamic Relationship among Land Use Pattern and Land Surface Temperature: A Spatial Regression Approach. Asian Geographer, 36(2): 93–116. https://doi.org/10.1080/10225706.2019.1623054 |
Chen, Y. H., Cai, Y. B., Tong, C., 2019. Quantitative Analysis of Urban Cold Island Effects on the Evolution of Green Spaces in a Coastal City: A Case Study of Fuzhou, China. Environmental Monitoring and Assessment, 191(2): 121. https://doi.org/10.1007/s10661-019-7213-x |
Chu, L. X., Oloo, F., Bergstedt, H., et al., 2020. Assessing the Link between Human Modification and Changes in Land Surface Temperature in Hainan, China Using Image Archives from Google Earth Engine. Remote Sensing, 12(5): 888. https://doi.org/10.3390/rs12050888 |
Chu, M. R., Lu, J. Y., Sun, D. Q., 2022. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land, 11(2): 275. https://doi.org/10.3390/land11020275 |
de Almeida, C. R., Teodoro, A. C., Gonçalves, A., 2021. Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10): 105. https://doi.org/10.3390/environments8100105 |
Deng, W. Q., Zhang, X., Luo, J. C., et al., 2020. South China Sea Environment Monitoring Using Remote Sensing Techniques. Journal of Coastal Research, 95(sp1): 29–33. https://doi.org/10.2112/si95-006.1 |
Derdouri, A., Wang, R. C., Murayama, Y., et al., 2021. Understanding the Links between LULC Changes and SUHI in Cities: Insights from Two-Decadal Studies (2001–2020). Remote Sensing, 13(18): 3654. https://doi.org/10.3390/rs13183654 |
Dissanayake, K., Kurugama, K., Ruwanthi, C., 2020. Ecological Evaluation of Urban Heat Island Effect in Colombo City, Sri Lanka Based on Landsat 8 Satellite Data2020 Moratuwa Engineering Research Conference (MERCon). July 28–30, 2020. IEEE, Moratuwa. |
Duan, S. B., Li, Z. L., Wu, H., et al., 2018. Radiance-Based Validation of Land Surface Temperature Products Derived from Collection 6 MODIS Thermal Infrared Data. International Journal of Applied Earth Observation and Geoinformation, 70: 84–92. https://doi.org/10.1016/j.jag.2018.04.006 |
Fan, Q., Song, X. N., Shi, Y., et al., 2021. Influencing Factors of Spatial Heterogeneity of Land Surface Temperature in Nanjing, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8341–8349. https://doi.org/10.1109/jstars.2021.3105582 |
Feng, L., Zhao, M. M., Zhou, Y. N., et al., 2020. The Seasonal and Annual Impacts of Landscape Patterns on the Urban Thermal Comfort Using Landsat. Ecological Indicators, 110: 105798. https://doi.org/10.1016/j.ecolind.2019.105798 |
Fu, X. C., Yao, L., Xu, W. T., et al., 2022. Exploring the Multitemporal Surface Urban Heat Island Effect and Its Driving Relation in the Beijing-Tianjin-Hebei Urban Agglomeration. Applied Geography, 144: 102714. https://doi.org/10.1016/j.apgeog.2022.102714 |
Giridharan, R., Kolokotroni, M., 2009. Urban Heat Island Characteristics in London during Winter. Solar Energy, 83(9): 1668–1682. https://doi.org/10.1016/j.solener.2009.06.007 |
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., et al., 2008. Global Change and the Ecology of Cities. Science, 319(5864): 756–760. https://doi.org/10.1126/science.1150195 |
Heaviside, C., MacIntyre, H., Vardoulakis, S., 2017. The Urban Heat Island: Implications for Health in a Changing Environment. Current Environmental Health Reports, 4(3): 296–305. https://doi.org/10.1007/s40572-017-0150-3 |
Hou, L., Yue, W. Z., Liu, X., 2021. Spatiotemporal Patterns and Drivers of Summer Heat Island in Beijing-Tianjin-Hebei Urban Agglomeration, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4: 7516–7527. https://doi.org/10.1109/jstars.2021.3094559 |
Hu, J., Yang, Y. B., Pan, X., et al., 2019. Analysis of the Spatial and Temporal Variations of Land Surface Temperature Based on Local Climate Zones: A Case Study in Nanjing, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(11): 4213–4223. https://doi.org/10.1109/jstars.2019.2926502 |
Hu, Y. H., Hou, M. T., Jia, G. S., et al., 2019. Comparison of Surface and Canopy Urban Heat Islands within Megacities of Eastern China. ISPRS Journal of Photogrammetry and Remote Sensing, 156: 160–168. https://doi.org/10.1016/j.isprsjprs.2019.08.012 |
Huang, D. Q., Chu, E. X., Liu, T., 2020. Spatial Determinants of Land Conversion for Various Urban Use: A Case Study of Beijing. ISPRS International Journal of Geo-Information, 9(12): 708. https://doi.org/10.3390/ijgi9120708 |
Huang, Q. Y., Jing, J. L., 2020. Spatial and Temporal Analysis on the Evolution Characteristics of Land Surface Temperature in the Pearl River Delta Region. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W10: 713–720. https://doi.org/10.5194/isprs-archives-xlii-3-w10-713-2020 |
Jia, H. F., Yang, D. H., Deng, W. P., et al., 2021. Predicting Land Surface Temperature with Geographically Weighed Regression and Deep Learning. WIREs Data Mining and Knowledge Discovery, 11(1): e1396. https://doi.org/10.1002/widm.1396 |
Jia, Z. M., Ma, B. R., Zhang, J., et al., 2018. Simulating Spatial-Temporal Changes of Land-Use Based on Ecological Redline Restrictions and Landscape Driving Factors: A Case Study in Beijing. Sustainability, 10(4): 1299. https://doi.org/10.3390/su10041299 |
Jiang, Y., Lin, W. P., 2021. A Comparative Analysis of Retrieval Algorithms of Land Surface Temperature from Landsat-8 Data: A Case Study of Shanghai, China. International Journal of Environmental Research and Public Health, 18(11): 5659. https://doi.org/10.3390/ijerph18115659 |
Khan, M. S., Ullah, S., Chen, L. D., 2021. Comparison on Land-Use/Land-Cover Indices in Explaining Land Surface Temperature Variations in the City of Beijing, China. Land, 10(10): 1018. https://doi.org/10.3390/land10101018 |
Kumar, K. S., Bhaskar, P. U., Padmakumari, K., 2012. Estimation of Land Surface Temperature to Study Urban Heat Island Effect Using Landsat Etm+ Image. International Journal of Engineering Science and Technology, 4(2): 771–778 |
Levermore, G. J., Cheung, H., 2012. A Low-Order Canyon Model to Estimate the Influence of Canyon Shape on the Maximum Urban Heat Island Effect. Building Services Engineering Research and Technology, 33(4): 371–385. https://doi.org/10.1177/0143624411417899 |
Li, H. W., Wang, G. F., Jombach, S., 2020. Characteristics of Winter Urban Heat Island in Budapest at Local and Micro Scale. Journal of Environmental Geography, 13(3/4): 34–43. https://doi.org/10.2478/jengeo-2020-0010 |
Li, W. F., Cao, Q. W., Lang, K., et al., 2017. Linking Potential Heat Source and Sink to Urban Heat Island: Heterogeneous Effects of Landscape Pattern on Land Surface Temperature. The Science of the Total Environment, 586: 457–465. https://doi.org/10.1016/j.scitotenv.2017.01.191 |
Li, W. W., Jia, S. N., He, W., et al., 2022. Analysis of the Consequences of Land-Use Changes and Soil Types on Organic Carbon Storage in the Tarim River Basin from 2000 to 2020. Agriculture, Ecosystems & Environment, 327: 107824. https://doi.org/10.1016/j.agee.2021.107824 |
Li, X. H., Song, J. C., Lin, T., et al., 2016. Urbanization and Health in China, Thinking at the National, Local and Individual Levels. Environmental Health, 15(Suppl 1): 32. https://doi.org/10.1186/s12940-016-0104-5 |
Li, X. M., Zhou, W. Q., 2019. Spatial Patterns and Driving Factors of Surface Urban Heat Island Intensity: A Comparative Study for Two Agriculture-Dominated Regions in China and the USA. Sustainable Cities and Society, 48: 101518. https://doi.org/10.1016/j.scs.2019.101518 |
Li, X. M., Zhou, Y. Y., Asrar, G. R., et al., 2017. The Surface Urban Heat Island Response to Urban Expansion: A Panel Analysis for the Conterminous United States. Science of the Total Environment, 605/606: 426–435. https://doi.org/10.1016/j.scitotenv.2017.06.229 |
Li, Z. L., Si, M. L., Leng, P., 2020. A Review of Remotely Sensed Surface Urban Heat Islands from the Fresh Perspective of Comparisons among Different Regions (Invited Review). Progress in Electromagnetics Research C, 102: 31–46. https://doi.org/10.2528/pierc20020403 |
Liao, W. L., Liu, X. P., Wang, D. G., et al., 2017. The Impact of Energy Consumption on the Surface Urban Heat Island in China's 32 Major Cities. Remote Sensing, 9(3): 250. https://doi.org/10.3390/rs9030250 |
Liu, G. L., Zhang, Q., Li, G. Y., et al., 2016. Response of Land Cover Types to Land Surface Temperature Derived from Landsat-5 TM in Nanjing Metropolitan Region, China. Environmental Earth Sciences, 75(20): 1386. https://doi.org/10.1007/s12665-016-6202-4 |
Liu, K., Su, H. B., Li, X. K., et al., 2016. Quantifying Spatial-Temporal Pattern of Urban Heat Island in Beijing: An Improved Assessment Using Land Surface Temperature (LST) Time Series Observations from LANDSAT, MODIS, and Chinese New Satellite GaoFen-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(5): 2028–2042. https://doi.org/10.1109/jstars.2015.2513598 |
Liu, X., Zhou, Y. Y., Yue, W. Z., et al., 2020. Spatiotemporal Patterns of Summer Urban Heat Island in Beijing, China Using an Improved Land Surface Temperature. Journal of Cleaner Production, 257: 120529. https://doi.org/10.1016/j.jclepro.2020.120529 |
Ma, R. M., Xie, M. M., Yun, W. J., et al., 2020. Evaluating Responses of Temperature Regulating Service to Landscape Pattern Based on 'Source-Sink' Theory. ISPRS International Journal of Geo-Information, 9(5): 295. https://doi.org/10.3390/ijgi9050295 |
Ma, X. L., Peng, S. Y., 2021. Assessing the Quantitative Relationships between the Impervious Surface Area and Surface Heat Island Effect during Urban Expansion. PeerJ, 9: e11854. https://doi.org/10.7717/peerj.11854 |
Ma, Y. L., Yang, K., Zhang, S. H., et al., 2019. Impacts of Large-Area Impervious Surfaces on Regional Land Surface Temperature in the Great Pearl River Delta, China. Journal of the Indian Society of Remote Sensing, 47(11): 1831–1845. https://doi.org/10.1007/s12524-019-01023-4 |
MacIntyre, H. L., Heaviside, C., Cai, X. M., et al., 2021a. Comparing Temperature-Related Mortality Impacts of Cool Roofs in Winter and Summer in a Highly Urbanized European Region for Present and Future Climate. Environment International, 154: 106606. https://doi.org/10.1016/j.envint.2021.106606 |
MacIntyre, H. L., Heaviside, C., Cai, X. M., et al., 2021b. The Winter Urban Heat Island: Impacts on Cold-Related Mortality in a Highly Urbanized European Region for Present and Future Climate. Environment International, 154: 106530. https://doi.org/10.1016/j.envint.2021.106530 |
Martilli, A., Krayenhoff, E. S., Nazarian, N., 2020. Is the Urban Heat Island Intensity Relevant for Heat Mitigation Studies? Urban Climate, 31: 100541. https://doi.org/10.1016/j.uclim.2019.100541 |
McKinney, M. L., 2006. Urbanization as a Major Cause of Biotic Homogenization. Biological Conservation, 127(3): 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 |
Meng, K., Xu, X. D., Cheng, X. H., et al., 2018. Spatio-Temporal Variations in SO(2) and NO2 Emissions Caused by Heating over the Beijing-Tianjin-Hebei Region Constrained by an Adaptive Nudging Method with OMI Data. The Science of the Total Environment, 642: 543–552. https://doi.org/10.1016/j.scitotenv.2018.06.021 |
Meng, Q. Y., Zhang, L. L., Sun, Z. H., et al., 2018. Characterizing Spatial and Temporal Trends of Surface Urban Heat Island Effect in an Urban Main Built-up Area: A 12-Year Case Study in Beijing, China. Remote Sensing of Environment, 204: 826–837. https://doi.org/10.1016/j.rse.2017.09.019 |
Mirzaei, P. A., 2015. Recent Challenges in Modeling of Urban Heat Island. Sustainable Cities and Society, 19: 200–206. https://doi.org/10.1016/j.scs.2015.04.001 |
Mohamed, A. A., Odindi, J., Mutanga, O., 2017. Land Surface Temperature and Emissivity Estimation for Urban Heat Island Assessment Using Medium- and Low-Resolution Space-Borne Sensors: A Review. Geocarto International, 32(4): 455–470. https://doi.org/10.1080/10106049.2016.1155657 |
Ngie, A., Abutaleb, K., Ahmed, F., et al., 2014. Assessment of Urban Heat Island Using Satellite Remotely Sensed Imagery: A Review. South African Geographical Journal, 96(2): 198–214. https://doi.org/10.1080/03736245.2014.924864 |
Ningrum, W., 2018. Urban Heat Island towards Urban Climate. IOP Conference Series: Earth and Environmental Science, 118: 012048. https://doi.org/10.1088/1755-1315/118/1/012048 |
Niu, L., Zhang, Z. F., Peng, Z., et al., 2021. Identifying Surface Urban Heat Island Drivers and Their Spatial Heterogeneity in China's 281 Cities: an Empirical Study Based on Multiscale Geographically Weighted Regression. Remote Sensing, 13(21): 4428. https://doi.org/10.3390/rs13214428 |
Parece, T. E., Campbell, J. B., 2015. Land Use/Land Cover Monitoring and Geospatial Technologies: An Overview. The Handbook of Environmental Chemistry. Cham: Springer International Publishing: 1–32. |
Puppim de Oliveira, J. A., Balaban, O., Doll, C. N. H., et al., 2011. Cities and Biodiversity: Perspectives and Governance Challenges for Implementing the Convention on Biological Diversity (CBD) at the City Level. Biological Conservation, 144(5): 1302–1313. https://doi.org/10.1016/j.biocon.2010.12.007 |
Qi, J. D., He, B. J., Wang, M., et al., 2019. Do Grey Infrastructures always Elevate Urban Temperature? No, Utilizing Grey Infrastructures to Mitigate Urban Heat Island Effects. Sustainable Cities and Society, 46: 101392. https://doi.org/10.1016/j.scs.2018.12.020 |
Qiao, K., Zhu, W. Q., Hu, D. Y., et al., 2018. Examining the Distribution and Dynamics of Impervious Surface in Different Function Zones in Beijing. Journal of Geographical Sciences, 28(5): 669–684. https://doi.org/10.1007/s11442-018-1498-5 |
Qiao, Z., Tian, G. J., Zhang, L. X., et al., 2014. Influences of Urban Expansion on Urban Heat Island in Beijing during 1989–2010. Advances in Meteorology, 2014: 187169. https://doi.org/10.1155/2014/187169 |
Qin, Z. H., Dall'Olmo, G., Karnieli, A., et al., 2001. Derivation of Split Window Algorithm and Its Sensitivity Analysis for Retrieving Land Surface Temperature from NOAA-Advanced very High Resolution Radiometer Data. Journal of Geophysical Research, 106(D19): 22655–22670. https://doi.org/10.1029/2000jd900452 |
Qin, Z. H., Karnieli, A., Berliner, P., 2010. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 22(18): 3719–3746. https://doi.org/10.1080/01431160010006971 |
Qin, Z. H., Li, W. J., Gao, M. F., et al., 2006. Estimation of Land Surface Emissivity for Landsat TM6 and Its Application to Lingxian Region in North ChinaSPIE Proceedings, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology Ⅵ. Stockholm, Sweden. SPIE, Stockholm. 636618. |
Raza, T., Raza, T. K. S., Castro, J. T., et al., 2021. Understanding Alteration to Surface Cover in Developing Urban Heat Island: Enhancing City Climate Change Adaptation Capacity, Quezon City, Philippines. Handbook of Climate Change Management. Springer International Publishing, Cham. |
Rizwan, A. M., Dennis, L. Y. C., Liu, C. H., 2008. A Review on the Generation, Determination and Mitigation of Urban Heat Island. Journal of Environmental Sciences (China), 20(1): 120–128. https://doi.org/10.1016/s1001-0742(08)60019-4 |
Roberts, B., 2006. Overview: Urbanisation and Sustainable Development. Urbanisation and Sustainability in Asia: Good Practice Approaches in Urban Regional Development. Asian Development Bank and Cities Alliance, Manila |
Seto, K. C., Sánchez-Rodríguez, R., Fragkias, M., 2010. The New Geography of Contemporary Urbanization and the Environment. Annual Review of Environment and Resources, 35: 167–194. https://doi.org/10.1146/annurev-environ-100809-125336 |
Seto, K. C., Shepherd, J. M., 2009. Global Urban Land-Use Trends and Climate Impacts. Current Opinion in Environmental Sustainability, 1(1): 89–95. https://doi.org/10.1016/j.cosust.2009.07.012 |
Shi, H., Xian, G., Auch, R., et al., 2021. Urban Heat Island and Its Regional Impacts Using Remotely Sensed Thermal Data—A Review of Recent Developments and Methodology. Land, 10(8): 867. https://doi.org/10.3390/land10080867 |
Sun, D. Q., Hu, C. G., Wang, Y., et al., 2021. Examining Spatio-Temporal Characteristics of Urban Heat Islands and Factors Driving them in Hangzhou, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8316–8325. https://doi.org/10.1109/jstars.2021.3105586 |
Sun, S. K., Jiang, Y. T., Zheng, S. N., 2020. Research on Ecological Infrastructure from 1990 to 2018: A Bibliometric Analysis. Sustainability, 12(6): 2304. https://doi.org/10.3390/su12062304 |
Tan, J. C., NourEldeen, N., Mao, K. B., et al., 2019. Deep Learning Convolutional Neural Network for the Retrieval of Land Surface Temperature from AMSR2 Data in China. Sensors, 19(13): 2987. https://doi.org/10.3390/s19132987 |
Tian, P., Li, J. L., Cao, L. D., et al., 2021. Assessing Spatiotemporal Characteristics of Urban Heat Islands from the Perspective of an Urban Expansion and Green Infrastructure. Sustainable Cities and Society, 74: 103208. https://doi.org/10.1016/j.scs.2021.103208 |
Timm, A., Ouellet, V., Daniels, M., 2020. Swimming through the Urban Heat Island: Can Thermal Mitigation Practices Reduce the Stress? River Research and Applications, 36(10): 1973–1984. https://doi.org/10.1002/rra.3732 |
Varentsov, M., Konstantinov, P., Baklanov, A., et al., 2018. Anthropogenic and Natural Drivers of a Strong Winter Urban Heat Island in a Typical Arctic City. Atmospheric Chemistry and Physics, 18(23): 17573–17587. https://doi.org/10.5194/acp-18-17573-2018 |
Varis, O., Somlyódy, L., 1997. Global Urbanization and Urban Water: Can Sustainability be Afforded? Water Science and Technology, 35(9): 21–32. https://doi.org/10.2166/wst.1997.0328 |
Wang, C. J., Shan, W., 2017. TXT-Tool 1.086-1.1 Distribution of Island-Like Permafrost in the Lesser Khingan Mountains of Northeast China Using Landsat7 ETM+ Imagery. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools. Springer International Publishing, Cham. |
Wang, H. J., He, Q. Q., Liu, X. J., et al., 2012. Global Urbanization Research from 1991 to 2009: A Systematic Research Review. Landscape and Urban Planning, 104(3/4): 299–309. https://doi.org/10.1016/j.landurbplan.2011.11.006 |
Wang, R. C., Murayama, Y., Morimoto, T., 2021. Scenario Simulation Studies of Urban Development Using Remote Sensing and GIS: Review. Remote Sensing Applications: Society and Environment, 22: 100474. https://doi.org/10.1016/j.rsase.2021.100474 |
Wang, R., Voogt, J., Ren, C., et al., 2022. Spatial-Temporal Variations of Surface Urban Heat Island: An Application of Local Climate Zone into Large Chinese Cities. Building and Environment, 222: 109378. https://doi.org/10.1016/j.buildenv.2022.109378 |
Wu, P. H., Yin, Z. X., Zeng, C., et al., 2021. Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A Review of Reconstruction and Spatiotemporal Fusion Techniques. IEEE Geoscience and Remote Sensing Magazine, 9(3): 112–137. https://doi.org/10.1109/mgrs.2021.3050782 |
Xu, N., Deng, F., Liu, B. Q., et al., 2021. Changes in the Urban Surface Thermal Environment of a Chinese Coastal City Revealed by Downscaling MODIS LST with Random Forest Algorithm. Journal of Meteorological Research, 35(5): 759–774. https://doi.org/10.1007/s13351-021-0023-4 |
Yang, C. B., Yan, F. Q., Zhang, S. W., 2020. Comparison of Land Surface and Air Temperatures for Quantifying Summer and Winter Urban Heat Island in a Snow Climate City. Journal of Environmental Management, 265: 110563. https://doi.org/10.1016/j.jenvman.2020.110563 |
Yang, C., Wu, T. H., Yao, J. M. et al., 2020. An Assessment of Using Remote Sensing-Based Models to Estimate Ground Surface Soil Heat Flux on the Tibetan Plateau during the Freeze-Thaw Process. Remote Sensing, 12(3): 501. https://doi.org/10.3390/rs12030501 |
Yang, J. C., Bou-Zeid, E., 2018. Should Cities Embrace Their Heat Islands as Shields from Extreme Cold? Journal of Applied Meteorology and Climatology, 57(6): 1309–1320. https://doi.org/10.1175/jamc-d-17-0265.1 |
Yang, Y. Y., Liu, Y. S., Li, Y. R., et al., 2018. Quantifying Spatio-Temporal Patterns of Urban Expansion in Beijing during 1985–2013 with Rural-Urban Development Transformation. Land Use Policy, 74: 220–230. https://doi.org/10.1016/j.landusepol.2017.07.004 |
Yang, Z. W., Chen, Y. B., Wu, Z. F., et al., 2019. Spatial Heterogeneity of the Thermal Environment Based on the Urban Expansion of Natural Cities Using Open Data in Guangzhou, China. Ecological Indicators, 104: 524–534. https://doi.org/10.1016/j.ecolind.2019.05.032 |
Yao, X., Yu, K. Y., Zeng, X. J., et al., 2022. How can Urban Parks be Planned to Mitigate Urban Heat Island Effect in "Furnace Cities"? An Accumulation Perspective. Journal of Cleaner Production, 330: 129852. https://doi.org/10.1016/j.jclepro.2021.129852 |
Yin, C. L., Meng, F., Guo, L., et al., 2021. Extraction and Evolution Analysis of Urban Built-up Areas in Beijing, 1984–2018. Applied Spatial Analysis and Policy, 14(4): 731–753. https://doi.org/10.1007/s12061-021-09374-7 |
Yu, Z. Q., Chen, L. Q., Li, L., et al., 2021. Spatiotemporal Characterization of the Urban Expansion Patterns in the Yangtze River Delta Region. Remote Sensing, 13(21): 4484. https://doi.org/10.3390/rs13214484 |
Yuan, S. F., Xia, H., Yang, L. X., 2021. How Changing Grain Size Affects the Land Surface Temperature Pattern in Rapidly Urbanizing Area: A Case Study of the Central Urban Districts of Hangzhou City, China. Environmental Science and Pollution Research, 28(30): 40060–40074. https://doi.org/10.1007/s11356-020-08672-w |
Zafar, Z., Mehmood, M. S., Ahamad, M. I., et al., 2021. Trend Analysis of the Decadal Variations of Water Bodies and Land Use/Land Cover through MODIS Imagery: An In-Depth Study from Gilgit-Baltistan, Pakistan. Water Supply, 21(2): 927–940. https://doi.org/10.2166/ws.2020.355 |
Zeng, C., Liu, Y. L., Stein, A., et al., 2015. Characterization and Spatial Modeling of Urban Sprawl in the Wuhan Metropolitan Area, China. International Journal of Applied Earth Observation and Geoinformation, 34: 10–24. https://doi.org/10.1016/j.jag.2014.06.012 |
Zhang, X. X., Wu, P. F., Chen, B., 2010. Relationship between Vegetation Greenness and Urban Heat Island Effect in Beijing City of China. Procedia Environmental Sciences, 2: 1438–1450. https://doi.org/10.1016/j.proenv.2010.10.157 |
Zhang, Y. Z., Cheng, J., 2019. Spatio-Temporal Analysis of Urban Heat Island Using Multisource Remote Sensing Data: A Case Study in Hangzhou, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9): 3317–3326. https://doi.org/10.1109/jstars.2019.2926417 |
Zhao, W., He, J. L., Wu, Y. H., et al., 2019. An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sensing, 11(8): 900. https://doi.org/10.3390/rs11080900 |
Zhao, Z. Q., He, B. J., Li, L. G., et al., 2017. Profile and Concentric Zonal Analysis of Relationships between Land Use/Land Cover and Land Surface Temperature: Case Study of Shenyang, China. Energy and Buildings, 155: 282–295. https://doi.org/10.1016/j.enbuild.2017.09.046 |
Zhou, D. C., Xiao, J. F., Bonafoni, S., et al., 2019. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sensing, 11(1): 48. https://doi.org/10.3390/rs11010048 |