Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 3
Jun 2024
Turn off MathJax
Article Contents
Jiannan Meng, Timothy M. Kusky, Erdin Bozkurt, Hao Deng, Ozan Sinoplu. Partitioning Anatolian Kinematics into Tectonic Escape and Slab Rollback Dominated Domains. Journal of Earth Science, 2024, 35(3): 758-768. doi: 10.1007/s12583-023-1906-3
Citation: Jiannan Meng, Timothy M. Kusky, Erdin Bozkurt, Hao Deng, Ozan Sinoplu. Partitioning Anatolian Kinematics into Tectonic Escape and Slab Rollback Dominated Domains. Journal of Earth Science, 2024, 35(3): 758-768. doi: 10.1007/s12583-023-1906-3

Partitioning Anatolian Kinematics into Tectonic Escape and Slab Rollback Dominated Domains

doi: 10.1007/s12583-023-1906-3
More Information
  • Corresponding author: Timothy M. Kusky, tkusky@gmail.com
  • Received Date: 28 Sep 2023
  • Accepted Date: 28 Dec 2023
  • Issue Publish Date: 30 Jun 2024
  • Anatolia is the global archetype of tectonic escape, as witnessed by the devastating 2023 Kahramanmaraş Earthquake sequence, and the 2020 Samos Earthquake, which show different kinematics related to the framework of the escape tectonics. Global Positioning System (GPS) motions of the wedge-shaped plate differ regionally from northwestwards to southwestwards (from east to west). Anatolia was extruded westward from the Arabian-Eurasian collision along the North and East Anatolian fault systems, rotating counterclockwise into the oceanic free-faces of the Mediterranean and Aegean, with dramatic extension of western Anatolia in traditional interpretations. However, which is the dominant mechanism for this change in kinematics, extrusion related to the Arabia/Eurasia collision or rollback of the African slab beneath western Anatolia is still unclear. To assess the dominant driving mechanisms across Anatolia, we analyze recent GPS velocity datasets, and decomposed them into N-S and E-W components, revealing that westward motion is essentially constant across the whole plate and consistent with the slip rates of the North and East Anatolia fault zones, while southward components increase dramatically in the transition area between central and western Anatolia, where a slab tear is suggested. This phenomenon is related to different tectonic driving mechanisms. The Arabia-Eurasia collision drives the Anatolian Plate uniformly westwards while western Anatolia is progressively more affected by the southward retreating African subducting slab west of the Aegean/Cypriot slab tear, which significantly increases the southward component of the velocity field and causes the apparent curve of the whole modern velocity field. The 2020 and 2023 earthquake focal mechanisms also confirm that the northward colliding Arabian Plate forced Anatolia to the west, and the retreating African slab is pulling the upper plate of western Anatolian apart in extension. We propose that the Anatolian Plate is moving westwards as one plate with an additional component of extension in its west caused by the local driving mechanism, slab rollback (with the boundary above the slab tear around Isparta), rather than separate microplates or a near-pole spin of the entire Anatolian Plate, and the collision-related extrusion is the dominant mechanism of tectonic escape.

     

  • Electronic Supplementary Materials: Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-023-1906-3.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aktuğ, B., Nocquet, J. M., Cingöz, A., et al., 2009. Deformation of Western Turkey from a Combination of Permanent and Campaign GPS Data: Limits to Block-Like Behavior. Journal of Geophysical Research: Solid Earth, 114(B10): B10404. https://doi.org/10.1029/2008jb006000
    Aktuğ, B., Parmaksız, E., Kurt, M., et al., 2013. Deformation of Central Anatolia: GPS Implications. Journal of Geodynamics, 67: 78–96. https://doi.org/10.1016/j.jog.2012.05.008
    Aktuğ, B., Ozener, H., Dogru, A., et al., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 94/95: 1–12. https://doi.org/10.1016/j.jog.2016.01.001
    Barbot, S., Weiss, J. R., 2021. Connecting Subduction, Extension and Shear Localization across the Aegean Sea and Anatolia. Geophysical Journal International, 226(1): 422–445. https://doi.org/10.1093/gji/ggab078
    Barbot, S., Luo, H., Wang, T., et al., 2023. Slip Distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaraş, Turkey Earthquake Sequence in the East Anatolian Fault Zone. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.502
    Barka, A. A., Kadinsky-Cade, K., 1988. Strike-Slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics, 7(3): 663–684. https://doi.org/10.1029/tc007i003p00663
    Barka, A. A., Gülen, L., 1989. Complex Evolution of the Erzincan Basin (Eastern Turkey). Journal of Structural Geology, 11(3): 275–283. https://doi.org/10.1016/0191-8141(89)90067-9
    Benioff, H., 1949. Seismic Evidence for the Fault Origin of Oceanic Deeps. Geological Society of America Bulletin, 60(12): 1837–1856 doi: 10.1130/0016-7606(1949)60[1837:SEFTFO]2.0.CO;2
    Brun, J. P., Faccenna, C., Gueydan, F., et al., 2017. Effects of Slab Rollback Acceleration on Aegean Extension. Bulletin of the Geological Society of Greece, 50(1): 5–14. https://doi.org/10.12681/bgsg.11697
    Burke, K., Sengör, C., 1986. Tectonic Escape in the Evolution of the Continental Crust. Reflection Seismology: The Continental Crust. American Geophysical Union, Washington, D.C. 41–53. https://doi.org/10.1029/gd014p0041
    Cao, K., Wang, G. C., Leloup, P. H., et al., 2019. Oligocene-Early Miocene Topographic Relief Generation of Southeastern Tibet Triggered by Thrusting. Tectonics, 38(1): 374–391. https://doi.org/10.1029/2017tc004832
    Capitanio, F. A., Morra, G., Goes, S., et al., 2010. India-Asia Convergence Driven by the Subduction of the Greater Indian Continent. Nature Geoscience, 3: 136–139. https://doi.org/10.1038/ngeo725
    Capitanio, F. A., Replumaz, A., 2013. Subduction and Slab Breakoff Controls on Asian Indentation Tectonics and Himalayan Western Syntaxis Formation. Geochemistry, Geophysics, Geosystems, 14(9): 3515–3531. https://doi.org/10.1002/ggge.20171
    Capitanio, F. A., Replumaz, A., Riel, N., 2015. Reconciling Subduction Dynamics during Tethys Closure with Large-Scale Asian Tectonics: Insights from Numerical Modeling. Geochemistry, Geophysics, Geosystems, 16(3): 962–982. https://doi.org/10.1002/2014gc005660
    Capitanio, F. A., 2014. The Dynamics of Extrusion Tectonics: Insights from Numerical Modeling. Tectonics, 33(12): 2361–2381. https://doi.org/10.1002/2014tc003688
    Capitanio, F. A., 2016. The Role of the Miocene-to-Pliocene Transition in the Eastern Mediterranean Extrusion Tectonics: Constraints from Numerical Modelling. Earth and Planetary Science Letters, 448: 122–132. https://doi.org/10.1016/j.epsl.2016.05.006
    Caputo, R., Chatzipetros, A., Pavlides, S., et al., 2013. The Greek Database of Seismogenic Sources (GreDaSS): State-of-the-Art for Northern Greece. Annals of Geophysics, 55(5): 859–894. https://doi.org/10.4401/ag-5168
    Chen, F. H., Ding, L., Piao, S. L., et al., 2021. The Tibetan Plateau as the Engine for Asian Environmental Change: The Tibetan Plateau Earth System Research into a New Era. Science Bulletin, 66(13): 1263–1266. https://doi.org/10.1016/j.scib.2021.04.017
    Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001
    Coleman, M., Hodges, K., 1995. Evidence for Tibetan Plateau Uplift before 14 Myr Ago from a New Minimum Age for East-West Extension. Nature, 374(6517): 49–52. https://doi.org/10.1038/374049a0
    Deng, H., Kusky, T. M., Bozkurt, E., et al., 2024. Sr-Nd-Ca Isotopic Variation of Cenozoic Calc-Alkaline and Alkaline Volcanic Rocks above a Slab Tear in Western Anatolia, Geological Society of America Bulletin, 136(1/2): 201–216. https://doi.org/10.1130/b36672.1
    Dewey, J. F., Şengör, A. M. C., 1979. Aegean and Surrounding Regions: Complex Multiplate and Continuum Tectonics in a Convergent Zone. Geological Society of America Bulletin, 90(1): 84–92.https://doi.org/10.1130/0016-7606(1979)9084:aasrcm>2.0.co;2 doi: 10.1130/0016-7606(1979)9084:aasrcm>2.0.co;2
    Dewey, J. F., Pitman, W. C. Ⅲ, Ryan, W. B., et al., 1973. Plate Tectonics and the Evolution of the Alpine System. Geological Society of America Bulletin, 84(10): 3137–3180 doi: 10.1130/0016-7606(1973)84<3137:PTATEO>2.0.CO;2
    Ding, L., Spicer, R. A., Yang, J., et al., 2017. Quantifying the Rise of the Himalaya Orogen and Implications for the South Asian Monsoon. Geology, 45(3): 215–218. https://doi.org/10.1130/g38583.1
    Doglioni, C., Agostini, S., Crespi, M., et al., 2002. On the Extension in Western Anatolia and the Aegean Sea. Journal of the Virtual Explorer, 8: 169–183. https://doi.org/10.3809/jvirtex.2002.00049
    Emre, Ö., Duman, T. Y., Özalp, S., et al., 2018. Active Fault Database of Turkey. Bulletin of Earthquake Engineering, 16(8): 3229–3275. https://doi.org/10.1007/s10518-016-0041-2
    England, P., Houseman, G., Nocquet, J. M., 2016. Constraints from GPS Measurements on the Dynamics of Deformation in Anatolia and the Aegean. Journal of Geophysical Research: Solid Earth, 121(12): 8888–8916. https://doi.org/10.1002/2016jb013382
    Ergintav, S., Floyd, M., Paradissis, D., et al., 2023. New Geodetic Constraints on the Role of Faults and Blocks vs. Distribute Strain in the Nubia-Arabia-Eurasia Zone of Active Plate Interactions. Turkish Journal of Earth Sciences, 32(3): 248–261. https://doi.org/10.55730/1300-0985.1842
    Faccenna, C., Becker, T. W., Jolivet, L., et al., 2013. Mantle Convection in the Middle East: Reconciling Afar Upwelling, Arabia Indentation and Aegean Trench Rollback. Earth and Planetary Science Letters, 375: 254–269. https://doi.org/10.1016/j.epsl.2013.05.043
    Faccenna, C., Becker, T. W., Auer, L., et al., 2014. Mantle Dynamics in the Mediterranean. Reviews of Geophysics, 52(3): 283–332. https://doi.org/10.1002/2013rg000444
    Gao, R., Xiong, X. S., Li, Q. S., et al., 2009. The Moho Depth of Qinghai-Tibet Plateau Revealed by Seismic Detection. Acta Geoscientica Sinica, 30(6): 761–773. https://doi.org/10.3321/j.issn:1006-3021.2009.06.008 (in Chinese with English Abstract)
    Gaudemer, Y., Tapponnier, P., Turcotte, D., 1989. River Offsets across Active Strike-Slip Faults. Annales Tectonicoe, 3: 55–76
    Gautier, P., Brun, J. P., Moriceau, R., et al., 1999. Timing, Kinematics and Cause of Aegean Extension: A Scenario Based on a Comparison with Simple Analogue Experiments. Tectonophysics, 315(1/2/3/4): 31–72. https://doi.org/10.1016/s0040-1951(99)00281-4
    Goldberg, D. E., Taymaz, T., Reitman, N. G., et al., 2023. Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence. The Seismic Record, 3(2): 156–167. https://doi.org/10.1785/0320230009
    Güvercin, S. E., Konca, A. Ö., Özbakır, A. D., et al., 2021. New Focal Mechanisms Reveal Fragmentation and Active Subduction of the Antalya Slab in the Eastern Mediterranean. Tectonophysics, 805: 228792. https://doi.org/10.1016/j.tecto.2021.228792
    Herece, E., Akay, E., 2003. Atlas of North Anatolian Fault (NAF). Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi. 2
    Hubert-Ferrari, A., Armijo, R., King, G., et al., 2002. Morphology, Displacement, and Slip Rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10): 2235. https://doi.org/10.1029/2001jb000393
    Hussain, E., Kalaycıoğlu, S., Milliner, C. W. D., et al., 2023. Preconditioning the 2023 Kahramanmaraş (Türkiye) Earthquake Disaster. Nature Reviews Earth & Environment, 4: 287–289. https://doi.org/10.1038/s43017-023-00411-2
    Jackson, J., 1994. Active Tectonics of the Aegean Region. Annual Review of Earth and Planetary Sciences, 22: 239–271. https://doi.org/10.1146/annurev.earth.22.1.239
    Jackson, J., McKenzie, D., 1984. Active Tectonics of the Alpine—Himalayan Belt between Western Turkey and Pakistan. Geophysical Journal International, 77(1): 185–264. https://doi.org/10.1111/j.1365-246x.1984.tb01931.x
    Jolivet, L., Brun, J. P., 2010. Cenozoic Geodynamic Evolution of the Aegean. International Journal of Earth Sciences, 99(1): 109–138. https://doi.org/10.1007/s00531-008-0366-4
    Jolivet, L., Faccenna, C., Huet, B., et al., 2013. Aegean Tectonics: Strain Localisation, Slab Tearing and Trench Retreat. Tectonophysics, 597/598: 1–33. https://doi.org/10.1016/j.tecto.2012.06.011
    Kaymakcı, N., Langereis, C., Özkaptan, M., et al., 2018. Paleomagnetic Evidence for Upper Plate Response to a STEP Fault, SW Anatolia. Earth and Planetary Science Letters, 498: 101–115. https://doi.org/10.1016/j.epsl.2018.06.022
    Kreemer, C., Holt, W. E., Haines, A. J., 2003. An Integrated Global Model of Present-Day Plate Motions and Plate Boundary Deformation. Geophysical Journal International, 154(1): 8–34. https://doi.org/10.1046/j.1365-246x.2003.01917.x
    Kiratzi, A., Papazachos, C., Özacar, A., et al., 2022. Characteristics of the 2020 Samos Earthquake (Aegean Sea) Using Seismic Data. Bulletin of Earthquake Engineering, 20(14): 7713–7735. https://doi.org/10.1007/s10518-021-01239-1
    Kurt, A. İ., Özbakir, A. D., Cingoz, A., et al., 2023. Contemporary Velocity Field for Turkey Inferred from Combination of a Dense Network of Long Term GNSS Observations. Turkish Journal of Earth Sciences, 32(3): 275–293. https://doi.org/10.55730/1300-0985.1844
    Kusky, T. M., Bozkurt, E., Meng, J. N., et al., 2023. Twin Earthquakes Devastate Southeast Türkiye and Syria: First Report from the Epicenters. Journal of Earth Science, 34(2): 291–296. https://doi.org/10.1007/s12583-023-1317-5
    Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630: 208–221. https://doi.org/10.1016/j.tecto.2014.05.028
    Le Pichon, X., Angelier, J., 1979. The Hellenic Arc and Trench System: A Key to the Neotectonic Evolution of the Eastern Mediterranean Area. Tectonophysics, 60(1): 1–42. https://doi.org/10.1016/0040-1951(79)90131-8
    Le Pichon, X., Chamot‐Rooke, N., Lallemant, S., et al., 1995. Geodetic Determination of the Kinematics of Central Greece with Respect to Europe: Implications for Eastern Mediterranean Tectonics. Journal of Geophysical Research: Solid Earth, 100(B7): 12675–12690. https://doi.org/10.1029/95jb00317
    Le Pichon, X., Chamot-Rooke, N., Rangin, C., et al., 2003. The North Anatolian Fault in the Sea of Marmara. Journal of Geophysical Research: Solid Earth, 108(B4): 2179. https://doi.org/10.1029/2002jb001862
    Le Pichon, X., Kreemer, C., 2010. The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annual Review of Earth and Planetary Sciences, 38: 323–351. https://doi.org/10.1146/annurev-earth-040809-152419
    Leloup, P. H., Arnaud, N., Lacassin, R., et al., 2001. New Constraints on the Structure, Thermochronology, and Timing of the Ailao Shan-Red River Shear Zone, SE Asia. Journal of Geophysical Research: Solid Earth, 106(B4): 6683–6732. https://doi.org/10.1029/2000jb900322
    Lu, H. J., Wang, E. Q., Li, S. H., et al., 2015. Rotational Deformation of the Southeastern Margin of Tibet: A Paleomagnetic Study of the Yanyuan Basin, Sichuan Province. Geology in China, 42(5): 1188–1201. https://doi.org/10.3969/j.issn.1000-3657.2015.05.002 (in Chinese with English Abstract)
    Mai, P. M., Aspiotis, T., Aquib, T. A., et al., 2023. The Destructive Earthquake Doublet of 6 February 2023 in South-Central Türkiye and Northwestern Syria: Initial Observations and Analyses. The Seismic Record, 3(2): 105–115. https://doi.org/10.1785/0320230007
    McClusky, S., Balassanian, S., Barka, A., et al., 2000. Global Positioning System Constraints on Plate Kinematics and Dynamics in the Eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth, 105(B3): 5695–5719. https://doi.org/10.1029/1999jb900351
    McKenzie, D., 1972. Active Tectonics of the Mediterranean Region. Geophysical Journal International, 30(2): 109–185. https://doi.org/10.1111/j.1365-246x.1972.tb02351.x
    Meng, J. N., Sinoplu, O., Zhou, Z. P., et al., 2021. Greece and Turkey Shaken by African Tectonic Retreat. Scientific Reports, 11: 6486. https://doi.org/10.1038/s41598-021-86063-y
    Meng, J. N., Kusky, T. M., Mooney, W. D., et al., 2024. Surface Deformations of the 6 February 2023 Earthquake Sequence, Eastern Türkiye. Science, 383(6680): 298–305. https://doi.org/10.1126/science.adj3770
    Melgar, D., Taymaz, T., Ganas, A., et al., 2023. Sub- and Super-Shear Ruptures during the 2023 Mw 7.8 and Mw 7.6 Earthquake Doublet in SE Türkiye. Seismica, 2(3). https://doi.org/10.26443/seismica.v2i3.387
    Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision: Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1/2): 225–242. https://doi.org/10.1016/j.lithos.2006.10.005
    Molnar, P., 1988. Continental Tectonics in the Aftermath of Plate Tectonics. Nature, 335: 131–137. https://doi.org/10.1038/335131a0
    Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357–396. https://doi.org/10.1029/93rg02030
    Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419–426. https://doi.org/10.1126/science.189.4201.419
    Nelson, K. D., Zhao, W. J., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 274(5293): 1684–1688. https://doi.org/10.1126/science.274.5293.1684
    Nocquet, J. M., Calais, E., Altamimi, Z., et al., 2001. Intraplate Deformation in Western Europe Deduced from an Analysis of the International Terrestrial Reference Frame 1997 (ITRF97) Velocity Field. Journal of Geophysical Research: Solid Earth, 106(B6): 11239–11257. https://doi.org/10.1029/2000jb900410
    Nyst, M., Thatcher, W., 2004. New Constraints on the Active Tectonic Deformation of the Aegean. Journal of Geophysical Research: Solid Earth, 109(B11): B11406. https://doi.org/10.1029/2003jb002830
    Ouimet, W., Whipple, K., Royden, L., et al., 2010. Regional Incision of the Eastern Margin of the Tibetan Plateau. Lithosphere, 2(1): 50–63. https://doi.org/10.1130/l57.1
    Özbakır, A. D., Şengör, A. M. C., Wortel, M. J. R., et al., 2013. The Pliny-Strabo Trench Region: A Large Shear Zone Resulting from Slab Tearing. Earth and Planetary Science Letters, 375: 188–195. https://doi.org/10.1016/j.epsl.2013.05.025
    Özdemir, S., Karslıoğlu, M. O., 2019. Soft Clustering of GPS Velocities from a Homogeneous Permanent Network in Turkey. Journal of Geodesy, 93(8): 1171–1195. https://doi.org/10.1007/s00190-019-01235-z
    Özeren, M. S., Holt, W. E., 2010. The Dynamics of the Eastern Mediterranean and Eastern Turkey. Geophysical Journal International, 183(3): 1165–1184. https://doi.org/10.1111/j.1365-246x.2010.04819.x
    Papadopoulos, G. A., Pavlides, S. B., 1992. The Large 1956 Earthquake in the South Aegean: Macroseismic Field Configuration, Faulting, and Neotectonics of Amorgos Island. Earth and Planetary Science Letters, 113(3): 383–396. https://doi.org/10.1016/0012-821x(92)90140-q
    Paul, A., Karabulut, H., Mutlu, A. K., et al., 2014. A Comprehensive and Densely Sampled Map of Shear-Wave Azimuthal Anisotropy in the Aegean–Anatolia Region. Earth and Planetary Science Letters, 389: 14–22. https://doi.org/10.1016/j.epsl.2013.12.019
    Reilinger, R. E., McClusky, S. C., Oral, M. B., et al., 1997. Global Positioning System Measurements of Present-Day Crustal Movements in the Arabia-Africa-Eurasia Plate Collision Zone. Journal of Geophysical Research: Solid Earth, 102(B5): 9983–9999. https://doi.org/10.1029/96jb03736
    Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research (Solid Earth), 111(B5): B05411. https://doi.org/10.1029/2005jb004051
    Royden, L. H., 1993. Evolution of Retreating Subduction Boundaries Formed during Continental Collision. Tectonics, 12(3): 629–638. https://doi.org/10.1029/92tc02641
    Rowley, D. B., Currie, B. S., 2006. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439(7077): 677–681. https://doi.org/10.1038/nature04506
    Sançar, T., 2021. Morphometric Investigations on the NW Bitlis-Zagros Mountain Range (SE Turkey): Implications for the Internal Deformation of the Western Turkish-Iranian Plateau. Journal of Asian Earth Sciences, 216: 104751. https://doi.org/10.1016/j.jseaes.2021.104751
    Schildgen, T. F., Yıldırım, C., Cosentino, D., et al., 2014. Linking Slab Break-off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128: 147–168. https://doi.org/10.1016/j.earscirev.2013.11.006
    Şengör, A., 1980. Mesozoic–Cenozoic Tectonic Evolution of Anatolia and Surrounding Regions. Bull. Bur. Rech. Géol. Min. , 115: 1–137
    Şengör, A. M. C., Yilmaz, Y., 1981. Tethyan Evolution of Turkey: A Plate Tectonic Approach. Tectonophysics, 75(3/4): 181–241. https://doi.org/10.1016/0040-1951(81)90275-4
    Şengör, A. M. C., Canitez, N., 1982. The North Anatolian Fault. Alpine-Mediterranean Geodynamics, 7: 205–216. https://doi.org/10.1029/gd007p0205
    Şengör, A. M. C., Görür, N., Şaroğlu, F., 1985. Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. In: Biddle, K. T., Christie-Blick, N., eds., Strike-Slip Deformation, Basin Formation, and Sedimentation. SEPM (Society for Sedimentary Geology), 37: 227–264.https://doi.org/10.2110/pec.85.37.0227
    Şengör, A. M. C., Tüysüz, O., İmren, C., et al., 2005. The North Anatolian Fault: A New Look. Annual Review of Earth and Planetary Sciences, 33: 37–112. https://doi.org/10.1146/annurev.earth.32.101802.120415
    Şengör, A. M. C., Yazıcı, M., 2020. The Aetiology of the Neotectonic Evolution of Turkey. Mediterranean Geoscience Reviews, 2(3): 327–339. https://doi.org/10.1007/s42990-020-00039-0
    Shen, Z. K., Wang, M., Zeng, Y. H., et al., 2015. Optimal Interpolation of Spatially Discretized Geodetic Data. The Bulletin of the Seismological Society of America, 105(4): 2117–2127. https://doi.org/10.1785/0120140247
    Spicer, R. A., Harris, N. B. W., Widdowson, M., et al., 2003. Constant Elevation of Southern Tibet over the Past 15 Million Years. Nature, 421(6923): 622–624. https://doi.org/10.1038/nature01356
    Stamps, D. S., Kreemer, C., Fernandes, R., et al., 2021. Redefining East African Rift System Kinematics. Geology, 49(2): 150–155. https://doi.org/10.1130/g47985.1
    StrainTool: A Software Package to Estimate Strain Tensor Parameters, v1.0-r1. (2021-9-11)[2024-3-28].https://github.com/DSOlab/StrainTool
    Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264: 319–324. https://doi.org/10.1038/264319a0
    Taymaz, T., Jackson, J., McKenzie, D., 1991. Active Tectonics of the North and Central Aegean Sea. Geophysical Journal International, 106(2): 433–490. https://doi.org/10.1111/j.1365-246x.1991.tb03906.x
    Tian, Y. T., Kohn, B. P., Gleadow, A. J. W., et al., 2013. Constructing the Longmen Shan Eastern Tibetan Plateau Margin: Insights from Low-Temperature Thermochronology. Tectonics, 32(3): 576–592. https://doi.org/10.1002/tect.20043
    U. S. Geological Survey, 2023. Earthquake Lists, Maps, and Statistics. (2023-3-18).https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics.
    van Hinsbergen, D. J. J., Schmid, S. M., 2012. Map View Restoration of Aegean–West Anatolian Accretion and Extension since the Eocene. Tectonics, 31(5): TC5005. https://doi.org/10.1029/2012tc003132
    Waldron, J. W. F., 1984. Structural History of the Antalya Complex in the ‘Isparta Angle’, Southwest Turkey. Geological Society, London, Special Publications, 17(1): 273–286. https://doi.org/10.1144/gsl.sp.1984.017.01.20
    Wang, E., Kirby, E., Furlong, K. P., et al., 2012. Two-Phase Growth of High Topography in Eastern Tibet during the Cenozoic. Nature Geoscience, 5(9): 640–645. https://doi.org/10.1038/ngeo1538
    Wang, E., Su, Z., Xu, G., 2009. A Case Study on Lateral Extrusion Occurred along some Orogenic Belts in China. Chinese Journal of Geology (Scientia Geologica Sinica), 44(4): 1266–1288. https://doi.org/10.3321/j.issn:0563-5020.2009.04.016 (in Chinese with English Abstract)
    Wang, G. C., Cao, K., Zhang, K. X., et al., 2011. Spatio-Temporal Framework of Tectonic Uplift Stages of the Tibetan Plateau in Cenozoic. Science China Earth Sciences, 54(1): 29–44. https://doi.org/10.1007/s11430-010-4110-0
    Wang, Z. S., Kusky, T. M., Capitanio, F. A., 2016. Lithosphere Thinning Induced by Slab Penetration into a Hydrous Mantle Transition Zone. Geophysical Research Letters, 43(22): 11567–11577. https://doi.org/10.1002/2016gl071186
    Weiss, J. R., Walters, R. J., Morishita, Y., et al., 2020. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 47(17): e2020GL087376. https://doi.org/10.1029/2020gl087376
    Westaway, R., 1994. Present-Day Kinematics of the Middle East and Eastern Mediterranean. Journal of Geophysical Research: Solid Earth, 99(B6): 12071–12090. https://doi.org/10.1029/94jb00335
    Whitney, D. L., Delph, J. R., Thomson, S. N., et al., 2023. Breaking Plates: Creation of the East Anatolian Fault, the Anatolian Plate, and a Tectonic Escape System. Geology, 51(7): 673–677. https://doi.org/10.1130/g51211.1
    Yıldırım, C., Sarıkaya, M. A., Çiner, A., 2016. Late Pleistocene Intraplate Extension of the Central Anatolian Plateau, Turkey: Inferences from Cosmogenic Exposure Dating of Alluvial Fan, Landslide, and Moraine Surfaces along the Ecemiş Fault Zone. Tectonics, 35(6): 1446–1464. https://doi.org/10.1002/2015tc004038
    Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth Science Reviews, 76(1): 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004
    Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211
    Zabcı, C., Sançar, T., Tikhomirov, D., et al., 2023. Internal Deformation of Continental Blocks within Converging Plates: Insights from the Ovacık Fault (Anatolia, Türkiye). Turkish Journal of Earth Sciences, 32(3): 351–379. https://doi.org/10.55730/1300-0985.1849
    Zhang, G. H., Tian, Y. T., Li, R., et al., 2022. Progressive Tectonic Evolution from Crustal Shortening to Mid-Lower Crustal Expansion in the Southeast Tibetan Plateau: A Synthesis of Structural and Thermochronological Insights. Earth-Science Reviews, 226: 103951. https://doi.org/10.1016/j.earscirev.2022.103951
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(168) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return