Citation: | Javad Sharifi, Seyed Naser Raisossadat, Maryam Mortazavi Mehrizi, Maryam Motamedalshariati. Carbon Isotope Stratigraphy of the Uppermost Aptian–Lower Cenomanian Strata from the Lut Block, East Iran. Journal of Earth Science, 2023, 34(6): 1793-1799. doi: 10.1007/s12583-023-1911-4 |
The Mid-Cretaceous interval has been recognized as a crucial period in Earth's history, and a number of studies on Neo-Tethyan successions illustrate intense evolutions in the nature of Mid-Cretaceous ocean chemistry, sea level, and marine faunal communities. However, much less investigations have been conducted in the Sistan Ocean, in the eastern Neo-Tethys. Here, the Nimbolook Section (Lut Block, central Iran) has provided an opportunity to address these shortcomings and provide a better understanding of the paleoenvironmental changes in this region. The biostratigraphic analysis and age interpretation of the Nimbolook Section have been performed in earlier investigations by means of planktonic foraminifera, ammonites and calcareous nannofossils. This provides a reliable age framework for the chemostratigraphic interpretations. In the Nimbolook Section, the δ13C stratigraphy was carried out on a total of 41 samples, which ranged between -3.26‰ and 2.86‰ with an average of 1.09‰ (standard deviation = 1.15‰), and expanded within the upper Aptian to lower Cenomanian stages. However, there is a prominent negative shift at the base of the section, accompanied by episodes of sea-level fluctuations. Notably, according to the age-diagnostic calcareous nannofossils records, this carbon isotope negative shift (0.88‰ to -3.26‰) straddle between late Aptian and early Albian ages. Furthermore, these new chemostratigraphic observations could be interpreted as being the coeval data from the reference well-studied successions in the other parts of the world, tentatively reflecting the oceanic anoxic event (OAE) 1b.
Alavi Naini, M., Behruzi, A., Berthiaux, A., et al., 1981. Geological Map of the Qayen, Scale 1/100 000, 1 Sheet. Geological Survey of Iran, Tehran |
Alexandre, J. T., Van Gilst, R. I., Rodríguez-López, J. P., et al., 2011. The Sedimentary Expression of Oceanic Anoxic Event 1b in the North Atlantic. Sedimentology, 58(5): 1217–1246. https://doi.org/10.1111/j.1365-3091.2010.01202.x |
Babazadeh, S. A., Raisossadat, S. N., Ahrari, F., 2010. Biostratigraphy and Evolutionary Study of the Cretaceous Orbitolinids in the Sedimentary Deposits of East Lut, South West of Qayen. Sedimentary Facies, 3(1): 1–10 (in Persian with English Abstract) |
Barrier, E., Vrielynck, B., 2008. Map 5: Cenomanian (99.6–93.5 Ma). In: Barrier, E., Vrielynck, B., eds., Palaeotectonic Maps of the Middle East-Tectonosedimentary-Palinspastic Maps from the Late Norian to Pliocene. Commission for the Geological Map of the World (CGMW/CCGM), Paris |
Berthiaux, A., Christmann, P., Fauvelet, E., et al., 1991. Quadrangle Geological Map of Qayen. Scale: 1/250 000. Geological Survey of Iran, Tehran |
Bodin, S., Meissner, P., Janssen, N. M. M., et al., 2015. Large Igneous Provinces and Organic Carbon Burial: Controls on Global Temperature and Continental Weathering during the Early Cretaceous. Global and Planetary Change, 133: 238–253. https://doi.org/10.1016/j.gloplacha.2015.09.001 |
Bornemann, A., Norris, R. D., Friedrich, O., et al., 2008. Isotopic Evidence for Glaciation during the Cretaceous Supergreenhouse. Science, 319(5860): 189–192. https://doi.org/10.1126/science.1148777 |
Bottini, C., Mutterlose, J., 2012. Integrated Stratigraphy of Early Aptian Black Shales in the Boreal Realm: Calcareous Nannofossil and Stable Isotope Evidence for Global and Regional Processes. Newsletters on Stratigraphy, 45(2): 115–137. https://doi.org/10.1127/0078-0421/2012/0017 |
Bralower, T. J., Sliter, W. V., Arthur M. A., et al., 1993. Dysoxic/Anoxic Episodes in the Aptian-Albian (Early Cretaceous). In: Pringle, M. S., Sager, W. W., Sliter, W. V., et al., eds., The Mesozoic Pacific: Geology, Tectonics and Volcanism. Geophysical Monograph Series, 77: 5–37. |
Bröcker, M., Fotoohi Rad, G., Burgess, R., et al., 2013. New Age Constraints for the Geodynamic Evolution of the Sistan Suture Zone, Eastern Iran. Lithos, 170/171: 17–34. https://doi.org/10.1016/j.lithos.2013.02.012 |
Chaabane, N. B., Khemiri, F., Soussi, M., et al., 2019. Aptian-Lower Albian Serdj Carbonate Platform of the Tunisian Atlas: Development, Demise and Petroleum Implication. Marine and Petroleum Geology, 101: 566–591. https://doi.org/10.1016/j.marpetgeo.2018.10.036 |
Coccioni, R., Sabatino, N., Frontalini, F., et al., 2014. The Neglected History of Oceanic Anoxic Event 1b: Insights and New Data from the Poggio le Guaine Section (Umbria-Marche Basin). Stratigraphy, 11: 245–282 |
El-Shazly, S., Košťák, M., Kloučková, B., et al., 2011. Carbon and Oxygen Stable Isotopes of Selected Cenomanian and Turonian Rudists from Egypt and Czech Republic, and a Note on Changes in Rudist Diversity. Bulletin of Geosciences: 209–226. https://doi.org/10.3140/bull.geosci.1151 |
Erbacher, J., Hemleben, C., Huber, B. T., et al., 1999. Correlating Environmental Changes during Early Albian Oceanic Anoxic Event 1B Using Benthic Foraminiferal Paleoecology. Marine Micropaleon-tology, 38(1): 7–28. https://doi.org/10.1016/s0377-8398(99)00036-5 |
Erbacher, J., Huber, B. T., Norris, R. D., et al., 2001. Increased Thermohaline Stratification as a Possible Cause for an Ocean Anoxic Event in the Cretaceous Period. Nature, 409(6818): 325–327. https://doi.org/10.1038/35053041 |
Erfani, M. A., Motamedalshariait, M., Raisossadat, S. N., et al., 2019. Systematics and Biostratigraphy of Foraminifera in Albian to Lower Cenomanian Deposits at Kerch Section (Southwest Qayen). Kharazmi Journal of Earth Sciences, 4(2): 169–198. https://doi.org/10.29252/gnf.4.2.169 |
Fauvelet, E., Eftekhar-Nezhad, J., 1990. Explanatory Text of the Qayen, Quadrangle Map 1 : 250 000. Geological Survey of Iran, Tehrn |
Gale, A. S., Kennedy, W. J., Burnett, J. A., et al., 1996. The Late Albian to Early Cenomanian Succession at Mont Risou near Rosans (Drôme, SE France): An Integrated Study (Ammonites, Inoceramids, Planktonic Foraminifera, Nannofossils, Oxygen and Carbon Isotopes). Cretaceous Research, 17(5): 515–606. https://doi.org/10.1006/cres.1996.0032 |
Herrle, J. O., Kößler, P., Friedrich, O., et al., 2004. High-Resolution Carbon Isotope Records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): A Stratigraphic Tool for Paleoceanographic and Paleobiologic Reconstruction. Earth and Planetary Science Letters, 218(1/2): 149–161. https://doi.org/10.1016/s0012-821x(03)00646-0 |
Herrle, J. O., Mutterlose, J., 2003. Calcareous Nannofossils from the Aptian-Lower Albian of Southeast France: Palaeoecological and Biostra-tigraphic Implications. Cretaceous Research, 24(1): 1–22. https://doi.org/10.1016/s0195-6671(03)00023-5 |
Herrle, J. O., Pross, J., Friedrich, O., et al., 2003. Forcing Mechanisms for Mid-Cretaceous Black Shale Formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France). Palaeogeography, Palaeoclimatology, Palaeoecology, 190: 399–426. https://doi.org/10.1016/s0031-0182(02)00616-8 |
Huber, B. T., MacLeod, K. G., Gröcke, D. R., et al., 2011. Paleotemperature and Paleosalinity Inferences and Chemostratigraphy across the Aptian/Albian Boundary in the Subtropical North Atlantic. Paleoceanography, 26(4): PA4221. https://doi.org/10.1029/2011pa002178 |
Jenkyns, H. C., 2010. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 11(3): 1–30. https://doi.org/10.1029/2009gc002788 |
Jenkyns, H. C., Gale, A., Corfield, R., 1994. Carbon- and Oxygen-Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance. Geological Magazine, 131: 1–34. https://doi.org/10.1017/s0016756800010451 |
Jenkyns, H. C., Wilson, P. A., 1999. Stratigraphy, Paleoceanography, and Evolution of Cretaceous Pacific Guyots; Relics from a Greenhouse Earth. American Journal of Science, 299(5): 341–392. https://doi.org/10.2475/ajs.299.5.341 |
Kennedy, W. J., Gale, A. S., Bown, P. R., et al., 2000. Integrated Stratigraphy across the Aptian-Albian Boundary in the Marnes Bleues, at the Col de PRÉ-Guittard, Arnayon (Drôme), and at Tartonne (Alpes-de-Haute-Provence), France: A Candidate Global Boundary Stratotype Section and Boundary Point for the Base of the Albian Stage. Cretaceous Research, 21(5): 591–720. https://doi.org/10.1006/cres.2000.0223 |
Kennedy, W. J., Gale, A. S., Lees, J. A., et al., 2004. The Global Boundary Stratotype Section and Point (GSSP) for the Base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes, 27(1): 21–32. https://doi.org/10.18814/epiiugs/2004/v27i1/003 |
Khazaei, A. R., Raisossadat, S. N., Asadi, S., 2011. Rudist Bivalves (Requieniidae Family) in Early Cretaceous Sediments from SW Qayen, Eastern Iran, Paleobiogeographic Aspects. Sedimentary Facies, 3(2): 52–67 (in Persian with English Abstract) |
Latifi, Z., Foroughi, F., Motamedalshariati, M., et al., 2018. Calcareous Nannofossils Biostratigraphy of Lower Cretaceous Deposits at the East of Iran, NW of Qayen (Nimbolook Stratigraphic Section). Geoscience, 27(106): 41–50 (in Persian with English Abstract) |
Leckie, R. M., Bralower, T. J., Cashman, R., 2002. Oceanic Anoxic Events and Plankton Evolution: Biotic Response to Tectonic Forcing during the Mid-Cretaceous. Paleoceanography, 17(3): 13. https://doi.org/10.1029/2001pa000623 |
Machado, M. C., Chemale, F., Kawashita, K., et al., 2016. Isotope Studies of Carbonate Rocks of La Luna Formation (Venezuela) to Constrain the Oceanic Anoxic Event 3 (OAE3). Journal of South American Earth Sciences, 72: 38–48. https://doi.org/10.1016/j.jsames.2016.07.001 |
Madhavaraju, J., Lee, Y. I., Scott, R. W., et al., 2018. High-Resolution Carbonate Isotopic Study of the Mural Formation (Cerro Pimas Section), Sonora, México: Implications for Early Albian Oceanic Anoxic Events. Journal of South American Earth Sciences, 82: 329–345. https://doi.org/10.1016/j.jsames.2017.10.019 |
Maurer, F., van Buchem, F. S. P., Eberli, G. P., et al., 2013. Late Aptian Long-Lived Glacio-Eustatic Lowstand Recorded on the Arabian Plate. Terra Nova, 25(2): 87–94. https://doi.org/10.1111/ter.12009 |
Motamedalshariati, M., Raisossadat, S. N., Moluodi, D., et al., 2016. Foraminifera Biozonation and Morphogroups from Nimbolook Section, East Margin of Lut Block, Iran. Arabian Journal of Geosciences, 9(19): 720. https://doi.org/10.1007/s12517-016-2709-y |
Mutterlose, J. B., 2009. The Aptian Albian Cold Snap: Evidence for "Mid" Cretaceous Icehouse Interludes. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 252(2): 217–225. https://doi.org/10.1127/0077-7749/2009/0252-0217 |
Mutterlose, J., Bornemann, A., Luppold, F. W., et al., 2003. The Vöhrum Section (Northwest Germany) and the Aptian/Albian Boundary. Cretaceous Research, 24(3): 203–252. https://doi.org/10.1016/s0195-6671(03)00043-0 |
Petrizzo, M. R., Huber, B. T., Gale, A. S., et al., 2012. Abrupt Planktic Foraminiferal Turnover across the Niveau Kilian at Col de Pré-Guittard (Vocontian Basin, Southeast France): New Criteria for Defining the Aptian/Albian Boundary. Newsletters on Stratigraphy, 45(1): 55–74 doi: 10.1127/0078-0421/2012/0013 |
Raisossadat, S. N., Asadi, S., Zarei, H., et al., 2014. Stratigraphy Paleoecology and Paleobiogeography of Cretaceous Deposits in the East of Lut Block (Qayen Area). Proceeding of 18th Symposium of Geological Society of Iran. Dec. 24–25, Tarbiat Modarres University, Iran. 600–610 |
Raisossadat, S. N., Guzhov, A., Arzhaneh, R. N. D., et al., 2022. Gastropoda from Lower Cretaceous Deposits of Nimbolook Area, Eastern Iran. Stratigraphy and Geological Correlation, 30(1): 65–74. https://doi.org/10.1134/s0869593822010063 |
Raisossadat, S. N., Mosavinia, A., Khazaei, A. R., et al., 2011. Stratigraphy of Cretaceous Deposits in Southwest of Qayen Area (East of Iran). Proceeding of the 5th Symposium of Iranian Paleontological Society, International Center for Science, High Technology and Environmental Sciences. Mahan, Kerman, Iran (in Persian with English Abstract) |
Raisossadat, S. N., Mosavinia, A., Khazaei, A., et al., 2021. Biostratigraphy of Cretaceous Deposits Based on Ammonites in Southwest of Qayen Area (Qumenjan Section). Journal of Stratigraphy and Sedimentology Researches, 37: 127–146 |
Raisossadat, S. N., Noori, H., 2016. Lower Cretaceous Gastropods from the Qayen Area, Eastern Iran. Geobios, 49(4): 293–301. https://doi.org/10.1016/j.geobios.2016.06.001 |
Raisossadat, S. N., Skelton, P. W., 2005. First Record of Rudist Fauna from the Qayen Area, Eastern Iran. 7th International Cretaceous Symposium. Neuchatel, Switzerland. 177–178 |
Sabatino, N., Coccioni, R., Salvagio Manta, D., et al., 2015. High-Resolution Chemostratigraphy of the Late Aptian-Early Albian Oceanic Anoxic Event (OAE 1b) from the Poggio Le Guaine Section (Umbria-Marche Basin, Central Italy). Palaeogeography, Palaeoclimatology, Palaeo-ecology, 426: 319–333. https://doi.org/10.1016/j.palaeo.2015.03.009 |
Sharifi, J., Raisossadat, S. N., Mortazavi Mehrizi, M., et al., 2016. Albian and Cenomanian Ammonites of the Eastern Margin of the Lut Block (East Iran). Carnets de Géologie (Notebooks on Geology), 16(25): 591–613. https://doi.org/10.4267/2042/61850 |
Stoll, H. M., Schrag, D. P., 2000. High-Resolution Stable Isotope Records from the Upper Cretaceous Rocks of Italy and Spain: Glacial Episodes in a Greenhouse Planet? Geological Society of America Bulletin, 112(2): 308–319. |
Tirrul, R., Bell, I. R., Griffis, R. J., et al., 1983. The Sistan Suture Zone of Eastern Iran. Geological Society of America Bulletin, 94(1): 134–150. https://doi.org/10.1130/0016-7606(1983)94134:tsszoe>2.0.co;2 doi: 10.1130/0016-7606(1983)94134:tsszoe>2.0.co;2 |
Vahrenkamp, V. C., 2013. Carbon-Isotope Signatures of Albian to Ceno-manian (Cretaceous) Shelf Carbonates of the Natih Formation, Sultanate of Oman. Geo Arabia, 8: 65–82 |
Voigt, S., Wiese, F., 2000. Evidence for Late Cretaceous (Late Turonian) Climate Cooling from Oxygen-Isotope Variations and Palaeobiogeo-graphic Changes in Western and Central Europe. Journal of the Geological Society, 157(4): 737–743. https://doi.org/10.1144/jgs.157. 4.737 doi: 10.1144/jgs.157.4.737 |
Voigt, S., Wilmsen, M., Mortimore, R. N., et al., 2003. Cenomanian Palaeotemperatures Derived from the Oxygen Isotopic Composition of Brachiopods and Belemnites: Evaluation of Cretaceous Palaeotem-perature Proxies. International Journal of Earth Sciences, 92(2): 285–299. https://doi.org/10.1007/s00531-003-0315-1 |
Weissert, H., Lini, A., 1991. Ice Age Interludes during the Time of Cretaceous Greenhouse Climate?. In: Müller, D. W., McKenzie, J. A., Weissert, H., eds., Controversies in Modern Geology. Wiley. 173–191 |
Wohlwend, S., Hart, M., Weissert, H., 2016. Chemostratigraphy of the Upper Albian to Mid-Turonian Natih Formation (Oman)—How Authigenic Carbonate Changes a Global Pattern. The Depositional Record, 2(1): 97–117. https://doi.org/10.1002/dep2.15 |
Zarei, H., Raisossadat, S. N., Mortazavi Mehrizi, M., et al., 2019. Microfacies and Sedimentary Environment of Lower Cretaceous Deposits in Qumenjan Section, South West Qayen. Quarterly Journal of Iranian Geology, 13(5): 99–120 |