Citation: | Oladapo O. Akinlotan, Ogechukwu A. Moghalu, Stuart J. Hatter, Byami A. Jolly, Okwudiri A. Anyiam. Paleoclimatic Controls on Clay Mineral Distribution in the Early Cretaceous (Barremian): The Wessex Basin, Southeast England. Journal of Earth Science, 2024, 35(6): 2050-2066. doi: 10.1007/s12583-023-1917-y |
This study describes the clay mineralogy of the Lower Cretaceous (Barremian) rocks of the Wessex Basin for paleoenvironmental interpretations. Seventy-four samples were subjected to optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN®) techniques. The results revealed an illite-dominated sedimentation in most sections of the basin, with kaolinite, chlorite, smectite and glauconite occurring in subordinate quantities. Inferred paleoclimatic conditions from the clay mineral trends indicates a warm and dry climate, with seasonal precipitation. Kaolinite to illite ratios indicate that more arid climate conditions were prevalent but brief periods of warm and humid conditions were also present. A strong positive correlation between chlorite and tourmaline indicates that excess chlorite may have been contributed from tourmaline-chlorite-schists in a tourmaline-dominated provenance. SEM confirms that most of the clay minerals are detrital in origin but authigenic kaolinite is also present as vermiform and mica-replacive kaolinite which formed during early diagenetic modification from flushing meteoric waters in warm humid climates. This study is significant because it demonstrates the importance of multi-proxy methods for understanding clay minerals within sedimentary basins for interpreting the paleoclimatic conditions of depositional systems.
Adams, A., Guilford, C., MacKenzie, W., 1984. Atlas of Sedimentary Rocks under the Microscope. Longman Group UK Ltd., Essex, United Kingdom |
Akinlotan, O. O., 2015. The Sedimentology of the Ashdown Formation and the Wadhurst Clay Formation, Southeast England: [Dissertation]. School of Environment and Technology, University of Brighton, Brighton. 258 |
Akinlotan, O. O., 2016. Porosity and Permeability of the English (Lower Cretaceous) Sandstones. Proceedings of the Geologists' Association, 127(6): 681–690. https://doi.org/10.1016/j.pgeola.2016.10.006 |
Akinlotan, O. O., 2017a. Geochemical Analysis for Palaeoenvironmental Interpretations—A Case Study of the English Wealden (Lower Cretaceous, South-East England). Geological Quarterly, 61(2): 227–238. https://doi.org/10.7306/gq.1328 |
Akinlotan, O. O., 2017b. Mineralogy and Palaeoenvironments: The Weald Basin (Early Cretaceous), Southeast England. The Depositional Record, 3(2): 187–200. https://doi.org/10.1002/dep2.32 |
Akinlotan, O. O., 2018. Multi-Proxy Approach to Palaeoenvironmental Modelling: The English Lower Cretaceous Weald Basin. Geological Journal, 53(1): 316–335. https://doi.org/10.1002/gj.2893 |
Akinlotan, O. O., 2019. Sideritic Ironstones as Indicators of Depositional Environments in the Weald Basin (Early Cretaceous) SE England. Geological Magazine, 156(3): 533–546. https://doi.org/10.1017/s0016756817001017 |
Akinlotan, O. O., Adepehin, E. J., Rogers, G. H., et al., 2021a. Provenance, Palaeoclimate and Palaeoenvironments of a Non-Marine Lower Cretaceous Facies: Petrographic Evidence from the Wealden Succession. Sedimentary Geology, 415: 105848. https://doi.org/10.1016/j.sedgeo.2020.105848 |
Akinlotan, O. O., Rogers, G. H., Okunuwadje, S. E., 2021b. Provenance Evolution of the English Lower Cretaceous Weald Basin and Implications for Palaeogeography of the Northwest European Massifs: Constraints from Heavy Mineral Assemblages. Marine and Petroleum Geology, 127: 104953. https://doi.org/10.1016/j.marpetgeo.2021.104953 |
Akinlotan, O. O., Hatter, S. J., 2022. Depositional Controls on Diagenetic Evolution of the Lower Cretaceous Wealden Sandstones (Wessex Basin, Southeast England). Marine and Petroleum Geology, 146: 105948. https://doi.org/10.1016/j.marpetgeo.2022.105948 |
Akinlotan, O. O., Moghalu, O. A., Hatter, S. J., et al., 2022. Clay Mineral Formation and Transformation in Non-Marine Environments and Implications for Early Cretaceous Palaeoclimatic Evolution: The Weald Basin, Southeast England. Journal of Palaeogeography, 11(3): 387–409. https://doi.org/10.1016/j.jop.2022.04.002 |
Akinlotan, O. O., Rogers, G. H., 2021. Heavy Mineral Constraints on the Provenance Evolution of the English Lower Cretaceous (Wessex Basin). Marine and Petroleum Geology, 127: 104952. https://doi.org/10.1016/j.marpetgeo.2021.104952 |
Alizai, A., Hillier, S., Clift, P. D., et al., 2012. Clay Mineral Variations in Holocene Terrestrial Sediments from the Indus Basin. Quaternary Research, 77(3): 368–381. https://doi.org/10.1016/j.yqres.2012.01.008 |
Allen, P., 1972. Wealden Detrital Tourmaline: Implications for Northwestern Europe. Journal of the Geological Society, 128(3): 273–294. https://doi.org/10.1144/gsjgs.128.3.0273 |
Allen, P., 1975. Wealden of the Weald: A New Model. Proceedings of the Geologists' Association, 86(4): 389–437. https://doi.org/10.1016/S0016-7878(75)80057-5 |
Allen, P., 1981. Pursuit of Wealden Models. Journal of the Geological Society, 138(4): 375–405. https://doi.org/10.1144/gsjgs.138.4.0375 |
Allen, P., 1989. Wealden Research—Ways Ahead. Proceedings of the Geologists' Association, 100(4): 529–564. https://doi.org/10.1016/s0016-7878(89)80026-4 |
Allen, P., 1991. Provenance Research: Torridonian and Wealden. Geological Society, London, Special Publications, 57(1): 13–21. https://doi.org/10.1144/gsl.sp.1991.057.01.02 |
Allen, P., Alvin, K. L., Andrews, J. E., et al., 1998. Purbeck-Wealden (Early Cretaceous) Climates. Proceedings of the Geologists' Association, 109(3): 197–236. https://doi.org/10.1016/s0016-7878(98)80066-7 |
Allen, P., Wimbledon, W. A., 1991. Correlation of NW European Purbeck-Wealden (Nonmarine Lower Cretaceous) as Seen from the English Type-Areas. Cretaceous Research, 12(5): 511–526. https://doi.org/10.1016/0195-6671(91)90005-w |
Bougeault, C., Pellenard, P., Deconinck, J. F., et al., 2017. Climatic and Palaeoceanographic Changes during the Pliensbachian (Early Jurassic) Inferred from Clay Mineralogy and Stable Isotope (C-O) Geochemistry (NW Europe). Global and Planetary Change, 149: 139–152. https://doi.org/10.1016/j.gloplacha.2017.01.005 |
British Geological Survey, 2014. Isle of Wight (B & S) Special Sheet E330, 331. 344–345 |
Chadwick, R. A., 1986. Extension Tectonics in the Wessex Basin, Southern England. Journal of the Geological Society, 143(3): 465–488. https://doi.org/10.1144/gsjgs.143.3.0465 |
Chamley, H., 1989. Clay Formation through Weathering. Clay Sedimen-tology. Springer, Berlin, Heidelberg. 21–50. https://doi.org/10.1007/978-3-642-85916-8_2 |
Chen, S., Wang, H., Wei, J., et al., 2014. Sedimentation of the Lower Cretaceous Xiagou Formation and Its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China. Cretaceous Research, 47: 72–86. https://doi.org/10.1016/j.cretres.2013.11.006 |
Daley, B., Stewart, D. J., 1979. Week-End Field Meeting: The Wealden Group in the Isle of Wight 17–19 June 1977. Proceedings of the Geologists' Association, 90(1/2): 51–54. https://doi.org/10.1016/s0016-7878(79)80031-0 |
De Segonzac, G. D., 1970. The Transformation of Clay Minerals during Diagenesis and Low-Grade Metamorphism: A Review. Sedimentology, 15(3/4): 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x |
Dudek, T., 2012. Clay Minerals as Palaeoenvironmental Indicators in the Bathonian (Middle Jurassic) Ore-Bearing Clays from Gnaszyn, Kraków-Silesia Homocline. Acta Geologica Polonica, 62(3): 297–305. https://doi.org/10.2478/v10263-012-0016-9 |
Eberl, D. D., 1984. Clay Mineral Formation and Transformation in Rocks and Soils. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 311(1517): 241–257. https://doi.org/10.1098/rsta.1984.0026 |
Emery, D., Myers, K. J., Young, R., 1990. Ancient Subaerial Exposure and Freshwater Leaching in Sandstones. Geology, 18(12): 1178–1181. https://doi.org/10.1130/0091-7613(1990)018<1178:aseafl>2.3.co;2 doi: 10.1130/0091-7613(1990)018<1178:aseafl>2.3.co;2 |
Fandrich, R., Gu, Y., Burrows, D., et al., 2007. Modern SEM-Based Mineral Liberation Analysis. International Journal of Mineral Processing, 84(1/2/3/4): 310–320. https://doi.org/10.1016/j.minpro.2006.07.018 |
Fang, Q., Hong, H. L., Zhao, L. L., et al., 2017. Tectonic Uplift-Influenced Monsoonal Changes Promoted Hominin Occupation of the Luonan Basin: Insights from a Loess-Paleosol Sequence, Eastern Qinling Mountains, Central China. Quaternary Science Reviews, 169: 312–329. https://doi.org/10.1016/j.quascirev.2017.05.025 |
Ferreira, N. N., Ferreira, E. P., Ramos, R. R. C., et al., 2016. Palynological and Sedimentary Analysis of the Igarapé Ipiranga and Querru 1 Outcrops of the Itapecuru Formation (Lower Cretaceous, Parnaíba Basin), Brazil. Journal of South American Earth Sciences, 66: 15–31. https://doi.org/10.1016/j.jsames.2015.12.005 |
Föllmi, K. B., 2012. Early Cretaceous Life, Climate and Anoxia. Cretaceous Research, 35: 230–257. https://doi.org/10.1016/j.cretres.2011.12.005 |
Garrido, A. C., Salgado, L., 2015. Taphonomy and Depositional Environment of a Lower Cretaceous Monospecific Dinosaur Bone Assemblage (Puesto Quiroga Member, Lohan Cura Formation), Neuquén Province, Argentina. Journal of South American Earth Sciences, 61: 53–61. https://doi.org/10.1016/j.jsames.2015.03.008 |
Grew, E. S., Sandiford, M., 1984. A Staurolite-Talc Assemblage in Tourmaline-Phlogopite-Chlorite Schist from Northern Victoria Land, Antarctica, and Its Petrogenetic Significance. Contributions to Mineralogy and Petrology, 87(4): 337–350. https://doi.org/10.1007/bf00381290 |
Hallam, A., 1984. Continental Humid and Arid Zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 47(3/4): 195–223. https://doi.org/10.1016/0031-0182(84)90094-4 |
Hallam, A., Grose, J. A., Ruffell, A. H., 1991. Palaeoclimatic Significance of Changes in Clay Mineralogy across the Jurassic–Cretaceous Boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology, 81(3/4): 173–187. https://doi.org/10.1016/0031-0182(91)90146-i |
Harraz, H. Z., El-Sharkawy, M. F., 2001. Origin of Tourmaline in the Metamorphosed Sikait Pelitic Belt, South Eastern Desert, Egypt. Journal of African Earth Sciences, 33(2): 391–416. https://doi.org/10.1016/s0899-5362(01)80071-3 |
Hein, J. R., Dowling, J. S., Schuetze, A., et al., 2003. Clay-Mineral Suites, Sources, and Inferred Dispersal Routes: Southern California Continental Shelf. Marine Environmental Research, 56(1/2): 79–102. https://doi.org/10.1016/s0141-1136(02)00326-4 |
Hesselbo, S. P., Deconinck, J. F., Huggett, J. M., et al., 2009. Late Jurassic Palaeoclimatic Change from Clay Mineralogy and Gamma-Ray Spectrometry of the Kimmeridge Clay, Dorset, UK. Journal of the Geological Society, 166(6): 1123–1133. https://doi.org/10.1144/0016-76492009-070 |
Hopson, P. M., Wilkinson, I., Woods, M., 2008. A Stratigraphical Framework for the Lower Cretaceous of England. British Geological Survey. 77 |
Horne, D. J., 1995. A Revised Ostracod Biostratigraphy for the Purbeck-Wealden of England. Cretaceous Research, 16(6): 639–663. https://doi.org/10.1006/cres.1995.1040 |
Jeans, C. V., 2006. Clay Mineralogy of the Cretaceous Strata of the British Isles. Clay Minerals, 41(1): 47–150. https://doi.org/10.1180/0009855064110196 |
Jeans, C. V., Mitchell, J. G., Fisher, M. J., et al., 2001. Age, Origin and Climatic Signal of English Mesozoic Clays Based on K/Ar Signatures. Clay Minerals, 36(4): 515–539. https://doi.org/10.1180/0009855013640006 |
Ju, W., Sun, W. F., 2016. Tectonic Fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China. Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Tectonic Fractures. Journal of Petroleum Science and Engineering, 146: 626–636. https://doi.org/10.1016/j.petrol.2016.05.002 |
Kalm, V. E., Rutter, N. W., Rokosh, C. D., 1996. Clay Minerals and Their Paleoenvironmental Interpretation in the Baoji Loess Section, Southern Loess Plateau, China. CATENA, 27(1): 49–61. https://doi.org/10.1016/0341-8162(96)00008-2 |
Karner, G. D., Lake, S. D., Dewey, J. F., 1987. The Thermal and Mechanical Development of the Wessex Basin, Southern England. Geological Society, London, Special Publications, 28(1): 517–536. https://doi.org/10.1144/gsl.sp.1987.028.01.34 |
Kemp, S., Wagner, D., Ingham, M., 2012. The Mineralogy, Surface Area and Geochemistry of Samples from the Wealden Group of Southern England. British Geological Survey Internal Report, IR/10/079. 34 |
Kim, J., Dong, H. L., Seabaugh, J., et al., 2004. Role of Microbes in the Smectite-to-Illite Reaction. Science, 303(5659): 830–832. https://doi.org/10.1126/science.1093245 |
Knappett, C., Pirrie, D., Power, M. R., et al., 2011. Mineralogical Analysis and Provenancing of Ancient Ceramics Using Automated SEM-EDS Analysis (QEMSCAN®): A Pilot Study on LB I Pottery from Akrotiri, Thera. Journal of Archaeological Science, 38(2): 219–232. https://doi.org/10.1016/j.jas.2010.08.022 |
Lake, S. D., Karner, G. D., 1987. The Structure and Evolution of the Wessex Basin, Southern England: An Example of Inversion Tectonics. Tectonophysics, 137(1): 347, 358–356, 378. https://doi.org/10.1016/0040-1951(87)90328-3 |
Lanson, B., Beaufort, D., Berger, G., et al., 2002. Authigenic Kaolin and Illitic Minerals during Burial Diagenesis of Sandstones: A Review. Clay Minerals, 37(1): 1–22. https://doi.org/10.1180/0009855023710014 |
Milleson, M., Myers, T. S., Tabor, N. J., 2016. Permo-Carboniferous Paleoclimate of the Congo Basin: Evidence from Lithostratigraphy, Clay Mineralogy, and Stable Isotope Geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 226–240. https://doi.org/10.1016/j.palaeo.2015.09.039 |
Moore, D. M., Reynolds, R. C. Jr., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford |
Nie, J. S., Peng, W. B., 2014. Automated SEM-EDS Heavy Mineral Analysis Reveals no Provenance Shift between Glacial Loess and Interglacial Paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71–75. https://doi.org/10.1016/j.aeolia.2014.03.005 |
Nie, J. S., Peng, W. B., Pfaff, K., et al., 2013. Controlling Factors on Heavy Mineral Assemblages in Chinese Loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 381/382: 110–118. https://doi.org/10.1016/j.palaeo.2013.04.020 |
Penn, S. J., Sweetman, S. C., Martill, D. M., et al., 2020. The Wessex Formation (Wealden Group, Lower Cretaceous) of Swanage Bay, Southern England. Proceedings of the Geologistsʼ Association, 131: 679–698 doi: 10.1016/j.pgeola.2020.07.005 |
Pirrie, D., Butcher, A. R., Power, M. R., et al., 2004. Rapid Quantitative Mineral and Phase Analysis Using Automated Scanning Electron Micro-scopy (QemSCAN); Potential Applications in Forensic Geoscience. Geological Society of London Special Publications, 232(1): 123–136. https://doi.org/10.1144/gsl.sp.2004.232.01.12 |
Pirrie, D., Power, M. R., Rollinson, G. K., et al., 2009. Automated SEM-EDS (QEMSCAN®) Mineral Analysis in Forensic Soil Investigations: Testing Instrumental Reproducibility. Criminal and Environmental Soil Forensics. Springer, Dordrecht. 411–430. https://doi.org/10.1007/978-1-4020-9204-6_26 |
Proust, J. N., Deconinck, J. F., Geyssant, J. R., et al., 1995. Sequence Analytical Approach to the Upper Kimmeridgian-Lower Tithonian Storm-Dominated Ramp Deposits of the Boulonnais (Northern France). A Landward Time-Equivalent to Offshore Marine Source Rocks. Geologische Rundschau, 84(2): 255–271. https://doi.org/10.1007/bf00260439 |
Radley, J. D., 1994a. A Foraminiferal Datum in the Vectis Formation (Wealden Group, Lower Cretaceous) of the Isle of Wight, Southern England. Proceedings of the Geologists' Association, 105(2): 91–97. https://doi.org/10.1016/s0016-7878(08)80107-1 |
Radley, J. D., 1994b. Stratigraphy, Palaeontology and Palaeoenvironment of the Wessex Formation (Wealden Group, Lower Cretaceous) at Yaverland, Isle of Wight, Southern England. Proceedings of the Geologists' Association, 105(3): 199–208. https://doi.org/10.1016/s0016-7878(08)80119-8 |
Radley, J. D., Allen, P., 2012a. The Southern English Wealden (Non-Marine Lower Cretaceous): Overview of Palaeoenvironments and Palaeoecology. Proceedings of the Geologists' Association, 123(2): 382–385. https://doi.org/10.1016/j.pgeola.2011.12.005 |
Radley, J. D., Allen, P., 2012b. The Wealden (Non-Marine Lower Cretaceous) of the Weald Sub-Basin, Southern England. Proceedings of the Geologists' Association, 123(2): 245–318. https://doi.org/10.1016/j.pgeola.2012.01.003 |
Radley, J. D., Barker, M. J., 1998. Palaeoenvironmental Analysis of Shell Beds in the Wealden Group (Lower Cretaceous) of the Isle of Wight, Southern England: An Initial Account. Cretaceous Research, 19(3/4): 489–504. https://doi.org/10.1006/cres.1997.0106 |
Rawson, P. F., 1992. The Cretaceous. In: Duff, P. M. D., Smith, A. J., eds., Geology of England and Wales. The Geological Society, London. 355–388 |
Rego, E. S., Jovane, L., Hein, J. R., et al., 2018. Mineralogical Evidence for Warm and Dry Climatic Conditions in the Neo-Tethys (Eastern Turkey) during the Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 501: 45–57. https://doi.org/10.1016/j.palaeo.2018.04.007 |
Reynolds, R. C., 1989. Principles of Powder Diffraction. Reviews in Mineralogy and Geochemistry, 20: 1–17 |
Romero-Guerrero, L. M., Moreno-Tovar, R., Arenas-Flores, A., et al., 2018. Chemical, Mineralogical, and Refractory Characterization of Kaolin in the Regions of Huayacocotla-Alumbres, Mexico. Advances in Materials Science and Engineering. https://doi.org/10.1155/2018/8156812 |
Ruffell, A., 1991. Sea-Level Events during the Early Cretaceous in Western Europe. Cretaceous Research, 12(5): 527–551. https://doi.org/10.1016/0195-6671(91)90006-x |
Ruffell, A., McKinley, J. M., Worden, R. H., 2002. Comparison of Clay Mineral Stratigraphy to other Proxy Palaeoclimate Indicators in the Mesozoic of NW Europe. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 360(1793): 675–693. https://doi.org/10.1098/rsta.2001.0961 |
Ruffell, A. H., Batten, D. J., 1990. The Barremian-Aptian Arid Phase in Western Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 80(3/4): 197–212. https://doi.org/10.1016/0031-0182(90)90132-q |
Simpson, I. R., Gravestock, M., Ham, D., et al., 1989. Notes and Cross-Sections Illustrating Inversion Tectonics in the Wessex Basin. Geological Society, London, Special Publications, 44(1): 123–129. https://doi.org/10.1144/gsl.sp.1989.044.01.08 |
Singer, A., 1980. The Paleoclimatic Interpretation of Clay Minerals in Soils and Weathering Profiles. Earth-Science Reviews, 15(4): 303–326. https://doi.org/10.1016/0012-8252(80)90113-0 |
Singer, A., 1984. The Paleoclimatic Interpretation of Clay Minerals in Sediments—A Review. Earth-Science Reviews, 21(4): 251–293. https://doi.org/10.1016/0012-8252(84)90055-2 |
Sladen, C. P., 1980. The Clay Mineralogy of Pre-Aptian Cretaceous Sediments in NW Europe. University of Reading, United Kingdom. 365 |
Sladen, C. P., 1983. Trends in Early Cretaceous Clay Mineralogy in NW Europe. Zitteliana 10, 57 |
Sladen, C. P., Batten, D. J., 1984. Source-Area Environments of Late Jurassic and Early Cretaceous Sediments in Southeast England. Proceedings of the Geologists' Association, 95(2): 149–163. https://doi.org/10.1016/s0016-7878(84)80002-4 |
Song, Y. G., Wang, Q. S., An, Z. S., et al., 2018. Mid-Miocene Climatic Optimum: Clay Mineral Evidence from the Red Clay Succession, Longzhong Basin, Northern China. Palaeogeography, Palaeoclima-tology, Palaeoecology, 512: 46–55. https://doi.org/10.1016/j.palaeo.2017.10.001 |
Stewart, D. J., 1978. The sedimentology of the Wealden Group of the Isle of Wight, Department of Geology. Portsmouth Polytechnic, United Kingdom. 347 |
Stewart, D. J., 1981a. A Field Guide to the Wealden Group of the Hastings Area and the Isle of Wight. In: Elliott, T., ed., Field Guides to Modern and Ancient Fluvial Systems in Britain and Spain. International Fluvial Conference, University of Keele. 3.1–3.32 |
Stewart, D. J., 1981b. A Meander-Belt Sandstone of the Lower Cretaceous of Southern England. Sedimentology, 28(1): 1–20. https://doi.org/10.1111/j.1365-3091.1981.tb01658.x |
Stewart, D. J., 1983. Possible Suspended‐Load Channel Deposits from the Wealden Group (Lower Cretaceous) of Southern England. In: Collinson, J. D., Lewin, J., eds., Modern and Ancient Fluvial Systems. International Association of Sedimentologists Special Publications, Blackwell Publishing Ltd., Oxford. 369–384 |
Stewart, D. J., Ruffell, A., Wach, G., et al., 1991. Lagoonal Sedimentation and Fluctuating Salinities in the Vectis Formation (Wealden Group, Lower Cretaceous) of the Isle of Wight, Southern England. Sedimentary Geology, 72(1/2): 117–134. https://doi.org/10.1016/0037-0738(91)90126-x |
Stoneley, R., 1982. The Structural Development of the Wessex Basin. Journal of the Geological Society, 139(4): 543–554. https://doi.org/10.1144/gsjgs.139.4.0543 |
Taylor, K. G. G., 1996. Pedogenic Clay-Mineral Transformation in the Weald Basin: Implications for Early Cretaceous Hinterland Climate Reconstructions. Cretaceous Research, 17(1): 103–108. https://doi.org/10.1006/cres.1996.0008 |
Thiry, M., 2000. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth Science Reviews, 49(1): 201–221. https://doi.org/10.1016/s0012-8252(99)00054-9 |
Trumbull, R. B., Krienitz, M. S., Grundmann, G., et al., 2009. Tourmaline Geochemistry and δ11B Variations as a Guide to Fluid-Rock Interaction in the Habachtal Emerald Deposit, Tauern Window, Austria. Contributions to Mineralogy and Petrology, 157(3): 411–427. https://doi.org/10.1007/s00410-008-0342-9 |
Tucker, M. E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Science, Oxford |
Ulmer-Scholle, D. S., Scholle, P. A., Schieber, J., et al., 2014. A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks. American Association of Petroleum Geologists. https://doi.org/10.1306/m1091304 |
Watson, J., Alvin, K. L., 1996. An English Wealden Floral List, with Comments on Possible Environmental Indicators. Cretaceous Research, 17(1): 5–26 doi: 10.1006/cres.1996.0002 |
Worden, R. H., Morad, S., 2003. Clay Minerals in Sandstones: Controls on Formation, Distribution and Evolution. In: Worden, R. H., Morad, S., eds., Clay Minerals in Sandstones. International Association of Sedimentologists Special Publication. 1–42 |
Zhang, X. J., Pease, V., Omma, J., et al., 2015. Provenance of Late Carboniferous to Jurassic Sandstones for Southern Taimyr, Arctic Russia: A Comparison of Heavy Mineral Analysis by Optical and QEMSCAN Methods. Sedimentary Geology, 329: 166–176. https://doi.org/10.1016/j.sedgeo.2015.09.008 |
Zuo, F. F., Heimhofer, U., Huck, S., et al., 2019. Climatic Fluctuations and Seasonality during the Kimmeridgian (Late Jurassic): Stable Isotope and Clay Mineralogical Data from the Lower Saxony Basin, Northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 517: 1–15. https://doi.org/10.1016/j.palaeo.2018.12.018 |