| Citation: | Oladapo O. Akinlotan, Ogechukwu A. Moghalu, Stuart J. Hatter, Byami A. Jolly, Okwudiri A. Anyiam. Paleoclimatic Controls on Clay Mineral Distribution in the Early Cretaceous (Barremian): The Wessex Basin, Southeast England. Journal of Earth Science, 2024, 35(6): 2050-2066. doi: 10.1007/s12583-023-1917-y |
This study describes the clay mineralogy of the Lower Cretaceous (Barremian) rocks of the Wessex Basin for paleoenvironmental interpretations. Seventy-four samples were subjected to optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN®) techniques. The results revealed an illite-dominated sedimentation in most sections of the basin, with kaolinite, chlorite, smectite and glauconite occurring in subordinate quantities. Inferred paleoclimatic conditions from the clay mineral trends indicates a warm and dry climate, with seasonal precipitation. Kaolinite to illite ratios indicate that more arid climate conditions were prevalent but brief periods of warm and humid conditions were also present. A strong positive correlation between chlorite and tourmaline indicates that excess chlorite may have been contributed from tourmaline-chlorite-schists in a tourmaline-dominated provenance. SEM confirms that most of the clay minerals are detrital in origin but authigenic kaolinite is also present as vermiform and mica-replacive kaolinite which formed during early diagenetic modification from flushing meteoric waters in warm humid climates. This study is significant because it demonstrates the importance of multi-proxy methods for understanding clay minerals within sedimentary basins for interpreting the paleoclimatic conditions of depositional systems.
| Adams, A., Guilford, C., MacKenzie, W., 1984. Atlas of Sedimentary Rocks under the Microscope. Longman Group UK Ltd., Essex, United Kingdom |
| Akinlotan, O. O., 2015. The Sedimentology of the Ashdown Formation and the Wadhurst Clay Formation, Southeast England: [Dissertation]. School of Environment and Technology, University of Brighton, Brighton. 258 |
| Akinlotan, O. O., 2016. Porosity and Permeability of the English (Lower Cretaceous) Sandstones. Proceedings of the Geologists' Association, 127(6): 681–690. https://doi.org/10.1016/j.pgeola.2016.10.006 |
| Akinlotan, O. O., 2017a. Geochemical Analysis for Palaeoenvironmental Interpretations—A Case Study of the English Wealden (Lower Cretaceous, South-East England). Geological Quarterly, 61(2): 227–238. https://doi.org/10.7306/gq.1328 |
| Akinlotan, O. O., 2017b. Mineralogy and Palaeoenvironments: The Weald Basin (Early Cretaceous), Southeast England. The Depositional Record, 3(2): 187–200. https://doi.org/10.1002/dep2.32 |
| Akinlotan, O. O., 2018. Multi-Proxy Approach to Palaeoenvironmental Modelling: The English Lower Cretaceous Weald Basin. Geological Journal, 53(1): 316–335. https://doi.org/10.1002/gj.2893 |
| Akinlotan, O. O., 2019. Sideritic Ironstones as Indicators of Depositional Environments in the Weald Basin (Early Cretaceous) SE England. Geological Magazine, 156(3): 533–546. https://doi.org/10.1017/s0016756817001017 |
| Akinlotan, O. O., Adepehin, E. J., Rogers, G. H., et al., 2021a. Provenance, Palaeoclimate and Palaeoenvironments of a Non-Marine Lower Cretaceous Facies: Petrographic Evidence from the Wealden Succession. Sedimentary Geology, 415: 105848. https://doi.org/10.1016/j.sedgeo.2020.105848 |
| Akinlotan, O. O., Rogers, G. H., Okunuwadje, S. E., 2021b. Provenance Evolution of the English Lower Cretaceous Weald Basin and Implications for Palaeogeography of the Northwest European Massifs: Constraints from Heavy Mineral Assemblages. Marine and Petroleum Geology, 127: 104953. https://doi.org/10.1016/j.marpetgeo.2021.104953 |
| Akinlotan, O. O., Hatter, S. J., 2022. Depositional Controls on Diagenetic Evolution of the Lower Cretaceous Wealden Sandstones (Wessex Basin, Southeast England). Marine and Petroleum Geology, 146: 105948. https://doi.org/10.1016/j.marpetgeo.2022.105948 |
| Akinlotan, O. O., Moghalu, O. A., Hatter, S. J., et al., 2022. Clay Mineral Formation and Transformation in Non-Marine Environments and Implications for Early Cretaceous Palaeoclimatic Evolution: The Weald Basin, Southeast England. Journal of Palaeogeography, 11(3): 387–409. https://doi.org/10.1016/j.jop.2022.04.002 |
| Akinlotan, O. O., Rogers, G. H., 2021. Heavy Mineral Constraints on the Provenance Evolution of the English Lower Cretaceous (Wessex Basin). Marine and Petroleum Geology, 127: 104952. https://doi.org/10.1016/j.marpetgeo.2021.104952 |
| Alizai, A., Hillier, S., Clift, P. D., et al., 2012. Clay Mineral Variations in Holocene Terrestrial Sediments from the Indus Basin. Quaternary Research, 77(3): 368–381. https://doi.org/10.1016/j.yqres.2012.01.008 |
| Allen, P., 1972. Wealden Detrital Tourmaline: Implications for Northwestern Europe. Journal of the Geological Society, 128(3): 273–294. https://doi.org/10.1144/gsjgs.128.3.0273 |
| Allen, P., 1975. Wealden of the Weald: A New Model. Proceedings of the Geologists' Association, 86(4): 389–437. https://doi.org/10.1016/S0016-7878(75)80057-5 |
| Allen, P., 1981. Pursuit of Wealden Models. Journal of the Geological Society, 138(4): 375–405. https://doi.org/10.1144/gsjgs.138.4.0375 |
| Allen, P., 1989. Wealden Research—Ways Ahead. Proceedings of the Geologists' Association, 100(4): 529–564. https://doi.org/10.1016/s0016-7878(89)80026-4 |
| Allen, P., 1991. Provenance Research: Torridonian and Wealden. Geological Society, London, Special Publications, 57(1): 13–21. https://doi.org/10.1144/gsl.sp.1991.057.01.02 |
| Allen, P., Alvin, K. L., Andrews, J. E., et al., 1998. Purbeck-Wealden (Early Cretaceous) Climates. Proceedings of the Geologists' Association, 109(3): 197–236. https://doi.org/10.1016/s0016-7878(98)80066-7 |
| Allen, P., Wimbledon, W. A., 1991. Correlation of NW European Purbeck-Wealden (Nonmarine Lower Cretaceous) as Seen from the English Type-Areas. Cretaceous Research, 12(5): 511–526. https://doi.org/10.1016/0195-6671(91)90005-w |
| Bougeault, C., Pellenard, P., Deconinck, J. F., et al., 2017. Climatic and Palaeoceanographic Changes during the Pliensbachian (Early Jurassic) Inferred from Clay Mineralogy and Stable Isotope (C-O) Geochemistry (NW Europe). Global and Planetary Change, 149: 139–152. https://doi.org/10.1016/j.gloplacha.2017.01.005 |
| British Geological Survey, 2014. Isle of Wight (B & S) Special Sheet E330, 331. 344–345 |
| Chadwick, R. A., 1986. Extension Tectonics in the Wessex Basin, Southern England. Journal of the Geological Society, 143(3): 465–488. https://doi.org/10.1144/gsjgs.143.3.0465 |
| Chamley, H., 1989. Clay Formation through Weathering. Clay Sedimen-tology. Springer, Berlin, Heidelberg. 21–50. https://doi.org/10.1007/978-3-642-85916-8_2 |
| Chen, S., Wang, H., Wei, J., et al., 2014. Sedimentation of the Lower Cretaceous Xiagou Formation and Its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China. Cretaceous Research, 47: 72–86. https://doi.org/10.1016/j.cretres.2013.11.006 |
| Daley, B., Stewart, D. J., 1979. Week-End Field Meeting: The Wealden Group in the Isle of Wight 17–19 June 1977. Proceedings of the Geologists' Association, 90(1/2): 51–54. https://doi.org/10.1016/s0016-7878(79)80031-0 |
| De Segonzac, G. D., 1970. The Transformation of Clay Minerals during Diagenesis and Low-Grade Metamorphism: A Review. Sedimentology, 15(3/4): 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x |
| Dudek, T., 2012. Clay Minerals as Palaeoenvironmental Indicators in the Bathonian (Middle Jurassic) Ore-Bearing Clays from Gnaszyn, Kraków-Silesia Homocline. Acta Geologica Polonica, 62(3): 297–305. https://doi.org/10.2478/v10263-012-0016-9 |
| Eberl, D. D., 1984. Clay Mineral Formation and Transformation in Rocks and Soils. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 311(1517): 241–257. https://doi.org/10.1098/rsta.1984.0026 |
| Emery, D., Myers, K. J., Young, R., 1990. Ancient Subaerial Exposure and Freshwater Leaching in Sandstones. Geology, 18(12): 1178–1181. https://doi.org/10.1130/0091-7613(1990)018<1178:aseafl>2.3.co;2 doi: 10.1130/0091-7613(1990)018<1178:aseafl>2.3.co;2 |
| Fandrich, R., Gu, Y., Burrows, D., et al., 2007. Modern SEM-Based Mineral Liberation Analysis. International Journal of Mineral Processing, 84(1/2/3/4): 310–320. https://doi.org/10.1016/j.minpro.2006.07.018 |
| Fang, Q., Hong, H. L., Zhao, L. L., et al., 2017. Tectonic Uplift-Influenced Monsoonal Changes Promoted Hominin Occupation of the Luonan Basin: Insights from a Loess-Paleosol Sequence, Eastern Qinling Mountains, Central China. Quaternary Science Reviews, 169: 312–329. https://doi.org/10.1016/j.quascirev.2017.05.025 |
| Ferreira, N. N., Ferreira, E. P., Ramos, R. R. C., et al., 2016. Palynological and Sedimentary Analysis of the Igarapé Ipiranga and Querru 1 Outcrops of the Itapecuru Formation (Lower Cretaceous, Parnaíba Basin), Brazil. Journal of South American Earth Sciences, 66: 15–31. https://doi.org/10.1016/j.jsames.2015.12.005 |
| Föllmi, K. B., 2012. Early Cretaceous Life, Climate and Anoxia. Cretaceous Research, 35: 230–257. https://doi.org/10.1016/j.cretres.2011.12.005 |
| Garrido, A. C., Salgado, L., 2015. Taphonomy and Depositional Environment of a Lower Cretaceous Monospecific Dinosaur Bone Assemblage (Puesto Quiroga Member, Lohan Cura Formation), Neuquén Province, Argentina. Journal of South American Earth Sciences, 61: 53–61. https://doi.org/10.1016/j.jsames.2015.03.008 |
| Grew, E. S., Sandiford, M., 1984. A Staurolite-Talc Assemblage in Tourmaline-Phlogopite-Chlorite Schist from Northern Victoria Land, Antarctica, and Its Petrogenetic Significance. Contributions to Mineralogy and Petrology, 87(4): 337–350. https://doi.org/10.1007/bf00381290 |
| Hallam, A., 1984. Continental Humid and Arid Zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 47(3/4): 195–223. https://doi.org/10.1016/0031-0182(84)90094-4 |
| Hallam, A., Grose, J. A., Ruffell, A. H., 1991. Palaeoclimatic Significance of Changes in Clay Mineralogy across the Jurassic–Cretaceous Boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology, 81(3/4): 173–187. https://doi.org/10.1016/0031-0182(91)90146-i |
| Harraz, H. Z., El-Sharkawy, M. F., 2001. Origin of Tourmaline in the Metamorphosed Sikait Pelitic Belt, South Eastern Desert, Egypt. Journal of African Earth Sciences, 33(2): 391–416. https://doi.org/10.1016/s0899-5362(01)80071-3 |
| Hein, J. R., Dowling, J. S., Schuetze, A., et al., 2003. Clay-Mineral Suites, Sources, and Inferred Dispersal Routes: Southern California Continental Shelf. Marine Environmental Research, 56(1/2): 79–102. https://doi.org/10.1016/s0141-1136(02)00326-4 |
| Hesselbo, S. P., Deconinck, J. F., Huggett, J. M., et al., 2009. Late Jurassic Palaeoclimatic Change from Clay Mineralogy and Gamma-Ray Spectrometry of the Kimmeridge Clay, Dorset, UK. Journal of the Geological Society, 166(6): 1123–1133. https://doi.org/10.1144/0016-76492009-070 |
| Hopson, P. M., Wilkinson, I., Woods, M., 2008. A Stratigraphical Framework for the Lower Cretaceous of England. British Geological Survey. 77 |
| Horne, D. J., 1995. A Revised Ostracod Biostratigraphy for the Purbeck-Wealden of England. Cretaceous Research, 16(6): 639–663. https://doi.org/10.1006/cres.1995.1040 |
| Jeans, C. V., 2006. Clay Mineralogy of the Cretaceous Strata of the British Isles. Clay Minerals, 41(1): 47–150. https://doi.org/10.1180/0009855064110196 |
| Jeans, C. V., Mitchell, J. G., Fisher, M. J., et al., 2001. Age, Origin and Climatic Signal of English Mesozoic Clays Based on K/Ar Signatures. Clay Minerals, 36(4): 515–539. https://doi.org/10.1180/0009855013640006 |
| Ju, W., Sun, W. F., 2016. Tectonic Fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China. Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Tectonic Fractures. Journal of Petroleum Science and Engineering, 146: 626–636. https://doi.org/10.1016/j.petrol.2016.05.002 |
| Kalm, V. E., Rutter, N. W., Rokosh, C. D., 1996. Clay Minerals and Their Paleoenvironmental Interpretation in the Baoji Loess Section, Southern Loess Plateau, China. CATENA, 27(1): 49–61. https://doi.org/10.1016/0341-8162(96)00008-2 |
| Karner, G. D., Lake, S. D., Dewey, J. F., 1987. The Thermal and Mechanical Development of the Wessex Basin, Southern England. Geological Society, London, Special Publications, 28(1): 517–536. https://doi.org/10.1144/gsl.sp.1987.028.01.34 |
| Kemp, S., Wagner, D., Ingham, M., 2012. The Mineralogy, Surface Area and Geochemistry of Samples from the Wealden Group of Southern England. British Geological Survey Internal Report, IR/10/079. 34 |
| Kim, J., Dong, H. L., Seabaugh, J., et al., 2004. Role of Microbes in the Smectite-to-Illite Reaction. Science, 303(5659): 830–832. https://doi.org/10.1126/science.1093245 |
| Knappett, C., Pirrie, D., Power, M. R., et al., 2011. Mineralogical Analysis and Provenancing of Ancient Ceramics Using Automated SEM-EDS Analysis (QEMSCAN®): A Pilot Study on LB I Pottery from Akrotiri, Thera. Journal of Archaeological Science, 38(2): 219–232. https://doi.org/10.1016/j.jas.2010.08.022 |
| Lake, S. D., Karner, G. D., 1987. The Structure and Evolution of the Wessex Basin, Southern England: An Example of Inversion Tectonics. Tectonophysics, 137(1): 347, 358–356, 378. https://doi.org/10.1016/0040-1951(87)90328-3 |
| Lanson, B., Beaufort, D., Berger, G., et al., 2002. Authigenic Kaolin and Illitic Minerals during Burial Diagenesis of Sandstones: A Review. Clay Minerals, 37(1): 1–22. https://doi.org/10.1180/0009855023710014 |
| Milleson, M., Myers, T. S., Tabor, N. J., 2016. Permo-Carboniferous Paleoclimate of the Congo Basin: Evidence from Lithostratigraphy, Clay Mineralogy, and Stable Isotope Geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 226–240. https://doi.org/10.1016/j.palaeo.2015.09.039 |
| Moore, D. M., Reynolds, R. C. Jr., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford |
| Nie, J. S., Peng, W. B., 2014. Automated SEM-EDS Heavy Mineral Analysis Reveals no Provenance Shift between Glacial Loess and Interglacial Paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71–75. https://doi.org/10.1016/j.aeolia.2014.03.005 |
| Nie, J. S., Peng, W. B., Pfaff, K., et al., 2013. Controlling Factors on Heavy Mineral Assemblages in Chinese Loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 381/382: 110–118. https://doi.org/10.1016/j.palaeo.2013.04.020 |
| Penn, S. J., Sweetman, S. C., Martill, D. M., et al., 2020. The Wessex Formation (Wealden Group, Lower Cretaceous) of Swanage Bay, Southern England. Proceedings of the Geologistsʼ Association, 131: 679–698 doi: 10.1016/j.pgeola.2020.07.005 |
| Pirrie, D., Butcher, A. R., Power, M. R., et al., 2004. Rapid Quantitative Mineral and Phase Analysis Using Automated Scanning Electron Micro-scopy (QemSCAN); Potential Applications in Forensic Geoscience. Geological Society of London Special Publications, 232(1): 123–136. https://doi.org/10.1144/gsl.sp.2004.232.01.12 |
| Pirrie, D., Power, M. R., Rollinson, G. K., et al., 2009. Automated SEM-EDS (QEMSCAN®) Mineral Analysis in Forensic Soil Investigations: Testing Instrumental Reproducibility. Criminal and Environmental Soil Forensics. Springer, Dordrecht. 411–430. https://doi.org/10.1007/978-1-4020-9204-6_26 |
| Proust, J. N., Deconinck, J. F., Geyssant, J. R., et al., 1995. Sequence Analytical Approach to the Upper Kimmeridgian-Lower Tithonian Storm-Dominated Ramp Deposits of the Boulonnais (Northern France). A Landward Time-Equivalent to Offshore Marine Source Rocks. Geologische Rundschau, 84(2): 255–271. https://doi.org/10.1007/bf00260439 |
| Radley, J. D., 1994a. A Foraminiferal Datum in the Vectis Formation (Wealden Group, Lower Cretaceous) of the Isle of Wight, Southern England. Proceedings of the Geologists' Association, 105(2): 91–97. https://doi.org/10.1016/s0016-7878(08)80107-1 |
| Radley, J. D., 1994b. Stratigraphy, Palaeontology and Palaeoenvironment of the Wessex Formation (Wealden Group, Lower Cretaceous) at Yaverland, Isle of Wight, Southern England. Proceedings of the Geologists' Association, 105(3): 199–208. https://doi.org/10.1016/s0016-7878(08)80119-8 |
| Radley, J. D., Allen, P., 2012a. The Southern English Wealden (Non-Marine Lower Cretaceous): Overview of Palaeoenvironments and Palaeoecology. Proceedings of the Geologists' Association, 123(2): 382–385. https://doi.org/10.1016/j.pgeola.2011.12.005 |
| Radley, J. D., Allen, P., 2012b. The Wealden (Non-Marine Lower Cretaceous) of the Weald Sub-Basin, Southern England. Proceedings of the Geologists' Association, 123(2): 245–318. https://doi.org/10.1016/j.pgeola.2012.01.003 |
| Radley, J. D., Barker, M. J., 1998. Palaeoenvironmental Analysis of Shell Beds in the Wealden Group (Lower Cretaceous) of the Isle of Wight, Southern England: An Initial Account. Cretaceous Research, 19(3/4): 489–504. https://doi.org/10.1006/cres.1997.0106 |
| Rawson, P. F., 1992. The Cretaceous. In: Duff, P. M. D., Smith, A. J., eds., Geology of England and Wales. The Geological Society, London. 355–388 |
| Rego, E. S., Jovane, L., Hein, J. R., et al., 2018. Mineralogical Evidence for Warm and Dry Climatic Conditions in the Neo-Tethys (Eastern Turkey) during the Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 501: 45–57. https://doi.org/10.1016/j.palaeo.2018.04.007 |
| Reynolds, R. C., 1989. Principles of Powder Diffraction. Reviews in Mineralogy and Geochemistry, 20: 1–17 |
| Romero-Guerrero, L. M., Moreno-Tovar, R., Arenas-Flores, A., et al., 2018. Chemical, Mineralogical, and Refractory Characterization of Kaolin in the Regions of Huayacocotla-Alumbres, Mexico. Advances in Materials Science and Engineering. https://doi.org/10.1155/2018/8156812 |
| Ruffell, A., 1991. Sea-Level Events during the Early Cretaceous in Western Europe. Cretaceous Research, 12(5): 527–551. https://doi.org/10.1016/0195-6671(91)90006-x |
| Ruffell, A., McKinley, J. M., Worden, R. H., 2002. Comparison of Clay Mineral Stratigraphy to other Proxy Palaeoclimate Indicators in the Mesozoic of NW Europe. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 360(1793): 675–693. https://doi.org/10.1098/rsta.2001.0961 |
| Ruffell, A. H., Batten, D. J., 1990. The Barremian-Aptian Arid Phase in Western Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 80(3/4): 197–212. https://doi.org/10.1016/0031-0182(90)90132-q |
| Simpson, I. R., Gravestock, M., Ham, D., et al., 1989. Notes and Cross-Sections Illustrating Inversion Tectonics in the Wessex Basin. Geological Society, London, Special Publications, 44(1): 123–129. https://doi.org/10.1144/gsl.sp.1989.044.01.08 |
| Singer, A., 1980. The Paleoclimatic Interpretation of Clay Minerals in Soils and Weathering Profiles. Earth-Science Reviews, 15(4): 303–326. https://doi.org/10.1016/0012-8252(80)90113-0 |
| Singer, A., 1984. The Paleoclimatic Interpretation of Clay Minerals in Sediments—A Review. Earth-Science Reviews, 21(4): 251–293. https://doi.org/10.1016/0012-8252(84)90055-2 |
| Sladen, C. P., 1980. The Clay Mineralogy of Pre-Aptian Cretaceous Sediments in NW Europe. University of Reading, United Kingdom. 365 |
| Sladen, C. P., 1983. Trends in Early Cretaceous Clay Mineralogy in NW Europe. Zitteliana 10, 57 |
| Sladen, C. P., Batten, D. J., 1984. Source-Area Environments of Late Jurassic and Early Cretaceous Sediments in Southeast England. Proceedings of the Geologists' Association, 95(2): 149–163. https://doi.org/10.1016/s0016-7878(84)80002-4 |
| Song, Y. G., Wang, Q. S., An, Z. S., et al., 2018. Mid-Miocene Climatic Optimum: Clay Mineral Evidence from the Red Clay Succession, Longzhong Basin, Northern China. Palaeogeography, Palaeoclima-tology, Palaeoecology, 512: 46–55. https://doi.org/10.1016/j.palaeo.2017.10.001 |
| Stewart, D. J., 1978. The sedimentology of the Wealden Group of the Isle of Wight, Department of Geology. Portsmouth Polytechnic, United Kingdom. 347 |
| Stewart, D. J., 1981a. A Field Guide to the Wealden Group of the Hastings Area and the Isle of Wight. In: Elliott, T., ed., Field Guides to Modern and Ancient Fluvial Systems in Britain and Spain. International Fluvial Conference, University of Keele. 3.1–3.32 |
| Stewart, D. J., 1981b. A Meander-Belt Sandstone of the Lower Cretaceous of Southern England. Sedimentology, 28(1): 1–20. https://doi.org/10.1111/j.1365-3091.1981.tb01658.x |
| Stewart, D. J., 1983. Possible Suspended‐Load Channel Deposits from the Wealden Group (Lower Cretaceous) of Southern England. In: Collinson, J. D., Lewin, J., eds., Modern and Ancient Fluvial Systems. International Association of Sedimentologists Special Publications, Blackwell Publishing Ltd., Oxford. 369–384 |
| Stewart, D. J., Ruffell, A., Wach, G., et al., 1991. Lagoonal Sedimentation and Fluctuating Salinities in the Vectis Formation (Wealden Group, Lower Cretaceous) of the Isle of Wight, Southern England. Sedimentary Geology, 72(1/2): 117–134. https://doi.org/10.1016/0037-0738(91)90126-x |
| Stoneley, R., 1982. The Structural Development of the Wessex Basin. Journal of the Geological Society, 139(4): 543–554. https://doi.org/10.1144/gsjgs.139.4.0543 |
| Taylor, K. G. G., 1996. Pedogenic Clay-Mineral Transformation in the Weald Basin: Implications for Early Cretaceous Hinterland Climate Reconstructions. Cretaceous Research, 17(1): 103–108. https://doi.org/10.1006/cres.1996.0008 |
| Thiry, M., 2000. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth Science Reviews, 49(1): 201–221. https://doi.org/10.1016/s0012-8252(99)00054-9 |
| Trumbull, R. B., Krienitz, M. S., Grundmann, G., et al., 2009. Tourmaline Geochemistry and δ11B Variations as a Guide to Fluid-Rock Interaction in the Habachtal Emerald Deposit, Tauern Window, Austria. Contributions to Mineralogy and Petrology, 157(3): 411–427. https://doi.org/10.1007/s00410-008-0342-9 |
| Tucker, M. E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Science, Oxford |
| Ulmer-Scholle, D. S., Scholle, P. A., Schieber, J., et al., 2014. A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks. American Association of Petroleum Geologists. https://doi.org/10.1306/m1091304 |
| Watson, J., Alvin, K. L., 1996. An English Wealden Floral List, with Comments on Possible Environmental Indicators. Cretaceous Research, 17(1): 5–26 doi: 10.1006/cres.1996.0002 |
| Worden, R. H., Morad, S., 2003. Clay Minerals in Sandstones: Controls on Formation, Distribution and Evolution. In: Worden, R. H., Morad, S., eds., Clay Minerals in Sandstones. International Association of Sedimentologists Special Publication. 1–42 |
| Zhang, X. J., Pease, V., Omma, J., et al., 2015. Provenance of Late Carboniferous to Jurassic Sandstones for Southern Taimyr, Arctic Russia: A Comparison of Heavy Mineral Analysis by Optical and QEMSCAN Methods. Sedimentary Geology, 329: 166–176. https://doi.org/10.1016/j.sedgeo.2015.09.008 |
| Zuo, F. F., Heimhofer, U., Huck, S., et al., 2019. Climatic Fluctuations and Seasonality during the Kimmeridgian (Late Jurassic): Stable Isotope and Clay Mineralogical Data from the Lower Saxony Basin, Northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 517: 1–15. https://doi.org/10.1016/j.palaeo.2018.12.018 |