Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Oladapo O. Akinlotan, Ogechukwu A. Moghalu, Stuart J. Hatter, Byami A. Jolly, Okwudiri A. Anyiam. Paleoclimatic Controls on Clay Mineral Distribution in the Early Cretaceous (Barremian): The Wessex Basin, Southeast England. Journal of Earth Science, 2024, 35(6): 2050-2066. doi: 10.1007/s12583-023-1917-y
Citation: Oladapo O. Akinlotan, Ogechukwu A. Moghalu, Stuart J. Hatter, Byami A. Jolly, Okwudiri A. Anyiam. Paleoclimatic Controls on Clay Mineral Distribution in the Early Cretaceous (Barremian): The Wessex Basin, Southeast England. Journal of Earth Science, 2024, 35(6): 2050-2066. doi: 10.1007/s12583-023-1917-y

Paleoclimatic Controls on Clay Mineral Distribution in the Early Cretaceous (Barremian): The Wessex Basin, Southeast England

doi: 10.1007/s12583-023-1917-y
More Information
  • Corresponding author: Oladapo O. Akinlotan, Oladapo.Akinlotan@aru.ac.uk
  • Received Date: 01 Feb 2023
  • Accepted Date: 26 Jul 2023
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • This study describes the clay mineralogy of the Lower Cretaceous (Barremian) rocks of the Wessex Basin for paleoenvironmental interpretations. Seventy-four samples were subjected to optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), and quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN®) techniques. The results revealed an illite-dominated sedimentation in most sections of the basin, with kaolinite, chlorite, smectite and glauconite occurring in subordinate quantities. Inferred paleoclimatic conditions from the clay mineral trends indicates a warm and dry climate, with seasonal precipitation. Kaolinite to illite ratios indicate that more arid climate conditions were prevalent but brief periods of warm and humid conditions were also present. A strong positive correlation between chlorite and tourmaline indicates that excess chlorite may have been contributed from tourmaline-chlorite-schists in a tourmaline-dominated provenance. SEM confirms that most of the clay minerals are detrital in origin but authigenic kaolinite is also present as vermiform and mica-replacive kaolinite which formed during early diagenetic modification from flushing meteoric waters in warm humid climates. This study is significant because it demonstrates the importance of multi-proxy methods for understanding clay minerals within sedimentary basins for interpreting the paleoclimatic conditions of depositional systems.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1917-y.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Adams, A., Guilford, C., MacKenzie, W., 1984. Atlas of Sedimentary Rocks under the Microscope. Longman Group UK Ltd., Essex, United Kingdom
    Akinlotan, O. O., 2015. The Sedimentology of the Ashdown Formation and the Wadhurst Clay Formation, Southeast England: [Dissertation]. School of Environment and Technology, University of Brighton, Brighton. 258
    Akinlotan, O. O., 2016. Porosity and Permeability of the English (Lower Cretaceous) Sandstones. Proceedings of the Geologists' Association, 127(6): 681–690. https://doi.org/10.1016/j.pgeola.2016.10.006
    Akinlotan, O. O., 2017a. Geochemical Analysis for Palaeoenvironmental Interpretations—A Case Study of the English Wealden (Lower Cretaceous, South-East England). Geological Quarterly, 61(2): 227–238. https://doi.org/10.7306/gq.1328
    Akinlotan, O. O., 2017b. Mineralogy and Palaeoenvironments: The Weald Basin (Early Cretaceous), Southeast England. The Depositional Record, 3(2): 187–200. https://doi.org/10.1002/dep2.32
    Akinlotan, O. O., 2018. Multi-Proxy Approach to Palaeoenvironmental Modelling: The English Lower Cretaceous Weald Basin. Geological Journal, 53(1): 316–335. https://doi.org/10.1002/gj.2893
    Akinlotan, O. O., 2019. Sideritic Ironstones as Indicators of Depositional Environments in the Weald Basin (Early Cretaceous) SE England. Geological Magazine, 156(3): 533–546. https://doi.org/10.1017/s0016756817001017
    Akinlotan, O. O., Adepehin, E. J., Rogers, G. H., et al., 2021a. Provenance, Palaeoclimate and Palaeoenvironments of a Non-Marine Lower Cretaceous Facies: Petrographic Evidence from the Wealden Succession. Sedimentary Geology, 415: 105848. https://doi.org/10.1016/j.sedgeo.2020.105848
    Akinlotan, O. O., Rogers, G. H., Okunuwadje, S. E., 2021b. Provenance Evolution of the English Lower Cretaceous Weald Basin and Implications for Palaeogeography of the Northwest European Massifs: Constraints from Heavy Mineral Assemblages. Marine and Petroleum Geology, 127: 104953. https://doi.org/10.1016/j.marpetgeo.2021.104953
    Akinlotan, O. O., Hatter, S. J., 2022. Depositional Controls on Diagenetic Evolution of the Lower Cretaceous Wealden Sandstones (Wessex Basin, Southeast England). Marine and Petroleum Geology, 146: 105948. https://doi.org/10.1016/j.marpetgeo.2022.105948
    Akinlotan, O. O., Moghalu, O. A., Hatter, S. J., et al., 2022. Clay Mineral Formation and Transformation in Non-Marine Environments and Implications for Early Cretaceous Palaeoclimatic Evolution: The Weald Basin, Southeast England. Journal of Palaeogeography, 11(3): 387–409. https://doi.org/10.1016/j.jop.2022.04.002
    Akinlotan, O. O., Rogers, G. H., 2021. Heavy Mineral Constraints on the Provenance Evolution of the English Lower Cretaceous (Wessex Basin). Marine and Petroleum Geology, 127: 104952. https://doi.org/10.1016/j.marpetgeo.2021.104952
    Alizai, A., Hillier, S., Clift, P. D., et al., 2012. Clay Mineral Variations in Holocene Terrestrial Sediments from the Indus Basin. Quaternary Research, 77(3): 368–381. https://doi.org/10.1016/j.yqres.2012.01.008
    Allen, P., 1972. Wealden Detrital Tourmaline: Implications for Northwestern Europe. Journal of the Geological Society, 128(3): 273–294. https://doi.org/10.1144/gsjgs.128.3.0273
    Allen, P., 1975. Wealden of the Weald: A New Model. Proceedings of the Geologists' Association, 86(4): 389–437. https://doi.org/10.1016/S0016-7878(75)80057-5
    Allen, P., 1981. Pursuit of Wealden Models. Journal of the Geological Society, 138(4): 375–405. https://doi.org/10.1144/gsjgs.138.4.0375
    Allen, P., 1989. Wealden Research—Ways Ahead. Proceedings of the Geologists' Association, 100(4): 529–564. https://doi.org/10.1016/s0016-7878(89)80026-4
    Allen, P., 1991. Provenance Research: Torridonian and Wealden. Geological Society, London, Special Publications, 57(1): 13–21. https://doi.org/10.1144/gsl.sp.1991.057.01.02
    Allen, P., Alvin, K. L., Andrews, J. E., et al., 1998. Purbeck-Wealden (Early Cretaceous) Climates. Proceedings of the Geologists' Association, 109(3): 197–236. https://doi.org/10.1016/s0016-7878(98)80066-7
    Allen, P., Wimbledon, W. A., 1991. Correlation of NW European Purbeck-Wealden (Nonmarine Lower Cretaceous) as Seen from the English Type-Areas. Cretaceous Research, 12(5): 511–526. https://doi.org/10.1016/0195-6671(91)90005-w
    Bougeault, C., Pellenard, P., Deconinck, J. F., et al., 2017. Climatic and Palaeoceanographic Changes during the Pliensbachian (Early Jurassic) Inferred from Clay Mineralogy and Stable Isotope (C-O) Geochemistry (NW Europe). Global and Planetary Change, 149: 139–152. https://doi.org/10.1016/j.gloplacha.2017.01.005
    British Geological Survey, 2014. Isle of Wight (B & S) Special Sheet E330, 331. 344–345
    Chadwick, R. A., 1986. Extension Tectonics in the Wessex Basin, Southern England. Journal of the Geological Society, 143(3): 465–488. https://doi.org/10.1144/gsjgs.143.3.0465
    Chamley, H., 1989. Clay Formation through Weathering. Clay Sedimen-tology. Springer, Berlin, Heidelberg. 21–50. https://doi.org/10.1007/978-3-642-85916-8_2
    Chen, S., Wang, H., Wei, J., et al., 2014. Sedimentation of the Lower Cretaceous Xiagou Formation and Its Response to Regional Tectonics in the Qingxi Sag, Jiuquan Basin, NW China. Cretaceous Research, 47: 72–86. https://doi.org/10.1016/j.cretres.2013.11.006
    Daley, B., Stewart, D. J., 1979. Week-End Field Meeting: The Wealden Group in the Isle of Wight 17–19 June 1977. Proceedings of the Geologists' Association, 90(1/2): 51–54. https://doi.org/10.1016/s0016-7878(79)80031-0
    De Segonzac, G. D., 1970. The Transformation of Clay Minerals during Diagenesis and Low-Grade Metamorphism: A Review. Sedimentology, 15(3/4): 281–346. https://doi.org/10.1111/j.1365-3091.1970.tb02190.x
    Dudek, T., 2012. Clay Minerals as Palaeoenvironmental Indicators in the Bathonian (Middle Jurassic) Ore-Bearing Clays from Gnaszyn, Kraków-Silesia Homocline. Acta Geologica Polonica, 62(3): 297–305. https://doi.org/10.2478/v10263-012-0016-9
    Eberl, D. D., 1984. Clay Mineral Formation and Transformation in Rocks and Soils. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 311(1517): 241–257. https://doi.org/10.1098/rsta.1984.0026
    Emery, D., Myers, K. J., Young, R., 1990. Ancient Subaerial Exposure and Freshwater Leaching in Sandstones. Geology, 18(12): 1178–1181. https://doi.org/10.1130/0091-7613(1990)018<1178:aseafl>2.3.co;2 doi: 10.1130/0091-7613(1990)018<1178:aseafl>2.3.co;2
    Fandrich, R., Gu, Y., Burrows, D., et al., 2007. Modern SEM-Based Mineral Liberation Analysis. International Journal of Mineral Processing, 84(1/2/3/4): 310–320. https://doi.org/10.1016/j.minpro.2006.07.018
    Fang, Q., Hong, H. L., Zhao, L. L., et al., 2017. Tectonic Uplift-Influenced Monsoonal Changes Promoted Hominin Occupation of the Luonan Basin: Insights from a Loess-Paleosol Sequence, Eastern Qinling Mountains, Central China. Quaternary Science Reviews, 169: 312–329. https://doi.org/10.1016/j.quascirev.2017.05.025
    Ferreira, N. N., Ferreira, E. P., Ramos, R. R. C., et al., 2016. Palynological and Sedimentary Analysis of the Igarapé Ipiranga and Querru 1 Outcrops of the Itapecuru Formation (Lower Cretaceous, Parnaíba Basin), Brazil. Journal of South American Earth Sciences, 66: 15–31. https://doi.org/10.1016/j.jsames.2015.12.005
    Föllmi, K. B., 2012. Early Cretaceous Life, Climate and Anoxia. Cretaceous Research, 35: 230–257. https://doi.org/10.1016/j.cretres.2011.12.005
    Garrido, A. C., Salgado, L., 2015. Taphonomy and Depositional Environment of a Lower Cretaceous Monospecific Dinosaur Bone Assemblage (Puesto Quiroga Member, Lohan Cura Formation), Neuquén Province, Argentina. Journal of South American Earth Sciences, 61: 53–61. https://doi.org/10.1016/j.jsames.2015.03.008
    Grew, E. S., Sandiford, M., 1984. A Staurolite-Talc Assemblage in Tourmaline-Phlogopite-Chlorite Schist from Northern Victoria Land, Antarctica, and Its Petrogenetic Significance. Contributions to Mineralogy and Petrology, 87(4): 337–350. https://doi.org/10.1007/bf00381290
    Hallam, A., 1984. Continental Humid and Arid Zones during the Jurassic and Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 47(3/4): 195–223. https://doi.org/10.1016/0031-0182(84)90094-4
    Hallam, A., Grose, J. A., Ruffell, A. H., 1991. Palaeoclimatic Significance of Changes in Clay Mineralogy across the Jurassic–Cretaceous Boundary in England and France. Palaeogeography, Palaeoclimatology, Palaeoecology, 81(3/4): 173–187. https://doi.org/10.1016/0031-0182(91)90146-i
    Harraz, H. Z., El-Sharkawy, M. F., 2001. Origin of Tourmaline in the Metamorphosed Sikait Pelitic Belt, South Eastern Desert, Egypt. Journal of African Earth Sciences, 33(2): 391–416. https://doi.org/10.1016/s0899-5362(01)80071-3
    Hein, J. R., Dowling, J. S., Schuetze, A., et al., 2003. Clay-Mineral Suites, Sources, and Inferred Dispersal Routes: Southern California Continental Shelf. Marine Environmental Research, 56(1/2): 79–102. https://doi.org/10.1016/s0141-1136(02)00326-4
    Hesselbo, S. P., Deconinck, J. F., Huggett, J. M., et al., 2009. Late Jurassic Palaeoclimatic Change from Clay Mineralogy and Gamma-Ray Spectrometry of the Kimmeridge Clay, Dorset, UK. Journal of the Geological Society, 166(6): 1123–1133. https://doi.org/10.1144/0016-76492009-070
    Hopson, P. M., Wilkinson, I., Woods, M., 2008. A Stratigraphical Framework for the Lower Cretaceous of England. British Geological Survey. 77
    Horne, D. J., 1995. A Revised Ostracod Biostratigraphy for the Purbeck-Wealden of England. Cretaceous Research, 16(6): 639–663. https://doi.org/10.1006/cres.1995.1040
    Jeans, C. V., 2006. Clay Mineralogy of the Cretaceous Strata of the British Isles. Clay Minerals, 41(1): 47–150. https://doi.org/10.1180/0009855064110196
    Jeans, C. V., Mitchell, J. G., Fisher, M. J., et al., 2001. Age, Origin and Climatic Signal of English Mesozoic Clays Based on K/Ar Signatures. Clay Minerals, 36(4): 515–539. https://doi.org/10.1180/0009855013640006
    Ju, W., Sun, W. F., 2016. Tectonic Fractures in the Lower Cretaceous Xiagou Formation of Qingxi Oilfield, Jiuxi Basin, NW China. Part Two: Numerical Simulation of Tectonic Stress Field and Prediction of Tectonic Fractures. Journal of Petroleum Science and Engineering, 146: 626–636. https://doi.org/10.1016/j.petrol.2016.05.002
    Kalm, V. E., Rutter, N. W., Rokosh, C. D., 1996. Clay Minerals and Their Paleoenvironmental Interpretation in the Baoji Loess Section, Southern Loess Plateau, China. CATENA, 27(1): 49–61. https://doi.org/10.1016/0341-8162(96)00008-2
    Karner, G. D., Lake, S. D., Dewey, J. F., 1987. The Thermal and Mechanical Development of the Wessex Basin, Southern England. Geological Society, London, Special Publications, 28(1): 517–536. https://doi.org/10.1144/gsl.sp.1987.028.01.34
    Kemp, S., Wagner, D., Ingham, M., 2012. The Mineralogy, Surface Area and Geochemistry of Samples from the Wealden Group of Southern England. British Geological Survey Internal Report, IR/10/079. 34
    Kim, J., Dong, H. L., Seabaugh, J., et al., 2004. Role of Microbes in the Smectite-to-Illite Reaction. Science, 303(5659): 830–832. https://doi.org/10.1126/science.1093245
    Knappett, C., Pirrie, D., Power, M. R., et al., 2011. Mineralogical Analysis and Provenancing of Ancient Ceramics Using Automated SEM-EDS Analysis (QEMSCAN®): A Pilot Study on LB I Pottery from Akrotiri, Thera. Journal of Archaeological Science, 38(2): 219–232. https://doi.org/10.1016/j.jas.2010.08.022
    Lake, S. D., Karner, G. D., 1987. The Structure and Evolution of the Wessex Basin, Southern England: An Example of Inversion Tectonics. Tectonophysics, 137(1): 347, 358–356, 378. https://doi.org/10.1016/0040-1951(87)90328-3
    Lanson, B., Beaufort, D., Berger, G., et al., 2002. Authigenic Kaolin and Illitic Minerals during Burial Diagenesis of Sandstones: A Review. Clay Minerals, 37(1): 1–22. https://doi.org/10.1180/0009855023710014
    Milleson, M., Myers, T. S., Tabor, N. J., 2016. Permo-Carboniferous Paleoclimate of the Congo Basin: Evidence from Lithostratigraphy, Clay Mineralogy, and Stable Isotope Geochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 226–240. https://doi.org/10.1016/j.palaeo.2015.09.039
    Moore, D. M., Reynolds, R. C. Jr., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford
    Nie, J. S., Peng, W. B., 2014. Automated SEM-EDS Heavy Mineral Analysis Reveals no Provenance Shift between Glacial Loess and Interglacial Paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71–75. https://doi.org/10.1016/j.aeolia.2014.03.005
    Nie, J. S., Peng, W. B., Pfaff, K., et al., 2013. Controlling Factors on Heavy Mineral Assemblages in Chinese Loess and Red Clay. Palaeogeography, Palaeoclimatology, Palaeoecology, 381/382: 110–118. https://doi.org/10.1016/j.palaeo.2013.04.020
    Penn, S. J., Sweetman, S. C., Martill, D. M., et al., 2020. The Wessex Formation (Wealden Group, Lower Cretaceous) of Swanage Bay, Southern England. Proceedings of the Geologistsʼ Association, 131: 679–698 doi: 10.1016/j.pgeola.2020.07.005
    Pirrie, D., Butcher, A. R., Power, M. R., et al., 2004. Rapid Quantitative Mineral and Phase Analysis Using Automated Scanning Electron Micro-scopy (QemSCAN); Potential Applications in Forensic Geoscience. Geological Society of London Special Publications, 232(1): 123–136. https://doi.org/10.1144/gsl.sp.2004.232.01.12
    Pirrie, D., Power, M. R., Rollinson, G. K., et al., 2009. Automated SEM-EDS (QEMSCAN®) Mineral Analysis in Forensic Soil Investigations: Testing Instrumental Reproducibility. Criminal and Environmental Soil Forensics. Springer, Dordrecht. 411–430. https://doi.org/10.1007/978-1-4020-9204-6_26
    Proust, J. N., Deconinck, J. F., Geyssant, J. R., et al., 1995. Sequence Analytical Approach to the Upper Kimmeridgian-Lower Tithonian Storm-Dominated Ramp Deposits of the Boulonnais (Northern France). A Landward Time-Equivalent to Offshore Marine Source Rocks. Geologische Rundschau, 84(2): 255–271. https://doi.org/10.1007/bf00260439
    Radley, J. D., 1994a. A Foraminiferal Datum in the Vectis Formation (Wealden Group, Lower Cretaceous) of the Isle of Wight, Southern England. Proceedings of the Geologists' Association, 105(2): 91–97. https://doi.org/10.1016/s0016-7878(08)80107-1
    Radley, J. D., 1994b. Stratigraphy, Palaeontology and Palaeoenvironment of the Wessex Formation (Wealden Group, Lower Cretaceous) at Yaverland, Isle of Wight, Southern England. Proceedings of the Geologists' Association, 105(3): 199–208. https://doi.org/10.1016/s0016-7878(08)80119-8
    Radley, J. D., Allen, P., 2012a. The Southern English Wealden (Non-Marine Lower Cretaceous): Overview of Palaeoenvironments and Palaeoecology. Proceedings of the Geologists' Association, 123(2): 382–385. https://doi.org/10.1016/j.pgeola.2011.12.005
    Radley, J. D., Allen, P., 2012b. The Wealden (Non-Marine Lower Cretaceous) of the Weald Sub-Basin, Southern England. Proceedings of the Geologists' Association, 123(2): 245–318. https://doi.org/10.1016/j.pgeola.2012.01.003
    Radley, J. D., Barker, M. J., 1998. Palaeoenvironmental Analysis of Shell Beds in the Wealden Group (Lower Cretaceous) of the Isle of Wight, Southern England: An Initial Account. Cretaceous Research, 19(3/4): 489–504. https://doi.org/10.1006/cres.1997.0106
    Rawson, P. F., 1992. The Cretaceous. In: Duff, P. M. D., Smith, A. J., eds., Geology of England and Wales. The Geological Society, London. 355–388
    Rego, E. S., Jovane, L., Hein, J. R., et al., 2018. Mineralogical Evidence for Warm and Dry Climatic Conditions in the Neo-Tethys (Eastern Turkey) during the Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 501: 45–57. https://doi.org/10.1016/j.palaeo.2018.04.007
    Reynolds, R. C., 1989. Principles of Powder Diffraction. Reviews in Mineralogy and Geochemistry, 20: 1–17
    Romero-Guerrero, L. M., Moreno-Tovar, R., Arenas-Flores, A., et al., 2018. Chemical, Mineralogical, and Refractory Characterization of Kaolin in the Regions of Huayacocotla-Alumbres, Mexico. Advances in Materials Science and Engineering. https://doi.org/10.1155/2018/8156812
    Ruffell, A., 1991. Sea-Level Events during the Early Cretaceous in Western Europe. Cretaceous Research, 12(5): 527–551. https://doi.org/10.1016/0195-6671(91)90006-x
    Ruffell, A., McKinley, J. M., Worden, R. H., 2002. Comparison of Clay Mineral Stratigraphy to other Proxy Palaeoclimate Indicators in the Mesozoic of NW Europe. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 360(1793): 675–693. https://doi.org/10.1098/rsta.2001.0961
    Ruffell, A. H., Batten, D. J., 1990. The Barremian-Aptian Arid Phase in Western Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 80(3/4): 197–212. https://doi.org/10.1016/0031-0182(90)90132-q
    Simpson, I. R., Gravestock, M., Ham, D., et al., 1989. Notes and Cross-Sections Illustrating Inversion Tectonics in the Wessex Basin. Geological Society, London, Special Publications, 44(1): 123–129. https://doi.org/10.1144/gsl.sp.1989.044.01.08
    Singer, A., 1980. The Paleoclimatic Interpretation of Clay Minerals in Soils and Weathering Profiles. Earth-Science Reviews, 15(4): 303–326. https://doi.org/10.1016/0012-8252(80)90113-0
    Singer, A., 1984. The Paleoclimatic Interpretation of Clay Minerals in Sediments—A Review. Earth-Science Reviews, 21(4): 251–293. https://doi.org/10.1016/0012-8252(84)90055-2
    Sladen, C. P., 1980. The Clay Mineralogy of Pre-Aptian Cretaceous Sediments in NW Europe. University of Reading, United Kingdom. 365
    Sladen, C. P., 1983. Trends in Early Cretaceous Clay Mineralogy in NW Europe. Zitteliana 10, 57
    Sladen, C. P., Batten, D. J., 1984. Source-Area Environments of Late Jurassic and Early Cretaceous Sediments in Southeast England. Proceedings of the Geologists' Association, 95(2): 149–163. https://doi.org/10.1016/s0016-7878(84)80002-4
    Song, Y. G., Wang, Q. S., An, Z. S., et al., 2018. Mid-Miocene Climatic Optimum: Clay Mineral Evidence from the Red Clay Succession, Longzhong Basin, Northern China. Palaeogeography, Palaeoclima-tology, Palaeoecology, 512: 46–55. https://doi.org/10.1016/j.palaeo.2017.10.001
    Stewart, D. J., 1978. The sedimentology of the Wealden Group of the Isle of Wight, Department of Geology. Portsmouth Polytechnic, United Kingdom. 347
    Stewart, D. J., 1981a. A Field Guide to the Wealden Group of the Hastings Area and the Isle of Wight. In: Elliott, T., ed., Field Guides to Modern and Ancient Fluvial Systems in Britain and Spain. International Fluvial Conference, University of Keele. 3.1–3.32
    Stewart, D. J., 1981b. A Meander-Belt Sandstone of the Lower Cretaceous of Southern England. Sedimentology, 28(1): 1–20. https://doi.org/10.1111/j.1365-3091.1981.tb01658.x
    Stewart, D. J., 1983. Possible Suspended‐Load Channel Deposits from the Wealden Group (Lower Cretaceous) of Southern England. In: Collinson, J. D., Lewin, J., eds., Modern and Ancient Fluvial Systems. International Association of Sedimentologists Special Publications, Blackwell Publishing Ltd., Oxford. 369–384
    Stewart, D. J., Ruffell, A., Wach, G., et al., 1991. Lagoonal Sedimentation and Fluctuating Salinities in the Vectis Formation (Wealden Group, Lower Cretaceous) of the Isle of Wight, Southern England. Sedimentary Geology, 72(1/2): 117–134. https://doi.org/10.1016/0037-0738(91)90126-x
    Stoneley, R., 1982. The Structural Development of the Wessex Basin. Journal of the Geological Society, 139(4): 543–554. https://doi.org/10.1144/gsjgs.139.4.0543
    Taylor, K. G. G., 1996. Pedogenic Clay-Mineral Transformation in the Weald Basin: Implications for Early Cretaceous Hinterland Climate Reconstructions. Cretaceous Research, 17(1): 103–108. https://doi.org/10.1006/cres.1996.0008
    Thiry, M., 2000. Palaeoclimatic Interpretation of Clay Minerals in Marine Deposits: An Outlook from the Continental Origin. Earth Science Reviews, 49(1): 201–221. https://doi.org/10.1016/s0012-8252(99)00054-9
    Trumbull, R. B., Krienitz, M. S., Grundmann, G., et al., 2009. Tourmaline Geochemistry and δ11B Variations as a Guide to Fluid-Rock Interaction in the Habachtal Emerald Deposit, Tauern Window, Austria. Contributions to Mineralogy and Petrology, 157(3): 411–427. https://doi.org/10.1007/s00410-008-0342-9
    Tucker, M. E., 2001. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Blackwell Science, Oxford
    Ulmer-Scholle, D. S., Scholle, P. A., Schieber, J., et al., 2014. A Color Guide to the Petrography of Sandstones, Siltstones, Shales and Associated Rocks. American Association of Petroleum Geologists. https://doi.org/10.1306/m1091304
    Watson, J., Alvin, K. L., 1996. An English Wealden Floral List, with Comments on Possible Environmental Indicators. Cretaceous Research, 17(1): 5–26 doi: 10.1006/cres.1996.0002
    Worden, R. H., Morad, S., 2003. Clay Minerals in Sandstones: Controls on Formation, Distribution and Evolution. In: Worden, R. H., Morad, S., eds., Clay Minerals in Sandstones. International Association of Sedimentologists Special Publication. 1–42
    Zhang, X. J., Pease, V., Omma, J., et al., 2015. Provenance of Late Carboniferous to Jurassic Sandstones for Southern Taimyr, Arctic Russia: A Comparison of Heavy Mineral Analysis by Optical and QEMSCAN Methods. Sedimentary Geology, 329: 166–176. https://doi.org/10.1016/j.sedgeo.2015.09.008
    Zuo, F. F., Heimhofer, U., Huck, S., et al., 2019. Climatic Fluctuations and Seasonality during the Kimmeridgian (Late Jurassic): Stable Isotope and Clay Mineralogical Data from the Lower Saxony Basin, Northern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 517: 1–15. https://doi.org/10.1016/j.palaeo.2018.12.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(36) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return