Citation: | Tian Dong, Jian Gao, Shuangjian Li, Chuan Wang. Quartz Cementation in the Lower Paleozoic Shales, Middle Yangtze Region, South China: Implications for Shale Reservoir Properties. Journal of Earth Science, 2024, 35(6): 1918-1933. doi: 10.1007/s12583-023-1945-7 |
As one of the most important constitutes of shales/mudstones, quartz has received increasing interests in the last decades, because productive shale gas successions are generally rich in quartz content. This study critically documents quartz types, silica source for quartz cementation and effect of quartz cementation on reservoir quality in the Lower Paleozoic shales, Middle Yangtze region, South China, including the Lower Cambrian Niutitang Formation and the Upper Ordovician–Lower Silurian Wufeng-Longmaxi formations. Our results suggest that high-resolution scanning electron microscopy combined with cathodoluminescene techniques are necessary for identifying quartz types in shales. Integrations of high-resolution imaging technique and detailed geochemical analysis are able to document silica source for quartz cementation and silica diagenetic processes. Six types of quartz can be identified in the Paleozoic shales, primarily including detrital quartz silt, siliceous skeletons, quartz overgrowth, microcrystalline quartz (matrix-dispersed microquartz and aggregated microquartz), silica nanospheres and fracture-filling quartz veins. Dissolution of siliceous skeletons provides the principal silica sources for authigenic quartz formation in the Paleozoic shales. Authigenic quartz has dual effects on porosity development. Quartz overgrowth definitely occupies interparticle pores and possibly squeeze spaces, whereas aggregated microquartz can form rigid framework that is favorable for generating and preserving intercrystalline pores and organic pores.
Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D., et al., 1994. Silica Activity and the Smectite-Illite Reaction. Geology, 22(6): 539. https://doi.org/10.1130/0091-7613(1994)0220539:saatsi>2.3.co;2 doi: 10.1130/0091-7613(1994)0220539:saatsi>2.3.co;2 |
Abu-Mahfouz, I. S., Cartwright, J., Idiz, E., et al., 2020. Silica Diagenesis Promotes Early Primary Hydrocarbon Migration. Geology, 48(5): 483–487. https://doi.org/10.1130/g47023.1 |
Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1/2): 125–148. https://doi.org/10.1016/0037-0738(86)90075-8 |
Aplin, A. C., MacQuaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031–2059. https://doi.org/10.1306/03281110162 |
Awwiller, D. N., 1993. Illite/Smectite Formation and Potassium Mass Transfer during Burial Diagenesis of Mudrocks: A Study from the Texas Gulf Coast Paleocene–Eocene. SEPM Journal of Sedimentary Research, 63: 501–512. https://doi.org/10.1306/d4267b3b-2b26-11d7-8648000102c1865d |
Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373–380. https://doi.org/10.1021/ja01145a126 |
Baruch, E. T., Kennedy, M. J., Löhr, S. C., et al., 2015. Feldspar Dissolution-Enhanced Porosity in Paleoproterozoic Shale Reservoir Facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bulletin, 99(9): 1745–1770. https://doi.org/10.1306/04061514181 |
Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3–11. https://doi.org/10.1016/j.coal.2012.04.010 |
Bjørlykke, K., 2011. Open-System Chemical Behaviour of Wilcox Group Mudstones. How is Large Scale Mass Transfer at Great Burial Depth in Sedimentary Basins Possible? A Discussion. Marine and Petroleum Geology, 28(7): 1381–1382. https://doi.org/10.1016/j.marpetgeo. 2011.01.009 doi: 10.1016/j.marpetgeo.2011.01.009 |
Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193–2214. https://doi.org/10.1306/04301211139 |
Boles, J. R., Franks, S. G., 1979. Clay Diagenesis in Wilcox Sandstones of Southwest Texas: Implications of Smectite Diagenesis on Sandstone Cementation. SEPM Journal of Sedimentary Research, 49: 55–70. https://doi.org/10.1306/212f76bc-2b24-11d7-8648000102c1865d |
Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523–533. https://doi.org/10.1306/06190606018 |
Day-Stirrat, R. J., Milliken, K. L., Dutton, S. P., et al., 2010. Open-System Chemical Behavior in Deep Wilcox Group Mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 27(9): 1804–1818. https://doi.org/10.1016/j.marpetgeo.2010.08.006 |
Dong, T., Harris, N. B., Ayranci, K., et al., 2017. The Impact of Rock Composition on Geomechanical Properties of a Shale Formation: Middle and Upper Devonian Horn River Group Shale, Northeast British Columbia, Canada. AAPG Bulletin, 101(2): 177–204. https://doi.org/10.1306/07251615199 |
Dong, T., He, S., Chen, M. F., et al., 2019. Quartz Types and Origins in the Paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for Porosity Preservation in Shale Reservoirs. Marine and Petroleum Geology, 106: 62–73. https://doi.org/10.1016/j.marpetgeo.2019.05.002 |
Dong, T., He, Q., He, S., et al., 2021. Quartz Types, Origins and Organic Matter-Hosted Pore Systems in the Lower Cambrian Niutitang Formation, Middle Yangtze Platform, China. Marine and Petroleum Geology, 123: 104739. https://doi.org/10.1016/j.marpetgeo.2020.104739 |
Dong, T., Wang, C., Liang, X., et al., 2022. Paleodepositional Conditions and Organic Matter Accumulation Mechanisms in the Upper Ordovician–Lower Silurian Wufeng-Longmaxi Shales, Middle Yangtze Region, South China. Marine and Petroleum Geology, 143: 105823. https://doi.org/10.1016/j.marpetgeo.2022.105823 |
Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356: 15–25. https://doi.org/10.1016/j.sedgeo.2017.05.001 |
Dowey, P. J., Taylor, K. G., 2020. Diagenetic Mineral Development within the Upper Jurassic Haynesville-Bossier Shale, USA. Sedimentology, 67(1): 47–77. https://doi.org/10.1111/sed.12624 |
Drake, W. R., Longman, M. W., Kostelnik, J., 2017. The Role of Silica Nanospheres in Porosity Preservation in the Upper Devonian Woodford Shale on the Central Basin Platform, West Texas. RMAG/DWLS Fall Symposium: Geology and Petrophysics of Unconventional Mudrocks. Golden, Colorado. 10 |
Fishman, N. S., Hackley, P. C., Lowers, H. A., et al., 2012. The Nature of Porosity in Organic-Rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, Offshore United Kingdom. International Journal of Coal Geology, 103: 32–50. https://doi.org/10.1016/j.coal.2012.07.012 |
Fu, H. J., Yan, D. T., Yao, C. P., et al., 2022. Pore Structure and Multi-Scale Fractal Characteristics of Adsorbed Pores in Marine Shale: A Case Study of the Lower Silurian Longmaxi Shale in the Sichuan Basin, China. Journal of Earth Science, 33(5): 1278–1290. https://doi.org/10.1007/s12583-021-1602-0 |
German, C. R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823–833. https://doi.org/10.1029/pa005i005p00823 |
Gluyas, J., Coleman, M., 1992. Material Flux and Porosity Changes during Sediment Diagenesis. Nature, 356: 52–54. https://doi.org/10.1038/356052a0 |
Guan, Q. Z., Dong, D. Z., Zhang, H. L., et al., 2021. Types of Biogenic Quartz and Its Coupling Storage Mechanism in Organic-Rich Shales: A Case Study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China. Petroleum Exploration and Development, 48(4): 700–709 (in Chinese with English Abstract) |
He, M. C., Ding, Z. J., Wang, X., et al., 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280–3295. https://doi.org/10.3799/dqkx.2022.023 (in Chinese with English Abstract) |
Hein, J. R., Scholl, D. W., Barron, J. A., et al., 1978. Diagenesis of Late Cenozoic Diatomaceous Deposits and Formation of the Bottom Simulating Reflector in the Southern Bering Sea. Sedimentology, 25(2): 155–181. https://doi.org/10.1111/j.1365-3091.1978.tb00307.x |
Houseknecht, D. W., 1988. Intergranular Pressure Solution in Four Quartzose Sandstones. SEPM Journal of Sedimentary Research, 58: 228–246. https://doi.org/10.1306/212f8d64-2b24-11d7-8648000102c1865d |
Hower, J., Eslinger, E. V., Hower, M. E., et al., 1976. Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemical Evidence. Geological Society of America Bulletin, 87(5): 725. https://doi.org/10.1130/0016-7606(1976)87<725:mobmoa>2.0.co;2 doi: 10.1130/0016-7606(1976)87<725:mobmoa>2.0.co;2 |
Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter-Hosted Pore System in the Wufeng-Longmaxi (O3W-S11) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173: 40–50. https://doi.org/10.1016/j.coal.2017.02.004 |
Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. https://doi.org/10.1306/12190606068 |
Keene, J. B., Kastner, M., 1974. Clays and Formation of Deep-Sea Chert. Nature, 249: 754–755. https://doi.org/10.1038/249754a0 |
Land, L. S., Mack, L. E., Milliken, K. L., et al., 1997. Burial Diagenesis of Argillaceous Sediment, South Texas Gulf of Mexico Sedimentary Basin: A Reexamination. Geological Society of America Bulletin, 109(1): 2–15. https://doi.org/10.1130/0016-7606(1997)109<0002:bdoass>2.3.co;2 doi: 10.1130/0016-7606(1997)109<0002:bdoass>2.3.co;2 |
Lei, Y. H., Luo, X. R., Wang, X., et al., 2015. Characteristics of Silty Laminae in Zhangjiatan Shale of Southeastern Ordos Basin, China: Implications for Shale Gas Formation. AAPG Bulletin, 99(4): 661–687. https://doi.org/10.1306/09301414059 |
Liu, B., Schieber, J., Mastalerz, M., et al., 2019. Organic Matter Content and Type Variation in the Sequence Stratigraphic Context of the Upper Devonian New Albany Shale, Illinois Basin. Sedimentary Geology, 383: 101–120. https://doi.org/10.1016/j.sedgeo.2019.02.004 |
Liu, R. B., Wei, Z. H., Jia, A. Q., et al., 2023. Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance. Earth Science, 48(4): 1496–1516. https://doi.org/10.3799/dqkx.2022.177 (in Chinese with English Abstract) |
Liu, Z. X., Xu, L. L., Wen, Y. R., et al., 2022. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Earth Science, 47(5): 1586–1603. https://doi.org/10.3799/dqkx.2021.214 (in Chinese with English Abstract) |
Longman, M. W., Drake, W. R., Milliken, K. L., et al., 2019. A Comparison of Silica Diagenesis in the Devonian Woodford Shale (Central Basin Platform, West Texas) and Cretaceous Mowry Shale (Powder River Basin, Wyoming). In: Camp, W., Millikn, K., Taylor, K., eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. AAPG Memoir, 121: 49–67. |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092 |
Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. https://doi.org/10.1306/08171111061 |
Lu, Y. B., Hao, F., Lu, Y. C., et al., 2020. Lithofacies and Depositional Mechanisms of the Ordovician–Silurian Wufeng-Longmaxi Organic-Rich Shales in the Upper Yangtze Area, Southern China. AAPG Bulletin, 103(1): 97–129. https://doi.org/10.1306/04301918099 |
Macleod, K. G., Irving, A. J., 1996. Correlation of Cerium Anomalies with Indicators of Paleoenvironment. SEPM Journal of Sedimentary Research, 66: 948–955. https://doi.org/10.1306/d426844b-2b26-11d7-8648000102c1865d |
MacQuaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587–603. https://doi.org/10.1306/08201311176 |
Marchand, A. M. E., MacAulay, C. I., Haszeldine, R. S., et al., 2002. Pore Water Evolution in Oilfield Sandstones: Constraints from Oxygen Isotope Microanalyses of Quartz Cement. Chemical Geology, 191(4): 285–304. https://doi.org/10.1016/s0009-2541(02)00137-7 |
McBride, E. F., 1989. Quartz Cement in Sandstones: A Review. Earth Science Reviews, 26(1/2/3): 69–112. https://doi.org/10.1016/0012-8252(89)90019-6 |
McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipin, B. R., Mckay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy and Geochemistry, 21: 169–200. |
Milliken, K. L., 1992. Chemical Behavior of Detrital Feldspars in Mudrocks versus Sandstones, Frio Formation (Oligocene), South Texas. SEPM Journal of Sedimentary Research, 62: 790–801. https://doi.org/10.1306/d42679dd-2b26-11d7-8648000102c1865d |
Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553–1578. https://doi.org/10.1306/12011111129 |
Milliken, K. L., Day-Stirrat, R. J., 2013. Cementation in Mudrocks: Brief Review with Examples from Cratonic Basin Mudrocks. In: Chatellier, J. Y., Jarvie, D. M., eds., Critical Assessment of Shale Resource Plays. AAPG Memoir, 103: 133–150. |
Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200. https://doi.org/10.1306/07231212048 |
Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273–288. https://doi.org/10.1016/j.sedgeo.2016.03.012 |
Milliken, K. L., Olson, T., 2017. Silica Diagenesis, Porosity Evolution, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Rocky Mountains, U. S. A. Journal of Sedimentary Research, 87(4): 366–387. https://doi.org/10.2110/jsr.2017.24 |
Niu, X., Yan, D. T., Zhuang, X. G., et al., 2018. Origin of Quartz in the Lower Cambrian Niutitang Formation in South Hubei Province, Upper Yangtze Platform. Marine and Petroleum Geology, 96: 271–287. https://doi.org/10.1016/j.marpetgeo.2018.06.005 |
Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones: The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6): 887–898. https://doi.org/10.1016/j.marpetgeo.2008. 01.021 doi: 10.1016/j.marpetgeo.2008.01.021 |
Peng, J. W., Milliken, K. L., Fu, Q. L., 2020. Quartz Types in the Upper Pennsylvanian Organic-Rich Cline Shale (Wolfcamp D), Midland Basin, Texas: Implications for Silica Diagenesis, Porosity Evolution and Rock Mechanical Properties. Sedimentology, 67(4): 2040–2064. https://doi.org/10.1111/sed.12694 |
Piane, C. D., MacRae, C., Wilson, N., et al., 2019. Silica Diagenesis in the Marcellus Shale: A Trace Element and Hyperspectral Cathodolumi-nescence Study. Sixth EAGE Shale Workshop. European Association of Geoscientists & Engineers, Apr. 28–May 1, 2019, Bordeaux, France. |
Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713–1744. https://doi.org/10.1306/03051514151 |
Potter, P. E., Maynard, J. B., Depetris, P. J., 2005. Mud and Mudstones: Introduction and Overview. Mud and Mudstones: Introduction and Overview. Springer-Verlag, Berlin, Heidelberg. 1–297 |
Qiu, Z., Liu, B., Dong, D. Z., et al., 2020. Silica Diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Reservoir Properties and Paleoproductivity. Marine and Petroleum Geology, 121: 104594. https://doi.org/10.1016/j.marpetgeo.2020.104594 |
Rickman, R., Mullen, M., Petre, E., et al., 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale All Days. SPE, Sept. 21–24, 2008, Denver, Colorado, USA. |
Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260(1/2): 1–19. https://doi.org/10.1016/j.chemgeo. 2008.10.027 doi: 10.1016/j.chemgeo.2008.10.027 |
Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1/2): 16–25. https://doi.org/10.1016/j.chemgeo.2008.08.006 |
Schieber, J., Krinsley, D., Riciputi, L., 2000. Diagenetic Origin of Quartz Silt in Mudstones and Implications for Silica Cycling. Nature, 406(6799): 981–985. https://doi.org/10.1038/35023143 |
Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1/2): 29–48. https://doi.org/10.1016/s0009-2541(00)00362-4 |
Steiner, M., Wallis, E., Erdtmann, B. D., et al., 2001. Submarine-Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils—Insights into a Lower Cambrian Facies and Bio-Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3/4): 165–191. https://doi.org/10.1016/s0031-0182(01)00208-5 |
Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea: Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8): 1752–1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005 |
Towe, K. M., 1962. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. SEPM Journal of Sedimentary Research, 32: 26–28. https://doi.org/10.1306/74d70c3b-2b21-11d7-8648000102c1865d |
van de Kamp, P. C., 2008. Smectite-Illite-Muscovite Transformations, Quartz Dissolution, and Silica Release in Shales. Clays and Clay Minerals, 56(1): 66–81. https://doi.org/10.1346/ccmn.2008.0560106 |
Walderhaug, O., Bjorkum, P. A., 2003. The Effect of Stylolite Spacing on Quartz Cementation in the Lower Jurassic Sto Formation, Southern Barents Sea. Journal of Sedimentary Research, 73(2): 146–156. https://doi.org/10.1306/090502730146 |
Wang, R. Y., Ding, W. L., Zhang, Y. Q., et al., 2016. Analysis of Developmental Characteristics and Dominant Factors of Fractures in Lower Cambrian Marine Shale Reservoirs: A Case Study of Niutitang Formation in Cen'gong Block, Southern China. Journal of Petroleum Science and Engineering, 138: 31–49. https://doi.org/10.1016/j.petrol.2015.12.004 |
Wang, R. Y., Hu, Z. Q., Long, S. X., et al., 2019. Differential Characteristics of the Upper Ordovician–Lower Silurian Wufeng-Longmaxi Shale Reservoir and Its Implications for Exploration and Development of Shale Gas in/around the Sichuan Basin. Acta Geologica Sinica—English Edition, 93(3): 520–535. https://doi.org/10.1111/1755-6724.13875 |
Wang, R. Y., Hu, Z. Q., Long, S. X., et al., 2022. Reservoir Characteristics and Evolution Mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Shale, Sichuan Basin. Oil and Gas Geology, 43: 353–364 (in Chinese with English Abstract) |
Wedepohl, K. H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays. Physics and Chemistry of the Earth, 8: 305–333. https://doi.org/10.1016/0079-1946(71)90020-6 |
Wei, S. L., He, S., Pan, Z. J., et al., 2020. Characteristics and Evolution of Pyrobitumen-Hosted Pores of the Overmature Lower Cambrian Shuijingtuo Shale in the South of Huangling Anticline, Yichang Area, China: Evidence from FE-SEM Petrography. Marine and Petroleum Geology, 116: 104303. https://doi.org/10.1016/j.marpetgeo.2020.104303 |
Wilkinson, M., Milliken, K. L., Haszeldine, R. S., 2001. Systematic Destruction of K-Feldspar in Deeply Buried Rift and Passive Margin Sandstones. Journal of the Geological Society, 158(4): 675–683. https://doi.org/10.1144/jgs.158.4.675 |
Williams, L. A., Parks, G. A., Crerar, D. A., 1985. Silica Diagenesis: Ⅰ. Solubility Controls. Journal of Sedimentary Petrology, 55: 301–311 |
Wright, A. M., Spain, D., Ratcliffe, T. K., 2010. Application of Inorganic Whole Rock Geochemistry to Shale Resource Plays. Canadian Unconventional Resources and International Petroleum Conference. Oct. 19–21, 2010, Calgary, Alberta, Canada. SPE-137946-MS. |
Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2): 65–108. https://doi.org/10.1016/0037-0738(87)90017-0 |
Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38: 21–38. https://doi.org/10.1016/j.jngse.2016.11.037 |
Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51–78. https://doi.org/10.1016/j.earscirev.2018.12.002 |