Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Tian Dong, Jian Gao, Shuangjian Li, Chuan Wang. Quartz Cementation in the Lower Paleozoic Shales, Middle Yangtze Region, South China: Implications for Shale Reservoir Properties. Journal of Earth Science, 2024, 35(6): 1918-1933. doi: 10.1007/s12583-023-1945-7
Citation: Tian Dong, Jian Gao, Shuangjian Li, Chuan Wang. Quartz Cementation in the Lower Paleozoic Shales, Middle Yangtze Region, South China: Implications for Shale Reservoir Properties. Journal of Earth Science, 2024, 35(6): 1918-1933. doi: 10.1007/s12583-023-1945-7

Quartz Cementation in the Lower Paleozoic Shales, Middle Yangtze Region, South China: Implications for Shale Reservoir Properties

doi: 10.1007/s12583-023-1945-7
More Information
  • Corresponding author: Tian Dong, dongtian@cug.edu.cn
  • Received Date: 22 Jun 2023
  • Accepted Date: 24 Sep 2023
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • As one of the most important constitutes of shales/mudstones, quartz has received increasing interests in the last decades, because productive shale gas successions are generally rich in quartz content. This study critically documents quartz types, silica source for quartz cementation and effect of quartz cementation on reservoir quality in the Lower Paleozoic shales, Middle Yangtze region, South China, including the Lower Cambrian Niutitang Formation and the Upper Ordovician–Lower Silurian Wufeng-Longmaxi formations. Our results suggest that high-resolution scanning electron microscopy combined with cathodoluminescene techniques are necessary for identifying quartz types in shales. Integrations of high-resolution imaging technique and detailed geochemical analysis are able to document silica source for quartz cementation and silica diagenetic processes. Six types of quartz can be identified in the Paleozoic shales, primarily including detrital quartz silt, siliceous skeletons, quartz overgrowth, microcrystalline quartz (matrix-dispersed microquartz and aggregated microquartz), silica nanospheres and fracture-filling quartz veins. Dissolution of siliceous skeletons provides the principal silica sources for authigenic quartz formation in the Paleozoic shales. Authigenic quartz has dual effects on porosity development. Quartz overgrowth definitely occupies interparticle pores and possibly squeeze spaces, whereas aggregated microquartz can form rigid framework that is favorable for generating and preserving intercrystalline pores and organic pores.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abercrombie, H. J., Hutcheon, I. E., Bloch, J. D., et al., 1994. Silica Activity and the Smectite-Illite Reaction. Geology, 22(6): 539. https://doi.org/10.1130/0091-7613(1994)0220539:saatsi>2.3.co;2 doi: 10.1130/0091-7613(1994)0220539:saatsi>2.3.co;2
    Abu-Mahfouz, I. S., Cartwright, J., Idiz, E., et al., 2020. Silica Diagenesis Promotes Early Primary Hydrocarbon Migration. Geology, 48(5): 483–487. https://doi.org/10.1130/g47023.1
    Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sedimentary Geology, 47(1/2): 125–148. https://doi.org/10.1016/0037-0738(86)90075-8
    Aplin, A. C., MacQuaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031–2059. https://doi.org/10.1306/03281110162
    Awwiller, D. N., 1993. Illite/Smectite Formation and Potassium Mass Transfer during Burial Diagenesis of Mudrocks: A Study from the Texas Gulf Coast Paleocene–Eocene. SEPM Journal of Sedimentary Research, 63: 501–512. https://doi.org/10.1306/d4267b3b-2b26-11d7-8648000102c1865d
    Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373–380. https://doi.org/10.1021/ja01145a126
    Baruch, E. T., Kennedy, M. J., Löhr, S. C., et al., 2015. Feldspar Dissolution-Enhanced Porosity in Paleoproterozoic Shale Reservoir Facies from the Barney Creek Formation (McArthur Basin, Australia). AAPG Bulletin, 99(9): 1745–1770. https://doi.org/10.1306/04061514181
    Bernard, S., Wirth, R., Schreiber, A., et al., 2012. Formation of Nanoporous Pyrobitumen Residues during Maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103: 3–11. https://doi.org/10.1016/j.coal.2012.04.010
    Bjørlykke, K., 2011. Open-System Chemical Behaviour of Wilcox Group Mudstones. How is Large Scale Mass Transfer at Great Burial Depth in Sedimentary Basins Possible? A Discussion. Marine and Petroleum Geology, 28(7): 1381–1382. https://doi.org/10.1016/j.marpetgeo. 2011.01.009 doi: 10.1016/j.marpetgeo.2011.01.009
    Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer during Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193–2214. https://doi.org/10.1306/04301211139
    Boles, J. R., Franks, S. G., 1979. Clay Diagenesis in Wilcox Sandstones of Southwest Texas: Implications of Smectite Diagenesis on Sandstone Cementation. SEPM Journal of Sedimentary Research, 49: 55–70. https://doi.org/10.1306/212f76bc-2b24-11d7-8648000102c1865d
    Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523–533. https://doi.org/10.1306/06190606018
    Day-Stirrat, R. J., Milliken, K. L., Dutton, S. P., et al., 2010. Open-System Chemical Behavior in Deep Wilcox Group Mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 27(9): 1804–1818. https://doi.org/10.1016/j.marpetgeo.2010.08.006
    Dong, T., Harris, N. B., Ayranci, K., et al., 2017. The Impact of Rock Composition on Geomechanical Properties of a Shale Formation: Middle and Upper Devonian Horn River Group Shale, Northeast British Columbia, Canada. AAPG Bulletin, 101(2): 177–204. https://doi.org/10.1306/07251615199
    Dong, T., He, S., Chen, M. F., et al., 2019. Quartz Types and Origins in the Paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for Porosity Preservation in Shale Reservoirs. Marine and Petroleum Geology, 106: 62–73. https://doi.org/10.1016/j.marpetgeo.2019.05.002
    Dong, T., He, Q., He, S., et al., 2021. Quartz Types, Origins and Organic Matter-Hosted Pore Systems in the Lower Cambrian Niutitang Formation, Middle Yangtze Platform, China. Marine and Petroleum Geology, 123: 104739. https://doi.org/10.1016/j.marpetgeo.2020.104739
    Dong, T., Wang, C., Liang, X., et al., 2022. Paleodepositional Conditions and Organic Matter Accumulation Mechanisms in the Upper Ordovician–Lower Silurian Wufeng-Longmaxi Shales, Middle Yangtze Region, South China. Marine and Petroleum Geology, 143: 105823. https://doi.org/10.1016/j.marpetgeo.2022.105823
    Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356: 15–25. https://doi.org/10.1016/j.sedgeo.2017.05.001
    Dowey, P. J., Taylor, K. G., 2020. Diagenetic Mineral Development within the Upper Jurassic Haynesville-Bossier Shale, USA. Sedimentology, 67(1): 47–77. https://doi.org/10.1111/sed.12624
    Drake, W. R., Longman, M. W., Kostelnik, J., 2017. The Role of Silica Nanospheres in Porosity Preservation in the Upper Devonian Woodford Shale on the Central Basin Platform, West Texas. RMAG/DWLS Fall Symposium: Geology and Petrophysics of Unconventional Mudrocks. Golden, Colorado. 10
    Fishman, N. S., Hackley, P. C., Lowers, H. A., et al., 2012. The Nature of Porosity in Organic-Rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, Offshore United Kingdom. International Journal of Coal Geology, 103: 32–50. https://doi.org/10.1016/j.coal.2012.07.012
    Fu, H. J., Yan, D. T., Yao, C. P., et al., 2022. Pore Structure and Multi-Scale Fractal Characteristics of Adsorbed Pores in Marine Shale: A Case Study of the Lower Silurian Longmaxi Shale in the Sichuan Basin, China. Journal of Earth Science, 33(5): 1278–1290. https://doi.org/10.1007/s12583-021-1602-0
    German, C. R., Elderfield, H., 1990. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 5(5): 823–833. https://doi.org/10.1029/pa005i005p00823
    Gluyas, J., Coleman, M., 1992. Material Flux and Porosity Changes during Sediment Diagenesis. Nature, 356: 52–54. https://doi.org/10.1038/356052a0
    Guan, Q. Z., Dong, D. Z., Zhang, H. L., et al., 2021. Types of Biogenic Quartz and Its Coupling Storage Mechanism in Organic-Rich Shales: A Case Study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China. Petroleum Exploration and Development, 48(4): 700–709 (in Chinese with English Abstract)
    He, M. C., Ding, Z. J., Wang, X., et al., 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280–3295. https://doi.org/10.3799/dqkx.2022.023 (in Chinese with English Abstract)
    Hein, J. R., Scholl, D. W., Barron, J. A., et al., 1978. Diagenesis of Late Cenozoic Diatomaceous Deposits and Formation of the Bottom Simulating Reflector in the Southern Bering Sea. Sedimentology, 25(2): 155–181. https://doi.org/10.1111/j.1365-3091.1978.tb00307.x
    Houseknecht, D. W., 1988. Intergranular Pressure Solution in Four Quartzose Sandstones. SEPM Journal of Sedimentary Research, 58: 228–246. https://doi.org/10.1306/212f8d64-2b24-11d7-8648000102c1865d
    Hower, J., Eslinger, E. V., Hower, M. E., et al., 1976. Mechanism of Burial Metamorphism of Argillaceous Sediment: 1. Mineralogical and Chemical Evidence. Geological Society of America Bulletin, 87(5): 725. https://doi.org/10.1130/0016-7606(1976)87<725:mobmoa>2.0.co;2 doi: 10.1130/0016-7606(1976)87<725:mobmoa>2.0.co;2
    Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter-Hosted Pore System in the Wufeng-Longmaxi (O3W-S11) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173: 40–50. https://doi.org/10.1016/j.coal.2017.02.004
    Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. https://doi.org/10.1306/12190606068
    Keene, J. B., Kastner, M., 1974. Clays and Formation of Deep-Sea Chert. Nature, 249: 754–755. https://doi.org/10.1038/249754a0
    Land, L. S., Mack, L. E., Milliken, K. L., et al., 1997. Burial Diagenesis of Argillaceous Sediment, South Texas Gulf of Mexico Sedimentary Basin: A Reexamination. Geological Society of America Bulletin, 109(1): 2–15. https://doi.org/10.1130/0016-7606(1997)109<0002:bdoass>2.3.co;2 doi: 10.1130/0016-7606(1997)109<0002:bdoass>2.3.co;2
    Lei, Y. H., Luo, X. R., Wang, X., et al., 2015. Characteristics of Silty Laminae in Zhangjiatan Shale of Southeastern Ordos Basin, China: Implications for Shale Gas Formation. AAPG Bulletin, 99(4): 661–687. https://doi.org/10.1306/09301414059
    Liu, B., Schieber, J., Mastalerz, M., et al., 2019. Organic Matter Content and Type Variation in the Sequence Stratigraphic Context of the Upper Devonian New Albany Shale, Illinois Basin. Sedimentary Geology, 383: 101–120. https://doi.org/10.1016/j.sedgeo.2019.02.004
    Liu, R. B., Wei, Z. H., Jia, A. Q., et al., 2023. Fractal Characteristics of Pore Structure in Deep Overpressured Organic-Rich Shale in Wufeng-Longmaxi Formation in Southeast Sichuan and Its Geological Significance. Earth Science, 48(4): 1496–1516. https://doi.org/10.3799/dqkx.2022.177 (in Chinese with English Abstract)
    Liu, Z. X., Xu, L. L., Wen, Y. R., et al., 2022. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Earth Science, 47(5): 1586–1603. https://doi.org/10.3799/dqkx.2021.214 (in Chinese with English Abstract)
    Longman, M. W., Drake, W. R., Milliken, K. L., et al., 2019. A Comparison of Silica Diagenesis in the Devonian Woodford Shale (Central Basin Platform, West Texas) and Cretaceous Mowry Shale (Powder River Basin, Wyoming). In: Camp, W., Millikn, K., Taylor, K., eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. AAPG Memoir, 121: 49–67. https://doi.org/10.1306/13672210m12163
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. https://doi.org/10.1306/08171111061
    Lu, Y. B., Hao, F., Lu, Y. C., et al., 2020. Lithofacies and Depositional Mechanisms of the Ordovician–Silurian Wufeng-Longmaxi Organic-Rich Shales in the Upper Yangtze Area, Southern China. AAPG Bulletin, 103(1): 97–129. https://doi.org/10.1306/04301918099
    Macleod, K. G., Irving, A. J., 1996. Correlation of Cerium Anomalies with Indicators of Paleoenvironment. SEPM Journal of Sedimentary Research, 66: 948–955. https://doi.org/10.1306/d426844b-2b26-11d7-8648000102c1865d
    MacQuaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587–603. https://doi.org/10.1306/08201311176
    Marchand, A. M. E., MacAulay, C. I., Haszeldine, R. S., et al., 2002. Pore Water Evolution in Oilfield Sandstones: Constraints from Oxygen Isotope Microanalyses of Quartz Cement. Chemical Geology, 191(4): 285–304. https://doi.org/10.1016/s0009-2541(02)00137-7
    McBride, E. F., 1989. Quartz Cement in Sandstones: A Review. Earth Science Reviews, 26(1/2/3): 69–112. https://doi.org/10.1016/0012-8252(89)90019-6
    McLennan, S. M., 1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In: Lipin, B. R., Mckay, G. A., eds., Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy and Geochemistry, 21: 169–200. https://doi.org/10.1515/9781501509032-010
    Milliken, K. L., 1992. Chemical Behavior of Detrital Feldspars in Mudrocks versus Sandstones, Frio Formation (Oligocene), South Texas. SEPM Journal of Sedimentary Research, 62: 790–801. https://doi.org/10.1306/d42679dd-2b26-11d7-8648000102c1865d
    Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553–1578. https://doi.org/10.1306/12011111129
    Milliken, K. L., Day-Stirrat, R. J., 2013. Cementation in Mudrocks: Brief Review with Examples from Cratonic Basin Mudrocks. In: Chatellier, J. Y., Jarvie, D. M., eds., Critical Assessment of Shale Resource Plays. AAPG Memoir, 103: 133–150. https://doi.org/10.1306/13401729h55252
    Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200. https://doi.org/10.1306/07231212048
    Milliken, K. L., Ergene, S. M., Ozkan, A., 2016. Quartz Types, Authigenic and Detrital, in the Upper Cretaceous Eagle Ford Formation, South Texas, USA. Sedimentary Geology, 339: 273–288. https://doi.org/10.1016/j.sedgeo.2016.03.012
    Milliken, K. L., Olson, T., 2017. Silica Diagenesis, Porosity Evolution, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Rocky Mountains, U. S. A. Journal of Sedimentary Research, 87(4): 366–387. https://doi.org/10.2110/jsr.2017.24
    Niu, X., Yan, D. T., Zhuang, X. G., et al., 2018. Origin of Quartz in the Lower Cambrian Niutitang Formation in South Hubei Province, Upper Yangtze Platform. Marine and Petroleum Geology, 96: 271–287. https://doi.org/10.1016/j.marpetgeo.2018.06.005
    Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones: The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6): 887–898. https://doi.org/10.1016/j.marpetgeo.2008. 01.021 doi: 10.1016/j.marpetgeo.2008.01.021
    Peng, J. W., Milliken, K. L., Fu, Q. L., 2020. Quartz Types in the Upper Pennsylvanian Organic-Rich Cline Shale (Wolfcamp D), Midland Basin, Texas: Implications for Silica Diagenesis, Porosity Evolution and Rock Mechanical Properties. Sedimentology, 67(4): 2040–2064. https://doi.org/10.1111/sed.12694
    Piane, C. D., MacRae, C., Wilson, N., et al., 2019. Silica Diagenesis in the Marcellus Shale: A Trace Element and Hyperspectral Cathodolumi-nescence Study. Sixth EAGE Shale Workshop. European Association of Geoscientists & Engineers, Apr. 28–May 1, 2019, Bordeaux, France. https://doi.org/10.3997/2214-4609.201900270
    Pommer, M., Milliken, K., 2015. Pore Types and Pore-Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713–1744. https://doi.org/10.1306/03051514151
    Potter, P. E., Maynard, J. B., Depetris, P. J., 2005. Mud and Mudstones: Introduction and Overview. Mud and Mudstones: Introduction and Overview. Springer-Verlag, Berlin, Heidelberg. 1–297
    Qiu, Z., Liu, B., Dong, D. Z., et al., 2020. Silica Diagenesis in the Lower Paleozoic Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Reservoir Properties and Paleoproductivity. Marine and Petroleum Geology, 121: 104594. https://doi.org/10.1016/j.marpetgeo.2020.104594
    Rickman, R., Mullen, M., Petre, E., et al., 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale All Days. SPE, Sept. 21–24, 2008, Denver, Colorado, USA. https://doi.org/10.2118/115258-ms
    Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic-Rich Strata: Examples from the Devonian-Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260(1/2): 1–19. https://doi.org/10.1016/j.chemgeo. 2008.10.027 doi: 10.1016/j.chemgeo.2008.10.027
    Rowe, H. D., Loucks, R. G., Ruppel, S. C., et al., 2008. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk Geochemical Inferences and Mo-TOC Constraints on the Severity of Hydrographic Restriction. Chemical Geology, 257(1/2): 16–25. https://doi.org/10.1016/j.chemgeo.2008.08.006
    Schieber, J., Krinsley, D., Riciputi, L., 2000. Diagenetic Origin of Quartz Silt in Mudstones and Implications for Silica Cycling. Nature, 406(6799): 981–985. https://doi.org/10.1038/35023143
    Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1/2): 29–48. https://doi.org/10.1016/s0009-2541(00)00362-4
    Steiner, M., Wallis, E., Erdtmann, B. D., et al., 2001. Submarine-Hydrothermal Exhalative Ore Layers in Black Shales from South China and Associated Fossils—Insights into a Lower Cambrian Facies and Bio-Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(3/4): 165–191. https://doi.org/10.1016/s0031-0182(01)00208-5
    Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea: Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8): 1752–1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005
    Towe, K. M., 1962. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. SEPM Journal of Sedimentary Research, 32: 26–28. https://doi.org/10.1306/74d70c3b-2b21-11d7-8648000102c1865d
    van de Kamp, P. C., 2008. Smectite-Illite-Muscovite Transformations, Quartz Dissolution, and Silica Release in Shales. Clays and Clay Minerals, 56(1): 66–81. https://doi.org/10.1346/ccmn.2008.0560106
    Walderhaug, O., Bjorkum, P. A., 2003. The Effect of Stylolite Spacing on Quartz Cementation in the Lower Jurassic Sto Formation, Southern Barents Sea. Journal of Sedimentary Research, 73(2): 146–156. https://doi.org/10.1306/090502730146
    Wang, R. Y., Ding, W. L., Zhang, Y. Q., et al., 2016. Analysis of Developmental Characteristics and Dominant Factors of Fractures in Lower Cambrian Marine Shale Reservoirs: A Case Study of Niutitang Formation in Cen'gong Block, Southern China. Journal of Petroleum Science and Engineering, 138: 31–49. https://doi.org/10.1016/j.petrol.2015.12.004
    Wang, R. Y., Hu, Z. Q., Long, S. X., et al., 2019. Differential Characteristics of the Upper Ordovician–Lower Silurian Wufeng-Longmaxi Shale Reservoir and Its Implications for Exploration and Development of Shale Gas in/around the Sichuan Basin. Acta Geologica Sinica—English Edition, 93(3): 520–535. https://doi.org/10.1111/1755-6724.13875
    Wang, R. Y., Hu, Z. Q., Long, S. X., et al., 2022. Reservoir Characteristics and Evolution Mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi Shale, Sichuan Basin. Oil and Gas Geology, 43: 353–364 (in Chinese with English Abstract)
    Wedepohl, K. H., 1971. Environmental Influences on the Chemical Composition of Shales and Clays. Physics and Chemistry of the Earth, 8: 305–333. https://doi.org/10.1016/0079-1946(71)90020-6
    Wei, S. L., He, S., Pan, Z. J., et al., 2020. Characteristics and Evolution of Pyrobitumen-Hosted Pores of the Overmature Lower Cambrian Shuijingtuo Shale in the South of Huangling Anticline, Yichang Area, China: Evidence from FE-SEM Petrography. Marine and Petroleum Geology, 116: 104303. https://doi.org/10.1016/j.marpetgeo.2020.104303
    Wilkinson, M., Milliken, K. L., Haszeldine, R. S., 2001. Systematic Destruction of K-Feldspar in Deeply Buried Rift and Passive Margin Sandstones. Journal of the Geological Society, 158(4): 675–683. https://doi.org/10.1144/jgs.158.4.675
    Williams, L. A., Parks, G. A., Crerar, D. A., 1985. Silica Diagenesis: Ⅰ. Solubility Controls. Journal of Sedimentary Petrology, 55: 301–311
    Wright, A. M., Spain, D., Ratcliffe, T. K., 2010. Application of Inorganic Whole Rock Geochemistry to Shale Resource Plays. Canadian Unconventional Resources and International Petroleum Conference. Oct. 19–21, 2010, Calgary, Alberta, Canada. SPE-137946-MS. https://doi.org/10.2118/137946-ms
    Yamamoto, K., 1987. Geochemical Characteristics and Depositional Environments of Cherts and Associated Rocks in the Franciscan and Shimanto Terranes. Sedimentary Geology, 52(1/2): 65–108. https://doi.org/10.1016/0037-0738(87)90017-0
    Zhao, J. H., Jin, Z. K., Jin, Z. J., et al., 2017. Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution. Journal of Natural Gas Science and Engineering, 38: 21–38. https://doi.org/10.1016/j.jngse.2016.11.037
    Zou, C. N., Zhu, R. K., Chen, Z. Q., et al., 2019. Organic-Matter-Rich Shales of China. Earth-Science Reviews, 189: 51–78. https://doi.org/10.1016/j.earscirev.2018.12.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(49) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return