Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 4
Aug 2024
Turn off MathJax
Article Contents
Asma Tahir, Huazhou Yao, Junaid Khan, Yangui Li, He Zhao, Yue Yu, Tang Yuan. First Record of Middle Eocene Elephant Ancestors' Footprints in the Gonjo Basin, East Tibet Plateau. Journal of Earth Science, 2024, 35(4): 1224-1235. doi: 10.1007/s12583-023-1946-6
Citation: Asma Tahir, Huazhou Yao, Junaid Khan, Yangui Li, He Zhao, Yue Yu, Tang Yuan. First Record of Middle Eocene Elephant Ancestors' Footprints in the Gonjo Basin, East Tibet Plateau. Journal of Earth Science, 2024, 35(4): 1224-1235. doi: 10.1007/s12583-023-1946-6

First Record of Middle Eocene Elephant Ancestors' Footprints in the Gonjo Basin, East Tibet Plateau

doi: 10.1007/s12583-023-1946-6
More Information
  • Corresponding author: Huazhou Yao, ycxc2009@126.com
  • Received Date: 09 Jan 2023
  • Accepted Date: 13 Sep 2023
  • Issue Publish Date: 30 Aug 2024
  • It is the first time that the fossil footprints of a group of Middle Eocene elephant ancestors have been discovered in the Gonjo Basin, East Tibet Plateau. The Gonjo Formation is attributed to the Middle Eocene Epoch (U-Pb age = 44.7 ± 1.2 Ma) and consists mainly of purplish-red, medium- to coarse-grained sandstones, siltstones interbedded with mudstones, and conglomerates with sedimentary structures like ripple marks, rip-up clasts, and trough-cross bedding, suggesting fluvial-lacustrine systems. The group of fossil footprints has a characteristic oval-concave shape, and the toe impressions are absent. Some fossil footprints are overstepped with a pockmarked texture resembling Proboscipeda enigmatica. More than 165 fossil footprints of the group are relatively well-preserved with different diameters, which is evidence of highly social behavior and trackmakers of different ages, including calves, juveniles, adolescents, and adults. The size frequency of the fossil footprints enabled us to deduce the body mass, shoulder height, and hip-height distribution of the trackmakers that crossed the East Tibet Plateau 44.7 Ma ago. The trackmakers comprised an estimated average hip-height of 111.8 cm, an average shoulder height of 172.8 cm for males/155.9 cm for females, and an average body mass of approximately 1 218.1 kg for males/907.8 kg for females. The abundance of fossil footprints reveals that in the Middle Eocene Epoch, the environment was extraordinarily conducive for the elephant ancestors to live in the East Tibet region.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1-S2) are available in the online version of this article at https://doi.org/10.1007/s12583-023-1946-6. It contains U-Pb age data and analyses data of footprints of elephant ancestor from the Gonjo Formation. Further photo of each individual fossil footprint can be provided on demand.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abbassi, N., Alinasiri, S., Lucas, S. G., 2017. New Localities of Late Eocene Vertebrate Footprints from the Tarom Mountains, Northwestern Iran. Historical Biology, 29(7): 987–1006. https://doi.org/10.1080/08912963.2016.1267162
    Abbassi, N., Lucas, S. G., Zaare, G. R., 2015. First Report of Oligocene Vertebrate Footprints from Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 78–89. https://doi.org/10.1016/j.palaeo.2015.08.039
    Aitchison, J. C., Davis, A. M., 2001. When did the India—Asia Collision Really Happen? Gondwana Research, 4(4): 560–561. https://doi.org/10.1016/s1342-937x(05)70363-4
    Aitchison, J. C., Xia, X. P., Baxter, A. T., et al., 2011. Detrital Zircon U–Pb Ages along the Yarlung-Tsangpo Suture Zone, Tibet: Implications for Oblique Convergence and Collision between India and Asia. Gondwana Research, 20(4): 691–709. https://doi.org/10.1016/j.gr.2011.04.002
    Alexander, R. M., 1976. Estimates of Speeds of Dinosaurs. Nature, 261: 129–130. https://doi.org/10.1038/261129a0
    An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62–66. https://doi.org/10.1038/35075035
    Aramayo, S. A., Manera de Bianco, T., Bastianelli, N. V., et al., 2015. Pehuen Co: Updated Taxonomic Review of a Late Pleistocene Ichnological Site in Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 439: 144–165. https://doi.org/10.1016/j.palaeo.2015.07.006
    Ataabadi, M. M., Sarjeant, W. A. S., 2000. Eocene Mammal Footprints from Eastern Iran: a Preliminary Study. Comptes Rendus De L'Académie Des Sciences - Series IIA: Earth and Planetary Science, 331(8): 543–547. https://doi.org/10.1016/s1251-8050(00)01449-x
    Athanassiou, A., 2012. A Skeleton of Mammuthus Trogontherii (Proboscidea, Elephantidae) from NW Peloponnese, Greece. Quaternary International, 255: 9–28. https://doi.org/10.1016/j.quaint.2011.03.030
    Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction Already Arrived? Nature, 471(7336): 51–57. https://doi.org/10.1038/nature09678
    Bennett, M. R., Bustos, D., Belvedere, M., et al., 2019. Soft-Sediment Deformation below Mammoth Tracks at White Sands National Monument (New Mexico) with Implications for Biomechanical Inferences from Tracks. Palaeogeography, Palaeoclimatology, Palaeoecology, 527: 25–38. https://doi.org/10.1016/j.palaeo.2019.04.023
    Berggren, W. A., 2020. Cenozoic Era. Encyclopedia Britannica. https://www.britannica.com/science/Cenozoic-Era
    Brugal, J. -P., Raposo, L., 1999. Foz do Enxarrique (Ródão, Portugal): Preliminary Results of the Analysis of a Bone Assemblage from a Middle Palaeolithic Open Site. Monographie des Römisch-Germanischen Zentralmuseums, 42: 367–379
    Chen, D., Jiang, F. J., Pang, X. Q., et al., 2023. Middle Eocene Terrestrial Paleoweathering and Climate Evolution in the Midlatitude Bohai Bay Basin of Eastern China. Petroleum Science, 20(3): 1471–1487. https://doi.org/10.1016/j.petsci.2022.12.013
    Christiansen, P., 2004. Body Size in Proboscideans, with Notes on Elephant Metabolism. Zoological Journal of the Linnean Society, 140(4): 523–549. https://doi.org/10.1111/j.1096-3642.2004.00113.x
    Chung, S. L., Lo, C. H., Lee, T. Y., et al., 1998. Diachronous Uplift of the Tibetan Plateau Starting 40? Myr ago. Nature, 394(6695): 769–773. https://doi.org/10.1038/29511
    Damuth, J. D., MacFadden, B. J., 1990. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge
    Della Rocca, F., 2007. How Tall is an Elephant? Two Methods for Estimating Elephant Height. Web Ecology, 7(1): 1–10. https://doi.org/10.5194/we-7-1-2007
    Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene–Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. https://doi.org/10.1029/2004TC001729
    Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4): 635–651. https://doi.org/10.1007/s11430-016-5244-x
    Dos Reis, M., Donoghue, P. C. J., Yang, Z. H., 2014. Neither Phylogenomic nor Palaeontological Data Support a Palaeogene Origin of Placental Mammals. Biology Letters, 10(1): 20131003. https://doi.org/10.1098/rsbl.2013.1003
    Douglas-Hamilton, I., 1972. On the Ecology and Behavior of the African Elephant: [Dissertation]. Universityof Oxford, Oxford
    Dupont-Nivet, G., Hoorn, C., Konert, M., 2008. Tibetan Uplift Prior to the Eocene–Oligocene Climate Transition: Evidence from Pollen Analysis of the Xining Basin. Geology, 36(12): 987. https://doi.org/10.1130/g25063a.1
    Ellenberger, P., 1980. Sur les Empreintes de pas des Gros Mammiferes de L􀆳EOCENE Superieur de Garrigues-Ste-Eulalie (Gard). Pascal and
    Francis Bibliographic Databases. 37–78. (2024-04-02). https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=pascalgeodebrgm8120132791
    England, P., Searle, M., 1986. The Cretaceous-Tertiary Deformation of the Lhasa Block and Its Implications for Crustal Thickening in Tibet. Tectonics, 5(1): 1–14. https://doi.org/10.1029/tc005i001p00001
    Fariña, R. A., Vizcaino, S. F., Bargo, M. S., 1998. Body Mass Estimations in Lujanian (Late Pleistocene–Early Holocene of South America) Mammal Megafauna. Mastozoología Neotropical, 5(2): 87–108
    Gheerbrant, E., 2009. Paleocene Emergence of Elephant Relatives and the Rapid Radiation of African Ungulates. Proceedings of the National Academy of Sciences of the United States of America, 106(26): 10717–10721. https://doi.org/10.1073/pnas.0900251106
    Gheerbrant, E., Sudre, J., Cappetta, H., 1996. A Palaeocene Proboscidean from Morocco. Nature, 383: 68–70. https://doi.org/10.1038/383068a0
    Gheerbrant, E., Sudre, J., Cappetta, H., et al., 2002. A New Large Mammal from the Ypresian of Morocco: Evidence of Surprising Diversity of Early Proboscideans. Acta Palaeontologica Polonica, 47(3): 493–506
    Gu, H. O., Xiao, Y. L., Santosh, M., et al., 2013. Spatial and Temporal Distribution of Mesozoic Adakitic Rocks along the Tan-Lu Fault, Eastern China: Constraints on the Initiation of Lithospheric Thinning. Lithos, 177: 352–365. https://doi.org/10.1016/j.lithos.2013.07.011
    Hamblin, A. H., Sarjeant, W. A., Spalding, D. A., 1999. Vertebrate Footprints in the Duchesne River and Uinta Formations (Middle to Late Eocene), Uinta Basin, Utah. Utah Geol. Surv. Misc. Publ., 99(1): 443–454
    Hamblin, A., Sarjeant, W., Spalding, D., 1998. A Remarkable Mammal Trackway in the Unita Formation (Late Eocene) of Utah. Brigham Young University Geology Studies, 43: 9–18
    Hanks, J., 1972. Growth of the African Elephant (Loxodonta Africana). African Journal of Ecology, 10(4): 251–272. https://doi.org/10.1111/j.1365-2028.1972.tb00870.x
    Haynes, G., 1991. Mammoths, Mastodonts, and Elephants: Biology, Behavior and the Fossil Record. Cambridge University Press, Cambridge
    Horton, B. K., Yin, A., Spurlin, M. S., et al., 2002. Paleocene–Eocene Syncontractional Sedimentation in Narrow, Lacustrine-Dominated Basins of East-Central Tibet. Geological Society of America Bulletin, 114(7): 771–786. https://doi.org/10.1130/0016-7606(2002)114<0771:pessin>2.0.co;2 doi: 10.1130/0016-7606(2002)114<0771:pessin>2.0.co;2
    Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset–Facts, Theories, Controversies. Earth-Science Reviews, 160: 264–299. https://doi.org/10.1016/j.earscirev.2016.07.014
    Hutchinson, J. R., Delmer, C., Miller, C. E., et al., 2011. From Flat Foot to Fat Foot: Structure, Ontogeny, Function, and Evolution of Elephant "Sixth Toes". Science, 334(6063): 1699–1703. https://doi.org/10.1126/science.1211437
    Kingsolver, J. G., Huey, R. B., 2008. Size, Temperature, and Fitness: Three Rules. Evolutionary Ecology Research, 10(2): 251–268.
    Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F., et al., 1989. Sensitivity of Climate to Late Cenozoic Uplift in Southern Asia and the American West: Numerical Experiments. Journal of Geophysical Research: Atmospheres, 94(D15): 18393–18407. https://doi.org/10.1029/jd094id15p18393
    Larramendi, A., 2014. Skeleton of a Late Pleistocene Steppe Mammoth (Mammuthus Trogontherii) from Zhalainuoer, Inner Mongolian Autonomous Region, China. Paläontologische Zeitschrift, 89(2): 229–250
    Larramendi, A., 2015a. Proboscideans: Shoulder Height, Body Mass and Shape. Acta Palaeontologica Polonica, 61(3): 537–574. https://doi.org/10.4202/app.00136.2014
    Larramendi, A., 2015b. Skeleton of a Late Pleistocene Steppe Mammoth (Mammuthus trogontherii) from Zhalainuoer, Inner Mongolian Autonomous Region, China. Paläontologische Zeitschrift, 89(2): 229–250. https://doi.org/10.1007/s12542-014-0222-8
    Larramendi, A., Palombo, M. R., Marano, F., 2017. Reconstructing the Life Appearance of a Pleistocene Giant: Size, Shape, Sexual Dimorphism and Ontogeny of Palaeoloxodon Antiquus (Proboscidea: Elephantidae) from Neumark-Nord 1 (Germany). Boll. Soc. Paleont. Italiana, 56(3): 299–317
    Laws, R. M., Parker, I. S. C., Johnstone, R. C. B., 1975. Elephants and Their Habitats: The Ecology of Elephants in North Bunyoro, Uganda. Oxford University Press, Oxford
    Laws, R., Parker, I., 1968. Recent Studies on Elephant Populations in East Africa. Symp. Zool. Soc. Lond., 21: 319–359
    Lee, P. C., Moss, C. J., 1995. Statural Growth in Known-Age African Elephants (Loxodonta Africana). Journal of Zoology, 236(1): 29–41. https://doi.org/10.1111/j.1469-7998.1995.tb01782.x
    Leuthold, W., 1976. Group Size in Elephants of Tsavo National Park and Possible Factors Influencing It. The Journal of Animal Ecology, 45(2): 425–439. https://doi.org/10.2307/3883
    Li, C., 2008. A Review on 20 Years' Study of the Longmu Co-Shuanghu-Lancang River Suture Zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105–119. https://doi.org/10.16509/j.georeview.2008.01.005 (in Chinese with English Abstract)
    Li, J. X., Qin, K. Z., Li, G. M., et al., 2011. Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet: Melting of Thickened Juvenile Arc Lower Crust. Lithos, 126(3/4): 265–277. https://doi.org/10.1016/j.lithos.2011.07.018
    Li, S. H., van Hinsbergen, D. J. J., Najman, Y., et al., 2020. Does Pulsed Tibetan Deformation Correlate with Indian Plate Motion Changes? Earth and Planetary Science Letters, 536: 116144. https://doi.org/10.1016/j.epsl.2020.116144
    Li, Z. X., Chen, Z. L., Li, X. Z., et al., 2004. K-Ar Ages of Cenozoic Volcanic Rocks from Gongjue Basin in Eastern Tibet. Earth Science, 29(3): 278–282 (in Chinese with English Abstract)
    Lister, A. M., 1999. Epiphyseal Fusion and Postcranial Age Determination in the Woolly Mammoth, Mammuthus Primigenius (Blum. ). Deinsea, 6(1): 79–88
    Liu, X. D., Yin, Z. Y., 2002. Sensitivity of East Asian Monsoon Climate to the Uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(3/4): 223–245. https://doi.org/10.1016/s0031-0182(01)00488-6
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Lockley, M. G., Hunt, A. P., 1995. Dinosaur Tracks and Other Fossil Footprints of the Western United States: New York. Columbia University Press, Columbia
    Lockley, M. G., Meyer, C., 1999. Dinosaur Tracks and Other Fossil Footprints of Europe: New York. Columbia University Press, Columbia
    Lockley, M. G., Ritts, B. D., Leonardi, G., 1999. Mammal Track Assemblages from the Early Tertiary of China, Peru, Europe and North America. Palaios, 14(4): 398–404. https://doi.org/10.2307/3515465
    MacLeod, K. G., Quinton, P. C., Sepúlveda, J., et al., 2018. Postimpact Earliest Paleogene Warming Shown by Fish Debris Oxygen Isotopes (El Kef, Tunisia). Science, 360(6396): 1467–1469. https://doi.org/10.1126/science.aap8525
    Manning, P. L., 2004. A New Approach to the Analysis and Interpretation of Tracks: Examples from the Dinosauria. Geological Society, London, Special Publications, 228(1): 93–123. https://doi.org/10.1144/gsl.sp.2004.228.01.06
    McNab, B. K., 1990. The Physiological Significance of Body Size. In: Damuth, J., MacFadden, B. J., eds., Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge. 11–23
    McNeil, P., Hills, L. V., Tolman, M. S., et al., 2007. Significance of Latest Pleistocene Tracks, Trackways, and Trample Grounds from Southern Alberta, Canada. Cenozoic Vertebrate Tracks and Traces, 42: 209–233
    McNeil, P., Hills, L., Kooyman, B., et al., 2005. Mammoth Tracks Indicate a Declining Late Pleistocene Population in Southwestern Alberta, Canada. Quaternary Science Reviews, 24(10/11): 1253–1259. https://doi.org/10.1016/j.quascirev.2004.08.019
    Merz, G., 1986. Movement Patterns and Group Size of the African Forest Elephant Loxodonta Africana Cyclotis in the Tai National Park, Ivory Coast. African Journal of Ecology, 24(2): 133–136. https://doi.org/10.1111/j.1365-2028.1986.tb00353.x
    Mihlbachler, M. C., Lucas, S. G., Emry, R. J., et al., 2004. A New Brontothere (Brontotheriidae, Perissodactyla, Mammalia) from the Eocene of the Ily Basin of Kazakstan and a Phylogeny of Asian "Horned" Brontotheres. American Museum Novitates, 3439(1): 1. https://doi.org/10.1206/0003-0082(2004)439<0001:anbbpm>2.0.co;2 doi: 10.1206/0003-0082(2004)439<0001:anbbpm>2.0.co;2
    Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419–426. https://doi.org/10.1126/science.189.4201.419
    Moss, C., Poole, J., 1983. Relationships and Social Structure of African Elephants. In: Hinde, R. A., ed., Primate Social Relationships: An Integrated Approach. Blackwells, Oxford. 315–325
    Mughal, M. S., Zhang, C. J., Hussain, A., et al., 2020. Petrogenesis and Geochronology of Tianshui Granites from Western Qinling Orogen, Central China: Implications for Caledonian and Indosinian Orogenies on the Asian Plate. Minerals, 10(6): 515. https://doi.org/10.3390/min10060515
    Muñiz, F., Cáceres, L. M., Rodríguez-Vidal, J., et al., 2019. Following the Last Neanderthals, Mammal Tracks in Late Pleistocene Coastal Dunes of Gibraltar (S Iberian Peninsula). Quaternary Science Reviews, 217: 297–309 doi: 10.1016/j.quascirev.2019.01.013
    Murphy, M. A., Yin, A., Harrison, T. M., et al., 1997. Did the Indo-Asian Collision Alone Create the Tibetan Plateau? Geology, 25(8): 719–722. https://doi.org/10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2
    Neto de Carvalho, C., Belaústegui, Z., Toscano, A., et al., 2021. First Tracks of Newborn Straight-Tusked Elephants (Palaeoloxodon Antiquus). Scientific Reports, 11(1): 17311. https://doi.org/10.1038/s41598-021-96754-1
    Neto de Carvalho, C., Figueiredo, S., et al., 2016. Vertebrate Tracks and Trackways from the Pleistocene Eolianites of SW Portugal. Comunicações Geológica, 103: 101–116
    Ni, X. J., Li, Q., Zhang, C., et al., 2020. Paleogene Mammalian Fauna Exchanges and the Paleogeographic Pattern in Asia. Science China Earth Sciences, 63(2): 202–211. https://doi.org/10.1007/s11430-019-9479-1
    O'Leary, M. A., Bloch, J. I., Flynn, J. J., et al., 2013. The Placental Mammal Ancestor and the Post-K-Pg Radiation of Placentals. Science, 339(6120): 662–667. https://doi.org/10.1126/science.1229237
    Osborn, H. F., 1934. Evolution and Geographic Distribution of the Proboscidea: Moeritheres, Deinotheres and Mastodonts. Journal of Mammalogy, 15(3): 177–184. https://doi.org/10.2307/1373846
    Osborn, H. F., 1936. Proboscidea: Moeritherioidea, Deinotherioidea, Mastodontoidea. The American Museum Press, New York
    Osborn, H. F., 1942. Proboscidea: Stegodontoidea, Elephantoidea. American Museum of Natural History, New York. 805–1675
    Palombo, M. R., Giovinazzo, C., 2005. Elephas Falconeri from Spinagallo Cave (South-Eastern Sicily, Hyblean Plateau, Siracusa): A Preliminary Report on Brain to Body Weight Comparison. In: Proceedings of the International Symposium "Insular Vertebrate Evolution: The Palaeontological Approach", September 16–19, 2005, Mallorca. 255–264
    Palombo, M. R., Panarello, A., Mietto, P., 2018. Did Elephants Meet Humans along the Devil's Path? A Preliminary Report. Alpine and Mediterranean Quaternary, 31: 83–87
    Pan, G. T., Ding, J., Yao, D. S., et al., 2004. Instruction of the Geological Map of Qinghai-Tibet Plateau and Its Adjacent Regions. Chengdu Cartographic Publishing House, Chengdu (in Chinese)
    Panera, J., Rubio-Jara, S., Yravedra, J., et al., 2014. Manzanares Valley (Madrid, Spain): A Good Country for Proboscideans and Neanderthals. Quaternary International, 326/327: 329–343. https://doi.org/10.1016/j.quaint.2013.09.009
    Panin, N., Avram, E., 1962. Noe Urme de pas de Vertebrate in Miocenul Subcarpatilor Ruminestkya. Studie si Cercetari de Gélogie, Géophyzica, si Géografie, Serie de Géologie, 7: 455–484
    Pasenko, M. R., 2017. Quantitative and Qualitative Data of Footprints Produced by Asian (Elephas Maximus) and African (Loxodonta Africana) Elephants and with a Discussion of Significance towards Fossilized Proboscidean Footprints. Quaternary International, 443: 221–227. https://doi.org/10.1016/j.quaint.2017.05.030
    Paul, G. S., 1997. Dinosaur Models: The Good, the Bad, and Using Them to Estimate the Mass of Dinosaurs. In: Wolberg, D. L., Stump, E., Rosenberg, G. D., eds., DinoFest International Proceedings. The Academy of Natural Sciences, New York. 129–154
    Qiu, Z. X., Wang, B. Y., Qiu, Z. D., et al., 2001. Land Mammal Geochronology and Magnetostratigraphy of Mid-Tertiary Deposits in the Lanzhou Basin, Gansu Province, China. Eclogae Geologicae Helvetiae, 94: 373–385
    Roger, F., Tapponnier, P., Arnaud, N., et al., 2000. An Eocene Magmatic Belt across Central Tibet: Mantle Subduction Triggered by the Indian Collision? Terra Nova, 12(3): 102–108. https://doi.org/10.1046/j.1365-3121.2000.123282.x
    Roth, V. L., 1984. How Elephants Grow: Heterochrony and the Calibration of Developmental Stages in Some Living and Fossil Species. Journal of Vertebrate Paleontology, 4(1): 126–145. https://doi.org/10.1080/02724634.1984.10011993
    Roth, V., Damuth, J., MacFadden, B., 1990. Insular Dwarf Elephants: A Case Study in Body Mass Estimation and Ecological Inference. Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge. 151–179
    Rowley, D. B., 1996. Age of Initiation of Collision between India and Asia: A Review of Stratigraphic Data. Earth and Planetary Science Letters, 145(1/2/3/4): 1–13. https://doi.org/10.1016/S0012-821X(96)00201-4
    Sarjeant, W. A., Langston, W., Jr, 1994. Vertebrate Footprints and Invertebrate Traces from the Cadronian (Late Eocene) of Trans-Pecos Texas. Texas Memorial Museum Bulletin, 36: 1–86. https://doi.org/10.1016/j.palaeo.2008.10.030
    Sarjeant, W. A., Wilson, J., 1988. Late Eocene (Duchesnean) Mammal Footprints from the Skyline Channels of Trans-Pecos Texas. Texas Journal of Science, 40(4): 439–446
    Sarjeant, W. A., 1987. The Study of Fossil Vertebrate Footprints. A Short History and Selective Bibliography. Glossary and Manual of Tetrapod Footprint Palaeoichnology, 1: 1–19
    Shipman, P., 1992. Body Size and Broken Bones: Preliminary Interpretations of Proboscidean Remains. In: Fox, J., W., Smith, C., B., Wilkins, K. T., eds., Proboscidean and Paleoindian Interactions. Baylor University Press, Waco. 75–98
    Shoshani, J., 1998. Understanding Proboscidean Evolution: A Formidable Task. Trends in Ecology & Evolution, 13(12): 480–487. https://doi.org/10.1016/s0169-5347(98)01491-8
    Shoshani, J., Tassy, P., 1996. Summary, Conclusions, and a Glimpse into the Future. In: Shoshani, J., Tassy, P., eds., The Proboscidea: Evolution and Palaeoecology of Elephants and Their Relatives. Oxford University Press, Oxford. 335–347. https://doi.org/10.1093/oso/9780198546528.003.0035
    Shoshani, J., West, R. M., Court, N., et al., 1996. The Earliest Proboscideans: General Plan, Taxonomy, and Palaeoecology. In: Shoshani, J., Tassy, P., eds., The Proboscidea: Evolution and Palaeoecology of Elephants and Their Relatives. Oxford University Press, Oxford. 57–75. https://doi.org/10.1093/oso/9780198546528.003.0008
    Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    Spurlin, M. S., Yin, A., Horton, B. K., et al., 2005. Structural Evolution of the Yushu-Nangqian Region and Its Relationship to Syncollisional Igneous Activity, East-Central Tibet. Geological Society of America Bulletin, 117(9): 1293. https://doi.org/10.1130/B25572.1
    Studnicki-Gizbert, C., Burchfiel, B. C., Li, Z., et al., 2008. Early Tertiary Gonjo Basin, Eastern Tibet: Sedimentary and Structural Record of the Early History of India-Asia Collision. Geosphere, 4(4): 713–735. https://doi.org/10.1130/ges00136.1
    Tang, M. Y., Jing, L. Z., Hoke, G. D., et al., 2017. Paleoelevation Reconstruction of the Paleocene–Eocene Gonjo Basin, SE-Central Tibet. Tectonophysics, 712/713: 170–181. https://doi.org/10.1016/j.tecto.2017.05.018
    Tong, Y. B., Yang, Z. Y., Mao, C. P., et al., 2017. Paleomagnetism of Eocene Red-Beds in the Eastern Part of the Qiangtang Terrane and Its Implications for Uplift and Southward Crustal Extrusion in the Southeastern Edge of the Tibetan Plateau. Earth and Planetary Science Letters, 475: 1–14. https://doi.org/10.1016/j.epsl.2017.07.026
    Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001
    Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 105(13): 4987–4992. https://doi.org/10.1073/pnas.0703595105
    Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone. Earth and Planetary Science Letters, 188(1/2): 123–133. https://doi.org/10.1016/s0012-821x(01)00315-6
    Wang, L. C., Yuan, Q., Shen, L. J., et al., 2022. Middle Eocene Paleoenvironmental Reconstruction in the Gonjo Basin, Eastern Tibetan Plateau: Evidence from Palynological and Evaporite Records. Frontiers in Earth Science, 10: 818418. https://doi.org/10.3389/feart.2022.818418
    Western, D., Moss, C., Georgiadis, N., 1983. Age Estimation and Population Age Structure of Elephants from Footprint Dimensions. The Journal of Wildlife Management, 47(4): 1192–1197. https://doi.org/10.2307/3808191
    White, L. J. T., Tutin, C. E. G., Fernandez, M., 1993. Group Composition and Diet of Forest Elephants, Loxodonta Africana Cyclotis Matschie 1900, in the Lopé Reserve, Gabon. African Journal of Ecology, 31(3): 181–199. https://doi.org/10.1111/j.1365-2028.1993.tb00532.x
    Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
    Wroblewski, A. F. J., Gulas-Wroblewski, B. E., 2021. Earliest Evidence of Marine Habitat Use by Mammals. Scientific Reports, 11: 8846. https://doi.org/10.1038/s41598-021-88412-3
    Wu, F. Y., Ji, W. Q., Wang, J. G., et al., 2014. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2): 548–579. https://doi.org/10.2475/02.2014.04
    Xia, L. Q., Li, X. M., Ma, Z. P., et al., 2011. Cenozoic Volcanism and Tectonic Evolution of the Tibetan Plateau. Gondwana Research, 19(4): 850–866. https://doi.org/10.1016/j.gr.2010.09.005
    Xiao, R., Zheng, Y., Liu, X., et al., 2021. Synchronous Sedimentation in Gonjo Basin, Southeast Tibet in Response to India-Asia Collision Constrained by Magnetostratigraphy. Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009411. https://doi.org/10.1029/2020gc009411
    Xing, L. D., Lockley, M. G., Falk, A., 2013. First Record of Cenozoic Bird Footprints from East Asia (Tibet, China). Ichnos, 20(1): 19–23. https://doi.org/10.1080/10420940.2012.757698
    Xiong, Z. Y., Ding, L., Spicer, R. A., et al., 2020. The Early Eocene Rise of the Gonjo Basin, SE Tibet: From Low Desert to High Forest. Earth and Planetary Science Letters, 543: 116312. https://doi.org/10.1016/j.epsl.2020.116312
    Yao, T., Wu, F. Y., Ding, L., et al., 2015. Multispherical Interactions and Their Effects on the Tibetan Plateau's Earth System: A Review of the Recent Researches. National Science Review, 2: 468–488. https://doi.org/10.1093/NSR/NWV070
    Yuan, Q., Barbolini, N., Ashworth, L., et al., 2021. Palaeoenvironmental Changes in Eocene Tibetan Lake Systems Traced by Geochemistry, Sedimentology and Palynofacies. Journal of Asian Earth Sciences, 214: 104778. https://doi.org/10.1016/j.jseaes.2021.104778
    Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939–960. https://doi.org/10.1016/j.gr.2011.11.004
    Zhang, Y., Huang, W. T., Huang, B. C., et al., 2018. 53–43 Ma Deformation of Eastern Tibet Revealed by Three Stages of Tectonic Rotation in the Gongjue Basin. Journal of Geophysical Research: Solid Earth, 123(5): 3320–3338. https://doi.org/10.1002/2018JB015443
    Zhou, J. Y., Wang, J. H., An, Y., et al., 2003. Sedimentology and Tectonic Significance of Paleogene Coarse Clastic Rocks in Eastern Tibet. Acta Geologica Sinica, 77(2): 262–271, 296 (in Chinese with English Abstract)
    Zhou, J. Y., Wang, J. H., Horton, B. K., et al., 2011. The Closure of Paleogene Basins of East-Central Tibet in Response to Tectonic, Sedimentation, Magmatism and Paleoclimate. Acta Geologica Sinica, 85(2): 172–178. https://doi.org/10.19762/j.cnki.dizhixuebao.2011.02.002 (in Chinese with English abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(185) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return