Anshori, R. M., Samodra, G., Mardiatno, D., and Sartohadi, J., 2022. Volunteered geographic information mobile application for participatory landslide inventory mapping. Computers & Geosciences, 161: 105073. |
Bekaert, D. P., Handwerger, A. L., Agram, P., and Kirschbaum, D. B., 2020. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sensing of Environment, 249: 111983. |
Berrar, D., 2019. Cross-validation. Encyclopedia of Bioinformatics and Computational Biology, Academic Press, Oxford, 542-545. |
Borghuis, A. M., Chang, K., and Lee, H. Y., 2007. Comparison between automated and manual mapping of typhoon‐triggered landslides from SPOT‐5 imagery. International Journal of Remote Sensing, 28(8): 1843-1856. |
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), 801-818. |
Cheng, Z., Gong, W., Tang, H., Juang, C. H., Deng, Q., Chen, J., and Ye, X., 2021. UAV photogrammetry-based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Engineering Geology, 289: 106172. |
Chollet, F., 2017. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, 1251-1258. |
Cui, S., Ma, A., Zhang, L., Xu, M., and Zhong, Y., 2021. MAP-net: SAR and optical image matching via image-based convolutional network with attention mechanism and spatial pyramid aggregated pooling. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-13. |
Du, B., Zhao, Z., Hu, X., Wu, G., Han, L., Sun, L., and Gao, Q., 2021. Landslide susceptibility prediction based on image semantic segmentation. Computers & Geosciences, 155: 104860. |
Esgario, J. G., de Castro, P. B., Tassis, L. M., and Krohling, R. A., 2022. An app to assist farmers in the identification of diseases and pests of coffee leaves using deep learning. Information Processing in Agriculture, 9(1): 38-47. |
Fan, X., Tang, J., Tian, S., and Jiang, Y., 2020. Rainfall-induced rapid and long-runout catastrophic landslide on July 23, 2019 in Shuicheng, Guizhou, China. Landslides, 17(9): 2161-2171. |
Fang, Z., Wang, Y., Peng, L., and Hong, H., 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139: 104470. |
Fanos, A. M., Pradhan, B., Mansor, S., Yusoff, Z. M., and Abdullah, A. F. B., 2018. A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data. Landslides, 15(9): 1833-1850. |
Gong, W., Juang, C. H., and Wasowski, J., 2021. Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China–Engineering geologist’s perspective. Engineering Geology, 285: 106051. |
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K. T., 2012. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2): 42-66. |
He, X., Zhou, Y., Zhao, J., Zhang, D., Yao, R., and Xue, Y., 2022. Swin transformer embedding UNet for remote sensing image semantic segmentation. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-15. |
Huang, Y., Xie, C., Li, T., Xu, C., He, X., Shao, X., ... & Chen, Z., 2023. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on September 5, 2022. Earthquake Research Advances, 3(1): 100181. |
Jebur, M. N., Pradhan, B., and Tehrany, M. S., 2014. Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 674-690. |
Ji, S., Yu, D., Shen, C., Li, W., and Xu, Q., 2020. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides, 17(6): 1337-1352. |
John, D., and Zhang, C., 2022. An attention-based U-Net for detecting deforestation within satellite sensor imagery. International Journal of Applied Earth Observation and Geoinformation, 107: 102685. |
Li, H., He, Y., Xu, Q., Deng, J., Li, W., and Wei, Y., 2022. Detection and segmentation of loess landslides via satellite images: A two-phase framework. Landslides, 19(3): 673-686. |
Liang, T., Glossner, J., Wang, L., Shi, S., and Zhang, X., 2021. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing, 461: 370-403. |
Long, Y., Li, W., Huang, R., Xu, Q., Yu, B., and Liu, G., 2023. A Comparative Study of Supervised Classification Methods for Investigating Landslide Evolution in the Mianyuan River Basin, China. Journal of Earth Science, 34(2): 316-329. |
Lu, P., Shi, W., and Li, Z., (2021). Landslide mapping from PlanetScope images using improved region-based level set evolution. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. |
Lu, P., Stumpf, A., Kerle, N., and Casagli, N., 2011. Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and remote sensing letters, 8(4): 701-705. |
Lundine, M. A., Brothers, L. L., and Trembanis, A. C., 2023. Deep learning for pockmark detection: Implications for quantitative seafloor characterization. Geomorphology, 421, 108524. |
Lv, Z., Wang, F., Sun, W., You, Z., Falco, N., and Benediktsson, J. A., 2022. Landslide inventory mapping on VHR images via adaptive region shape similarity. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-11. |
Middleton, M., Heikkonen, J., Nevalainen, P., Hyvönen, E., and Sutinen, R., 2020. Machine learning-based mapping of micro-topographic earthquake-induced paleo-Pulju moraines and liquefaction spreads from a digital elevation model acquired through laser scanning. Geomorphology, 358: 107099. |
Mondini, A. C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., and Ardizzone, F., 2011. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment, 115(7): 1743-1757. |
Morales, B., Lizama, E., Somos-Valenzuela, M., Rivera, D., and Ningshen, C., 2023. Earthquake-induced landslides coupled to fluvial incision in Andean Patagonia: Inferring their effects on landscape at geological time scales. Geomorphology, 434: 108731. |
Muthu, K., and Petrou, M., 2007. Landslide-hazard mapping using an expert system and a GIS. IEEE Transactions on Geoscience and Remote Sensing, 45(2): 522-531. |
Muthu, K., Petrou, M., Tarantino, C., and Blonda, P., 2008. Landslide possibility mapping using fuzzy approaches. IEEE Transactions on Geoscience and Remote Sensing, 46(4): 1253-1265. |
Noh, H., Hong, S., and Han, B., 2015. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, 1520-1528. |
Paoletti, M. E., Haut, J. M., Plaza, J., and Plaza, A., 2018. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 120-147. |
Pareek, N., Pal, S., Sharma, M. L., and Arora, M. K., 2013. Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques. Computers & Geosciences, 61, 50-63. |
Prakash, N., Manconi, A., and Loew, S., 2020. Mapping landslides on EO data: performance of deep learning models vs. traditional machine learning models. Remote Sensing, 12(3): 346. |
Rau, J. Y., Jhan, J. P., and Rau, R. J., 2013. Semiautomatic object-oriented landslide recognition scheme from multisensor optical imagery and DEM. IEEE Transactions on Geoscience and Remote Sensing, 52(2): 1336-1349. |
Ren, T., Gong, W., Gao, L., Zhao, F., & Cheng, Z., 2022. An interpretation approach of ascending–descending SAR data for landslide identification. Remote Sensing, 14(5): 1299. |
Ronneberger, O., Fischer, P., and Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention, 9351 (2015): 234-241. |
Stumpf, A., and Kerle, N., 2011. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115(10): 2564-2577. |
Su, Z., Chow, J. K., Tan, P. S., Wu, J., Ho, Y. K., and Wang, Y. H., 2021. Deep convolutional neural network–based pixel-wise landslide inventory mapping. Landslides, 18(4): 1421-1443. |
Sun, W., Tian, Y., Mu, X., Zhai, J., Gao, P., and Zhao, G., 2017. Loess landslide inventory map based on GF-1 satellite imagery. Remote Sensing, 9(4): 314. |
Tamkuan, N., and Nagai, M., 2017. Fusion of multi-temporal interferometric coherence and optical image data for the 2016 Kumamoto earthquake damage assessment. ISPRS International Journal of Geo-Information, 6(7): 188. |
Tang, H. M., Liu, X., Hu, X. L., and Griffiths, D. V., 2015. Evaluation of landslide mechanisms characterized by high-speed mass ejection and long-run-out based on events following the Wenchuan earthquake. Engineering Geology, 194, 12-24. |
Tang, H. M., Wasowski, J., and Juang, C. H., 2019. Geohazards in the three Gorges Reservoir Area, China - Lessons learned from decades of research. Engineering Geology, 261, 105267. |
Tang, H., Jia, H., Hu, X., Li, D., and Xiong, C., 2010. Characteristics of landslides induced by the great Wenchuan earthquake. Journal of Earth Science, 21, 104-113. |
Travelletti, J., Delacourt, C., Allemand, P., Malet, J. P., Schmittbuhl, J., Toussaint, R., and Bastard, M., 2012. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing, 70: 39-55. |
Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., and Cottrell, G., 2018. Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 1451-1460. |
Whitworth, M. R., Giardina, G., Penney, C., Di Sarno, L., Adams, K., Kijewski-Correa, T.,... and Macabuag, J., 2022. Lessons for remote post-earthquake reconnaissance from the 14 August 2021 Haiti earthquake. Frontiers in Built Environment, 8. |
Williams, J. G., Rosser, N. J., Kincey, M. E., Benjamin, J., Oven, K. J., Densmore, A. L.,... & Dijkstra, T. A., 2018. Satellite-based emergency map** using optical imagery: experience and reflections from the 2015 Nepal earthquakes. Natural hazards and earth system sciences, 18(1): 185-205. |
Woo, S., Park, J., Lee, J. Y., and Kweon, I. S., 2018. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), 3-19. |
Wu, W., Xu, C., Wang, X., Tian, Y., and Deng, F., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31: 853-866. |
Xu, G., Wang, Y., Wang, L., Soares, L. P., and Grohmann, C. H., 2022. Feature-based constraint deep CNN method for mapping rainfall-induced landslides in remote regions with mountainous terrain: An application to Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2644-2659. |
Xu, Q., Li, W. L., Ju, Y. Z., Dong, X. J., and Peng, D. L., 2020. Multitemporal UAV-based photogrammetry for landslide detection and monitoring in a large area: a case study in the Heifangtai terrace in the Loess Plateau of China. Journal of Mountain Science, 17(8): 1826-1839. |
Xu, R., Tao, Y., Lu, Z., and Zhong, Y., 2018. Attention-mechanism-containing neural networks for high-resolution remote sensing image classification. Remote Sensing, 10(10): 1602. |
Yang, M., Yu, K., Zhang, C., Li, Z., and Yang, K., 2018. Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3684-3692. |
Yao, G., Zhou, W., Liu, M., Xu, Q., Wang, H., Li, J., and Ju, Y., 2021. An empirical study of the convolution neural networks based detection on object with ambiguous boundary in remote sensing imagery - A case of potential loess landslide. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15: 323-338. |
Yi, Y., and Zhang, W., 2020. A new deep-learning-based approach for earthquake-triggered landslide detection from single-temporal RapidEye satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 6166-6176. |
Yu, B., Chen, F., and Xu, C., 2020. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Computers & Geosciences, 135: 104388. |
Yu, B., Xu, C., Chen, F., Wang, N., and Wang, L., 2022. HADeenNet: A hierarchical-attention multi-scale deconvolution network for landslide detection. International Journal of Applied Earth Observation and Geoinformation, 111: 102853. |
Zhang, J., Xing, M., Sun, G. C., and Shi, X., 2022. Vehicle trace detection in two-pass SAR coherent change detection images with spatial feature enhanced Unet and adaptive augmentation. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-15. |
Zhang, Y., Zhou, C., Chang, F., and Kot, A. C., 2019. Multi-resolution attention convolutional neural network for crowd counting. Neurocomputing, 329: 144-152. |
Zhao, B., Wang, Y., Li, W., Lu, H., and Li, Z., 2022. Evaluation of factors controlling the spatial and size distributions of landslides, 2021 Nippes earthquake, Haiti. Geomorphology, 415: 108419. |
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J., 2017. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2881-2890. |
Zhong, C., Liu, Y., Gao, P., Chen, W., Li, H., Hou, Y., Nuremanguli, T., Ma, H., 2020. Landslide mapping with remote sensing: challenges and opportunities. International Journal of Remote Sensing, 41(4): 1555-1581. |