Casagli, N., Intrieri, E., Tofani, V., et al., 2023. Landslide Detection, Monitoring and Prediction with Remote-Sensing Techniques. Nature Reviews Earth & Environment, 4(1): 51–64. https://doi.org/10.1038/s43017-022-00373-x |
Cui, P., Peng, J. B., Shi, P. J., et al., 2021. Scientific Challenges of Research on Natural Hazards and Disaster Risk. Geography and Sustainability, 2(3): 216–223. https://doi.org/10.1016/j.geosus.2021.09.001 |
Dai, C., Li, W. L., Wang, D., et al., 2021. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 32(5): 1092–1103. https://doi.org/10.1007/s12583-020-1380-0 |
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., et al., 2019. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sensing, 11(2): 196–216. https://doi.org/10.3390/rs11020196 |
Guo, C., Xu, Q., Dong, X. J., et al., 2021. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 32(5): 1079–1091. https://doi.org/10.1007/s12583-021-1467-2 |
Guo, J., Xu, M., Zhang, Q., et al., 2020. Reservoir Regulation for Control of an Ancient Landslide Reactivated by Water Level Fluctuations in Heishui River, China. Journal of Earth Science, 31(6): 1058–1067. https://doi.org/10.1007/s12583-020-1341-7 |
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27–30, 2016, Las Vegas, NV, USA. IEEE: 770–778. https://doi.org/10.1109/CVPR.2016.90 |
Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21–26, 2017, Honolulu, HI, USA. IEEE: 2261–2269. https://doi.org/10.1109/CVPR.2017.243 |
Iandola, F. N., Han, S., Moskewicz, M. W., et al., 2016. SqueezeNet: AlexNet-Level Accuracy with 50x fewer Parameters and < 0.5 MB Model Size. arXiv: 1602.07360. https://doi.org/10.48550/arXiv.1602.07360 |
Ji, S. P., Yu, D. W., Shen, C. Y., et al., 2020. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks. Landslides, 17(6): 1337–1352. https://doi.org/10.1007/s10346-020-01353-2 |
Kawabata, D., Bandibas, J., 2009. Landslide Susceptibility Mapping Using Geological Data, a DEM from ASTER Images and an Artificial Neural Network (ANN). Geomorphology, 113(1/2): 97–109. https://doi.org/10.1016/j.geomorph.2009.06.006 |
Li, C. D., Criss, R. E., Fu, Z. Y., et al., 2021. Evolution Characteristics and Displacement Forecasting Model of Landslides with Stair-Step Sliding Surface along the Xiangxi River, Three Gorges Reservoir Region, China. Engineering Geology, 283: 105961. https://doi.org/10.1016/j.enggeo.2020.105961 |
Li, Y., Wang, P., Feng, Q. L., et al., 2023. Landslide Detection Based on Shipborne Images and Deep Learning Models: A Case Study in the Three Gorges Reservoir Area in China. Landslides, 20(3): 547–558. https://doi.org/10.1007/s10346-022-01997-2 |
Li, Z. H., Zhang, C. L., Chen, B., et al., 2022. A Technical Framework of Landslide Prevention Based on Multi-Source Remote Sensing and Its Engineering Application. Earth Science, 47(6): 1901–1916. https://doi.org/10.3799/dqkx.2022.205 (in Chinese with English Abstract) |
Long, J. J., Li, C. D., Liu, Y., et al., 2022. A Multi-Feature Fusion Transfer Learning Method for Displacement Prediction of Rainfall Reservoir-Induced Landslide with Step-Like Deformation Characteristics. Engineering Geology, 297: 106494. https://doi.org/10.1016/j.enggeo.2021.106494 |
Meng, J., Li, C. D., Zhou, J. Q., et al., 2023. Multiscale Evolution Mechanism of Sandstone under Wet-Dry Cycles of Deionized Water: From Molecular Scale to Macroscopic Scale. Journal of Rock Mechanics and Geotechnical Engineering, 15(5): 1171–1185. https://doi.org/10.1016/j.jrmge.2022.10.008 |
Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental Improvement. arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767 |
Selvaraju, R. R., Cogswell, M., Das, A., et al., 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. 2017 IEEE International Conference on Computer Vision (ICCV). October 22–29, 2017, Venice, Italy. IEEE: 618–626. https://doi.org/10.1109/ICCV.2017.74 |
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv: 1409.1556. https://doi.org/10.48550/arXiv.1409.1556 |
Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 7–12, 2015, Boston, MA, USA. IEEE: 1–9. https://doi.org/10.1109/CVPR.2015.7298594 |
Tan, M. X., Le, Q. V., 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv: 1905.11946. https://doi.org/10.48550/arXiv.1905.11946 |
Tang, H. M., Yong, R., Ez Eldin, M. A. M., 2017. Stability Analysis of Stratified Rock Slopes with Spatially Variable Strength Parameters: The Case of Qianjiangping Landslide. Bulletin of Engineering Geology and the Environment, 76(3): 839–853. https://doi.org/10.1007/s10064-016-0876-4 |
Yan, Y., Guo, C., Zhong, N., et al., 2022. Deformation Characteristics of Jiaju Ancient Landslide Based on InSAR Monitoring Method, Sichuan, China. Earth Science, 47(12): 4681–4697. https://doi.org/10.3799/dqkx.2022.162 (in Chinese with English Abstract) |