Citation: | Tatiana Osipova, Gennadiy Kallistov, Maria Chervyakovskaya, Vasiliy Chervyakovskiy. Major- and Trace-Element Chemistry of Clinopyroxene and Amphibole from High-Mg Diorite in Chelyabinsk Massif (Urals): Insights into Petrogenesis and Magma Source Constraints. Journal of Earth Science, 2025, 36(2): 508-523. doi: 10.1007/s12583-023-1963-7 |
Field- and petrographic investigations, together with microanalytical major- and trace-element studies, were carried out on clinopyroxene and amphibole from high-Mg diorite in the subduction-related Chelyabinsk granitic massif to understand its petrogenesis and source. The clinopyroxene composition (high Mg#, Cr-content, sum of REE and Ti/Eu ratio; depletion in HREE; negative Eu-anomaly) indicates that it formed from a reduced melt derived from a mantle source metasomatized by fluids/melts having crustal affinity. Melt compositions in equilibrium with clinopyroxene and amphibole were calculated using solid/liquid partition coefficients. The high Nb/Y and Zr/Y ratio values of a liquid simulated from clinopyroxene, which appears to have very similar characteristics to sanukitoid melts, indicate a low degree of melting of the mantle source. Melt simulated from amphibole is more evolved and more felsic (dacitic). It displays a geochemical "amphibole fractionation" signature, indicating the peritectic transformation of clinopyroxene to amphibole in the lower crust. Rock textures and major element mineral compositions suggest that further amphibole was precipitated directly from the melt in the middle crust. The results show that the Chelyabinsk high-Mg diorite was probably formed as a cumulate from sanukitoid-like melt during its ascent and cooling below dacitic liquidus inside the amphibole stability field.
Abe, N., Arai, S., Yurimoto, H., 1998. Geochemical Characteristics of the Uppermost Mantle beneath the Japan Island Arcs: Implications for Upper Mantle Evolution. Physics of the Earth and Planetary Interiors, 107(1/2/3): 233–248. https://doi.org/10.1016/s0031-9201(97)00136-2 |
Andújar, J., Scaillet, B., Pichavant, M., et al., 2015. Differentiation Conditions of a Basaltic Magma from Santorini, and Its Bearing on the Production of Andesite in Arc Settings. Journal of Petrology, 56(4): 765–794. https://doi.org/10.1093/petrology/egv016 |
Atherton, M. P., Ghani, A. A., 2002. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland. Lithos, 62(3/4): 65–85. https://doi.org/10.1016/s0024-4937(02)00111-1 |
Bea, F., Fershtater, G. B., Montero, P., 2002. Granitoids of the Uralides: Implications for the Evolution of the Orogen. In: Brown, D., Juhlin, C., Puchkov, V., eds., Geophysical Monograph Series. American Geophysical Union, Washington, D. C. 211–232. |
Bea, F., Montero, P., Molina, J. F., 1999. Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia. The Journal of Geology, 107(4): 399–419. https://doi.org/10.1086/314356 |
Bédard, J. H., 2001. Parental Magmas of the Nain Plutonic Suite Anorthosites and Mafic Cumulates: A Trace Element Modelling Approach. Contributions to Mineralogy and Petrology, 141(6): 747–771. https://doi.org/10.1007/s004100100268 |
Bertrand, P., Mercier, J. C C., 1985. The Mutual Solubility of Coexisting Ortho- and Clinopyroxene: Toward an Absolute Geothermometer for the Natural System? Earth and Planetary Science Letters, 76(1/2): 109–122. https://doi.org/10.1016/0012-821x(85)90152-9 |
Blatter, D. L., Sisson, T. W., Ben Hankins, W., 2017. Voluminous Arc Dacites as Amphibole Reaction-Boundary Liquids. Contributions to Mineralogy and Petrology, 172(5): 27. https://doi.org/10.1007/s00410-017-1340-6 |
Clemens, J. D., Kisters, A. F. M., 2021. Magmatic Indicators of Subduction Initiation: The Bimodal Goas Intrusive Suite in the Pan-African Damara Belt of Namibia. Precambrian Research, 362: 106309. https://doi.org/10.1016/j.precamres.2021.106309 |
Coltorti, M., Bonadiman, C., Hinton, R. W., et al., 1999. Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1): 133–165. https://doi.org/10.1093/petroj/40.1.133 |
Davidson, J. P., Hora, J. M., Garrison, J. M., et al., 2005. Crustal Forensics in Arc Magmas. Journal of Volcanology and Geothermal Research, 140(1/2/3): 157–170. https://doi.org/10.1016/j.jvolgeores.2004.07.019 |
Davidson, J., Turner, S., Handley, H., et al., 2007. Amphibole "Sponge" in Arc Crust? Geology, 35(9): 787–790 doi: 10.1130/G23637A.1 |
de Oliveira, M. A., Dall'Agnol, R., Scaillet, B., 2010. Petrological Constraints on Crystallization Conditions of Mesoarchean Sanukitoid Rocks, Southeastern Amazonian Craton, Brazil. Journal of Petrology, 51(10): 2121–2148. https://doi.org/10.1093/petrology/egq051 |
Dong, L. L., Yang, Z. M., Song, M. C., 2023. Prolonged Mantle Modification beneath the North China Craton: Evidence from Contrasting Mafic Dykes in Jiaodong Peninsula. Journal of Earth Science, 34(4): 1150–1164. https://doi.org/10.1007/s12583-022-1737-7 |
Erdmann, S., Martel, C., Pichavant, M., et al., 2014. Amphibole as an Archivist of Magmatic Crystallization Conditions: Problems, Potential, and Implications for Inferring Magma Storage Prior to the Paroxysmal 2010 Eruption of Mount Merapi, Indonesia. Contributions to Mineralogy and Petrology, 167(6): 1016. https://doi.org/10.1007/s00410-014-1016-4 |
Fabbrizio, A., Schmidt, M. W., Petrelli, M., 2021. Effect of fO2 on Eu Partitioning between Clinopyroxene, Orthopyroxene and Basaltic Melt: Development of a Eu3+/Eu2+ Oxybarometer. Chemical Geology, 559: 119967. https://doi.org/10.1016/j.chemgeo.2020.119967 |
Fitton, J. G., 2007. The OIB Paradox. In: Foulger, G. R., Jurdy, D. M., eds., Plates, Plumes, and Planetary Processes: Geological Society of America Special Paper, 430. Geological Society of America (GSA), Boulder, CO: 387–412 |
Gao, J. F., Zhou, M. F., 2013. Magma Mixing in the Genesis of the Kalatongke Dioritic Intrusion: Implications for the Tectonic Switch from Subduction to Post-Collision, Chinese Altay, NW China. Lithos, 162: 236–250. https://doi.org/10.1016/j.lithos.2013.01.007 |
Gao, R. H., Lassiter, J. C., Ramirez, G., 2017. Origin of Temporal Compositional Trends in Monogenetic Vent Eruptions: Insights from the Crystal Cargo in the Papoose Canyon Sequence, Big Pine Volcanic Field, CA. Earth and Planetary Science Letters, 457: 227–237. https://doi.org/10.1016/j.epsl.2016.10.013 |
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162 |
Greene, A. R., DeBARI, S. M., Kelemen, P. B., et al., 2006. A Detailed Geochemical Study of Island Arc Crust: The Talkeetna Arc Section, South-Central Alaska. Journal of Petrology, 47(6): 1051–1093. https://doi.org/10.1093/petrology/egl002 |
Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643–646. https://doi.org/10.1130/g23603a.1 |
Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12): 2031–2048. https://doi.org/10.2138/am. 2012.4276 doi: 10.2138/am.2012.4276 |
Heilimo, E., Halla, J., Hölttä, P., 2010. Discrimination and Origin of the Sanukitoid Series: Geochemical Constraints from the Neoarchean Western Karelian Province (Finland). Lithos, 115(1/2/3/4): 27–39. https://doi.org/10.1016/j.lithos.2009.11.001 |
Hill, E., Blundy, J. D., Wood, B. J., 2011. Clinopyroxene-Melt Trace Element Partitioning and the Development of a Predictive Model for HFSE and Sc. Contributions to Mineralogy and Petrology, 161(3): 423–438. https://doi.org/10.1007/s00410-010-0540-0 |
Hu, W. L., Wang, Q., Yang, J. H., et al., 2020. Amphibole and Whole-Rock Geochemistry of Early Late Jurassic Diorites, Central Tibet: Implications for Petrogenesis and Geodynamic Processes. Lithos, 370: 105644. https://doi.org/10.1016/j.lithos.2020.105644 |
Humphreys, M. C. S., Cooper, G. F., Zhang, J., et al., 2019. Unravelling the Complexity of Magma Plumbing at Mount St. Helens: A New Trace Element Partitioning Scheme for Amphibole. Contributions to Mineralogy and Petrology, 174(1): 9. https://doi.org/10.1007/s00410-018-1543-5 |
Hürlimann, N., Müntener, O., Ulmer, P., et al., 2016. Primary Magmas in Continental Arcs and Their Differentiated Products: Petrology of a Post-Plutonic Dyke Suite in the Tertiary Adamello Batholith (Alps). Journal of Petrology, 57(3): 495–534. https://doi.org/10.1093/petrology/egw016 |
Irvine, T. N., 1982. Terminology for Layered Intrusions. Journal of Petrology, 23(2): 127–162. https://doi.org/10.1093/petrology/23.2.127-a |
Jugo, P. J., Luth, R. W., Richards, J. P., 2005. An Experimental Study of the Sulfur Content in Basaltic Melts Saturated with Immiscible Sulfide or Sulfate Liquids at 1 300 ℃ and 1·0 GPa. Journal of Petrology, 46(4): 783–798. https://doi.org/10.1093/petrology/egh097 |
Kamei, A., Owada, M., Nagao, T., et al., 2004. High-Mg Diorites Derived from Sanukitic HMA Magmas, Kyushu Island, Southwest Japan Arc: Evidence from Clinopyroxene and Whole Rock Compositions. Lithos, 75(3/4): 359–371. https://doi.org/10.1016/j.lithos.2004.03.006 |
Klaver, M., Matveev, S., Berndt, J., et al., 2017. A Mineral and Cumulate Perspective to Magma Differentiation at Nisyros Volcano, Aegean Arc. Contributions to Mineralogy and Petrology, 172(11): 95. https://doi.org/10.1007/s00410-017-1414-5 |
Kuznetsov, N. S., Savelyev, V. P., Puzhakov, B. A., et al., 2018. State Geological Map of the Russian Federation Scale of 1 : 200 000. Second Edition. South Ural Series, N-41-Ⅷ (Chelyabinsk). Explanatory Letter. Moscow Branch of VSEGEI, Moscow. 116 (in Russian). |
Leissner, L., Schlüter, J., Horn, I., et al., 2015. Exploring the Potential of Raman Spectroscopy for Crystallochemical Analyses of Complex Hydrous Silicates: Ⅰ. Amphiboles. American Mineralogist, 100(11/12): 2682–2694. https://doi.org/10.2138/am-2015-5323 |
Li, X. H., Zeng, Z. G., Yang, H. X., et al., 2020. Integrated Major and Trace Element Study of Clinopyroxene in Basic, Intermediate and Acidic Volcanic Rocks from the Middle Okinawa Trough: Insights into Petrogenesis and the Influence of Subduction Component. Lithos, 352: 105320. https://doi.org/10.1016/j.litho s.2019.105320 doi: 10.1016/j.lithos.2019.105320 |
Lledo, H. L., Jenkins, D. M., 2008. Experimental Investigation of the Upper Thermal Stability of Mg-Rich Actinolite; Implications for Kiruna-Type Iron Deposits. Journal of Petrology, 49(2): 225–238. https://doi.org/10.1093/petrology/egm078 |
Ma, Q., Xu, Y. G., Zheng, J. P., et al., 2016. Coexisting Early Cretaceous High-Mg Andesites and Adakitic Rocks in the North China Craton: The Role of Water in Intraplate Magmatism and Cratonic Destruction. Journal of Petrology, 57(7): 1279–1308. https://doi.org/10.1093/petrology/egw040 |
Ma, S. W., Liu, C. F., Xu, Z. Q., et al., 2017. Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 28(2): 249–264. https://doi.org/10.1007/s12583-016-0912-2 |
Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048 |
Melekhova, E., Blundy, J., Robertson, R., et al., 2015. Experimental Evidence for Polybaric Differentiation of Primitive Arc Basalt beneath St. Vincent, Lesser Antilles. Journal of Petrology, 56(1): 161–192. https://doi.org/10.1093/petrology/egu074 |
Moretti, R., Baker, D. R., 2008. Modeling the Interplay of fO2 and fS2 along the FeS-Silicate Melt Equilibrium. Chemical Geology, 256(3/4): 286–298. https://doi.org/10.1016/j.chemgeo.2008.06.055 |
Morimoto, N., Fabries, J., Ferguson, A. K., et al., 1988. Nomenclature of Pyroxenes. American Mineralogist, 73: 1123–1133 |
Nimis, P., 1999. Clinopyroxene Geobarometry of Magmatic Rocks. Part 2. Structural Geobarometers for Basic to Acid, Tholeiitic and Mildly Alkaline Magmatic Systems. Contributions to Mineralogy and Petrology, 135: 62–74 doi: 10.1007/s004100050498 |
Nosova, A. A., Sazonova, L. V., Narkisova, V. V., et al., 2002. Minor Elements in Clinopyroxene from Paleozoic Volcanics of the Tagil Island Arc in the Central Urals. Geochemistry International, 40(3): 219–232 |
Osipova, T. A., Kallistov, G. A., Travin, A. V., et al., 2010. The First Data about Mesozoic Granites in Chelyabinsk Intrusive (South Urals). Lithosphere (Russia), 4: 163–169 (in Russian) |
Osipova, T. A., Kallistov, G. A., Zaitseva, M. V., 2019. Zircon in high-Mg Diorite of the Chelyabinsk Massif (South Urals): Morphology, Geochemical Signature, and Petrogenesis Implications. Geodynamics & Tectonophysics, 10(2): 289–308. https://doi.org/10.5800/gt-2019-10-2-0415 |
Osipova, T. A., Kallistov, G. A., Zamyatin, D. A., et al., 2021. Zr-Th-U Minerals in High-Mg Diorite of the Chelyabinsk Massif (South Urals)-Evidence for Crust-Mantle Interaction. Geodynamics & Tectonophysics, 12(2): 350–364. https://doi.org/10.5800/gt-2021-12-2-0528 |
Papike, J. J., 2005. Comparative Planetary Mineralogy: Valence State Partitioning of Cr, Fe, Ti, and V among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts. American Mineralogist, 90(2/3): 277–290. https://doi.org/10.2138/am.2005.1779 |
Pichavant, M., MacDonald, R., 2007. Crystallization of Primitive Basaltic Magmas at Crustal Pressures and Genesis of the Calc-Alkaline Igneous Suite: Experimental Evidence from St Vincent, Lesser Antilles Arc. Contributions to Mineralogy and Petrology, 154(5): 535–558. https://doi.org/10.1007/s00410-007-0208-6 |
Pitcher, W. S., 1991. Synplutonic Dykes and Mafic Enclaves. In: Didier, J., Barbarin, B., eds., Enclaves and Granite Petrology. Elsevier, Amsterdam. 383–391 |
Pouchou, J. L, Pichoir, F., 1984. A New Model for Quantitative X-Ray Microanalysis, Part I: Application to the Analysis of Homogeneous Samples. La Recherche Aerospatiale, 3: 13–38 |
Pribavkin, S. V., Кallistov, G. А., Оsipova Т. A., et al., 2019. Geochemical Behavior of Chromium in Minerals of High-Mg Rocks, Associated with Granitoid Massifs of the Urals. Lithosphere (Russia), 19(3): 416–435. https://doi.org/10.24930/1681-9004-2019-19-3-416-435 |
Puchkov, V. N., 2010. Geology of the Urals and Cis-Urals (Actual Problems of Stratigraphy, Tectonics, Geodynamics and Metallogeny). Design Poligraph Service, Ufa. 280 (in Russian with English Abstract) |
Putirka, K., 2016. Amphibole Thermometers and Barometers for Igneous Systems and Some Implications for Eruption Mechanisms of Felsic Magmas at Arc Volcanoes. American Mineralogist, 101(4): 841–858. https://doi.org/10.2138/am-2016-5506 |
Ridolfi, F., 2021. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals, 11(3): 324. https://doi.org/10.3390/min11030324 |
Rivalenti, G., Vannucci, R., Rampone, E., et al., 1996. Peridotite Clinopyroxene Chemistry Reflects Mantle Processes rather than Continental Versus Oceanic Settings. Earth and Planetary Science Letters, 139(3/4): 423–437. https://doi.org/10.1016/0012-821x(96)00019-2 |
Sazonova, L. V., Nosova, A. A., Larionova, Y. O., et al., 2011. Mesoproterozoic Picrites of the East Margin of East-European Platform and Bashkirian Meganticlinorium: Petrogenesis and Olivine and Clinopyroxene Composition Features. Lithosphere (Russia), 3: 64–83 (in Russian with English Abstract) |
Sazonova, L. V., Nosova, A. A., Petrova, L. G., 2010. Neoproterozoic Riftogenic Subalkali Basites of the Central Urals: Geochemical Specifics of Clinopyroxene. Geochemistry International, 48(3): 260–279. https://doi.org/10.1134/s0016702910030043 |
Shearer, C. K., Papike, J. J., Karner, J. M., 2006. Pyroxene Europium Valence Oxybarometer: Effects of Pyroxene Composition, Melt Composition, and Crystallization Kinetics. American Mineralogist, 91(10): 1565–1573. https://doi.org/10.2138/am.2006.2098 |
Shi, H. F., Wang, J. P., Yao, Y., et al., 2020. Geochemistry and Geochronology of Diorite in Pengshan Area of Jiangxi Province: Implications for Magmatic Source and Tectonic Evolution of Jiangnan Orogenic Belt. Journal of Earth Science, 31(1): 23–34. https://doi.org/10.1007/s12583-020-0875-z |
Shimizu, K., Liang, Y., Sun, C. G., et al., 2017. Parameterized Lattice Strain Models for REE Partitioning between Amphibole and Silicate Melt. American Mineralogist, 102(11): 2254–2267. https://doi.org/10.2138/am-2017-6110 |
Smith, D. J., 2014. Clinopyroxene Precursors to Amphibole Sponge in Arc Crust. Nature Communications, 5: 4329. https://doi.org/10.1038/ncomms5329 |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basins. Cambridge University Press, London. Geological Society London Special Publications, 42: 313–345 |
Tecchiato, V., Gaeta, M., Mollo, S., et al., 2018. Snapshots of Primitive Arc Magma Evolution Recorded by Clinopyroxene Textural and Compositional Variations: The Case of Hybrid Crystal-Rich Enclaves from Capo Marargiu Volcanic District (Sardinia, Italy). American Mineralogist, 103(6): 899–910. https://doi.org/10.2138/am-2018-6446 |
Tiepolo, M., Oberti, R., Zanetti, A., et al., 2007. Trace-Element Partitioning between Amphibole and Silicate Melt. Reviews in Mineralogy and Geochemistry, 67(1): 417–452. https://doi.org/10.2138/rmg.2007.67.11 |
Ulmer, P., Kaegi, R., Müntener, O., 2018. Experimentally Derived Intermediate to Silica-Rich Arc Magmas by Fractional and Equilibrium Crystallization at 1·0 GPa: An Evaluation of Phase Relationships, Compositions, Liquid Lines of Descent and Oxygen Fugacity. Journal of Petrology, 59(1): 11–58. https://doi.org/10.1093/petrology/egy017 |
Wang, A., Dhamelincourt, P., Turrell, G., 1988. Raman Microspectroscopic Study of the Cation Distribution in Amphiboles. Applied Spectroscopy, 42(8): 1441–1450. https://doi.org/10.1366/0003702884429490 |
Wass, S. Y., 1979. Multiple Origins of Clinopyroxenes in Alkali Basaltic Rocks. Lithos, 12(2): 115–132. https://doi.org/10.1016/0024-4937(79)90043-4 |
Wiebe, R. A., Manon, M. R., Hawkins, D. P., et al., 2004. Late-Stage Mafic Injection and Thermal Rejuvenation of the Vinalhaven Granite, Coastal Maine. Journal of Petrology, 45(11): 2133–2153. https://doi.org/10.1093/petrology/egh050 |
Xia, Y., Wang, Q., Zhu, D. C., et al., 2020. Intermediate Rocks in the Comei Large Igneous Provinces Produced by Amphibole Crystallization of Tholeiitic Basaltic Magma. Lithos, 374: 105731. https://doi.org/10.1016/j.lithos.2020.105731 |
Xu, W. L., Gao, S., Wang, Q. H., et al., 2006. Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721–724. https://doi.org/10.1130/g22551.1 |
Xu, W. L., Hergt, J. M., Gao, S., et al., 2008. Interaction of Adakitic Melt-Peridotite: Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton. Earth and Planetary Science Letters, 265(1/2): 123–137. https://doi.org/10.1016/j.epsl.2007.09.041 |
Yamato, P., Duretz, T., May, D. A., et al., 2015. Quantifying Magma Segregation in Dykes. Tectonophysics, 660: 132–147. https://doi.org/10.1016/j.tecto.2015.08.030 |
Zakrevskaya, O. Y., Simakin, A. G., Salova, T. P., 2009. Amphibolization in Ultramafic Rocks and Buffering of Oxygen Fugacity of Andesite. In: Informational Bulletin of the Annual Seminar of Experimental Mineralogy, Petrology and Geochemistry – 2009. Vestnik Otdelenia nauk o Zemle RAN, 1(27): 1–4. |
Zhou, J. S., Yang, Z. S., Hou, Z. Q., et al., 2020. Amphibole-Rich Cumulate Xenoliths in the Zhazhalong Intrusive Suite, Gangdese Arc: Implications for the Role of Amphibole Fractionation during Magma Evolution. American Mineralogist, 105(2): 262–275. https://doi.org/10.2138/am-2020-7199 |