Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Xiangying Ye, Bin Li, Dongbo Tan, Kecheng Liu, Zhiyong Zhu, Hafiz Muhammad Siddique, Yilin Xiao. Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 2024, 35(6): 1878-1894. doi: 10.1007/s12583-023-1972-1
Citation: Xiangying Ye, Bin Li, Dongbo Tan, Kecheng Liu, Zhiyong Zhu, Hafiz Muhammad Siddique, Yilin Xiao. Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 2024, 35(6): 1878-1894. doi: 10.1007/s12583-023-1972-1

Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview

doi: 10.1007/s12583-023-1972-1
More Information
  • Corresponding author: Bin Li, cutelb@csu.edu.cn
  • Received Date: 10 Aug 2023
  • Accepted Date: 24 Dec 2023
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • The origin of highly-fractionated granite-pegmatite systems and their associated rare metal mineralization has been widely studied, but there is still ongoing debate. Prevailing hypotheses suggest that pegmatite formation and the associated rare metal mineralization are closely related to aqueous fluid processes. Lithium (Li) isotope analysis has been widely applied to trace granite-pegmatite evolution. This is because lithium is widely present in various minerals (e.g., mica, tourmaline) that record the melt and fluid compositions, and lithium isotopes are sensitive to magmatic-hydrothermal processes. We briefly review the methodology of Li isotope analyses, the mechanisms of Li isotopic fractionation, and, in particular, Li isotope fractionation in granite-pegmatite system based on Li isotope data we have collected and the latest developments in Li isotope geochemistry. With the development of analytical technology, high-precision measurement of the Li content and isotopic compositions have facilitated a series of scientific breakthroughs in understanding the magmatic-hydrothermal evolution of rare-element ore deposits. Li isotope analyses on bulk mineral separates have demonstrated their ability to trace various hydrothermal processes. In situ Li isotope analysis methods has been enhanced by the development of new, homogeneous mineral reference materials. In situ SIMS and LA-MC-ICP-MS Li isotope measurements on minerals (e.g., tourmaline) will likely become more important in studying the fluid-rock interactions in magmatic, metamorphic, and hydrothermal processes, as well as on pegmatite petrogenesis and rare-metal mineralization.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aulbach, S., Rudnick, R. L., 2009. Origins of Non-Equilibrium Lithium Isotopic Fractionation in Xenolithic Peridotite Minerals: Examples from Tanzania. Chemical Geology, 258(1/2): 17–27. https://doi.org/10.1016/j.chemgeo.2008.07.015
    Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565–1582. https://doi.org/10.1093/petrology/egh019
    Badanina, E. V., Trumbull, R. B., Dulski, P., et al., 2006. The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites: A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 44(3): 667–692. https://doi.org/10.2113/gscanmin.44.3.667
    Badanina, E. V., Veksler, I. V., Thomas, R., et al., 2004. Magmatic Evolution of Li-F, Rare-Metal Granites: A Case Study of Melt Inclusions in the Khangilay Complex, Eastern Transbaikalia (Russia). Chemical Geology, 210(1/2/3/4): 113–133. https://doi.org/10.1016/j.chemgeo.2004.06.006
    Barnes, E. M., Weis, D., Groat, L. A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132/133: 21–36. https://doi.org/10.1016/j.lithos.2011.11.014
    Bazarkina, E. F., Pokrovski, G. S., Zotov, A. V., et al., 2010. Structure and Stability of Cadmium Chloride Complexes in Hydrothermal Fluids. Chemical Geology, 276(1/2): 1–17. https://doi.org/10.1016/j.chemgeo.2010.03.006
    Bell, D. R., Hervig, R. L., Buseck, P. R., et al., 2009. Lithium Isotope Analysis of Olivine by SIMS: Calibration of a Matrix Effect and Application to Magmatic Phenocrysts. Chemical Geology, 258(1/2): 5–16. https://doi.org/10.1016/j.chemgeo.2008.10.008
    Bertoldi, C., Proyer, A., Garbe-Schönberg, D., et al., 2004. Comprehensive Chemical Analyses of Natural Cordierites: Implications for Exchange Mechanisms. Lithos, 78(4): 389–409. https://doi.org/10.1016/j.lithos.2004.07.003
    Blundy, J. D., Robinson, J. A. C., Wood, B. J., 1998. Heavy REE are Compatible in Clinopyroxene on the Spinel Lherzolite Solidus. Earth and Planetary Science Letters, 160(3/4): 493–504. https://doi.org/10.1016/s0012-821x(98)00106-x
    Bohlin, M. S., Misra, S., Lloyd, N., et al., 2018. High-Precision Determination of Lithium and Magnesium Isotopes Utilising Single Column Separation and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry: RCM, 32(2): 93–104. https://doi.org/10.1002/rcm.8020
    Bouvier, A. S., Ushikubo, T., Kita, N. T., et al., 2012. Li Isotopes and Trace Elements as a Petrogenetic Tracer in Zircon: Insights from Archean TTGs and Sanukitoids. Contributions to Mineralogy and Petrology, 163(5): 745–768. https://doi.org/10.1007/s00410-011-0697-1
    Brigatti, M. F., Kile, D. E., Poppi, L., 2003. Crystal Structure and Chemistry of Lithium-Bearing Trioctahedral Micas-3T. European Journal of Mineralogy, 15(2): 349–355. https://doi.org/10.1127/0935-1221/2003/0015-0349
    Cerny, P., London, D., Novak, M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements, 8(4): 289–294. https://doi.org/10.2113/gselements.8.4.289
    Cameron, E. N., Jahns, R. H., McNair, A. H., et al., 1950. Internal Structure of Granitic Pegmatites. Geologiska Föreningen i Stockholm Förhandlingar, 72(3): 361–362. https://doi.org/10.1080/11035895009451857
    Candela, P. A., Piccoli, P. M., 1995. Model Ore-Metal Partitioning from Melts into Vapor and Vapor/Brine Mixtures. In: Mineralogical Association of Canada Short Course Series, v. 23. Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada. 101–127
    Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055
    Chan, L. H., Edmond, J. M., 1988. Variation of Lithium Isotope Composition in the Marine Environment: A Preliminary Report. Geochimica et Cosmochimica Acta, 52(6): 1711–1717. https://doi.org/10.1016/0016-7037(88)90239-6
    Chan, L. H., Edmond, J. M., Thompson, G., 1993. A Lithium Isotope Study of Hot Springs and Metabasalts from Mid-Ocean Ridge Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 98(B6): 9653–9659. https://doi.org/10.1029/92jb00840
    Chan, L. H., 1987. Lithium Isotope Analysis by Thermal Ionization Mass Spectrometry of Lithium Tetraborate. Analytical Chemistry, 59(22): 2662–2665. https://doi.org/10.1021/ac00149a007
    Chan, L. H., Leeman, W. P., You, C. F., 1999. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids. Chemical Geology, 160(4): 255–280. https://doi.org/10.1016/s0009-2541(99)00101-1
    Chan, L. H., Leeman, W. P., You, C. F., 2002. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids: Correction. Chemical Geology, 182(2/3/4): 293–300. https://doi.org/10.1016/s0009-2541(01)00298-4
    Charlier, B. L. A., Ginibre, C., Morgan, D., et al., 2006. Methods for the Microsampling and High-Precision Analysis of Strontium and Rubidium Isotopes at Single Crystal Scale for Petrological and Geochronological Applications. Chemical Geology, 232(3/4): 114–133. https://doi.org/10.1016/j.chemgeo.2006.02.015
    Chen, B., Gu, H. O., Chen, Y. J., et al., 2018. Lithium Isotope Behaviour during Partial Melting of Metapelites from the Jiangnan Orogen, South China: Implications for the Origin of REE Tetrad Effect of F-Rich Granite and Associated Rare-Metal Mineralization. Chemical Geology, 483: 372–384. https://doi.org/10.1016/j.chemgeo.2018.03.002
    Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551: 119769. https://doi.org/10.1016/j.chemgeo.2020.119769
    Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite-Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957–3960. https://doi.org/10.3799/dqkx.2023.189 (in Chinese with English Abstract)
    Choi, H. B., Ryu, J. S., Shin, W. J., et al., 2019. The Impact of Anthropogenic Inputs on Lithium Content in River and Tap Water. Nature Communications, 10: 5371. https://doi.org/10.1038/s41467-019-13376-y
    Choi, M. S., Shin, H. S., Kil, Y. W., 2010. Precise Determination of Lithium Isotopes in Seawater Using MC-ICP-MS. Microchemical Journal, 95(2): 274–278. https://doi.org/10.1016/j.microc.2009.12.013
    Coogan, L. A., 2011. Preliminary Experimental Determination of the Partitioning of Lithium between Plagioclase Crystals of Different Anorthite Contents. Lithos, 125(1/2): 711–715. https://doi.org/10.1016/j.lithos.2011.03.016
    Coogan, L., Kasemann, S., Chakraborty, S., 2005. Rates of Hydrothermal Cooling of New Oceanic Upper Crust Derived from Lithium-Geospeedometry. Earth and Planetary Science Letters, 240(2): 415–424. https://doi.org/10.1016/j.epsl.2005.09.020
    Cooper, K. M., 2019. Time Scales and Temperatures of Crystal Storage in Magma Reservoirs: Implications for Magma Reservoir Dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 377(2139): 20180009. https://doi.org/10.1098/rsta.2018.0009
    Coplen, T. B., Böhlke, J. K., De Bièvre, P., et al., 2002. Isotope-Abundance Variations of Selected Elements (IUPAC Technical Report). Pure and Applied Chemistry, 74(10): 1987–2017. https://doi.org/10.1351/pac200274101987
    Dargent, M., Dubessy, J., Truche, L., et al., 2014. Experimental Study of Uranyl(VI) Chloride Complex Formation in Acidic LiCl Aqueous Solutions under Hydrothermal Conditions (T = 21 ℃–350 ℃, Psat) Using Raman Spectroscopy. European Journal of Mineralogy, 25(5): 765–775. https://doi.org/10.1127/0935-1221/2013/0025-2319
    Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97–111. https://doi.org/10.1016/j.chemgeo.2015.06.029
    Elliott, T., Jeffcoate, A., Bouman, C., 2004. The Terrestrial Li Isotope Cycle: Light-Weight Constraints on Mantle Convection. Earth and Planetary Science Letters, 220(3/4): 231–245. https://doi.org/10.1016/s0012-821x(04)00096-2
    Elliott, T., Thomas, A., Jeffcoate, A., et al., 2006. Lithium Isotope Evidence for Subduction-Enriched Mantle in the Source of Mid-Ocean-Ridge Basalts. Nature, 443: 565–568. https://doi.org/10.1038/nature05144
    Ellis, B. S., Neukampf, J., Bachmann, O., et al., 2022. Biotite as a Recorder of an Exsolved Li-Rich Volatile Phase in Upper-Crustal Silicic Magma Reservoirs. Geology, 50(4): 481–485. https://doi.org/10.1130/g49484.1
    Fan, J. J., Tang, G. J., Wei, G. J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352: 105236. https://doi.org/10.1016/j.lithos.2019.105236
    Flesch, G. D., Anderson, A. R., Svec, H. J., 1973. A Secondary Isotopic Standard for 6Li/7Li Determinations. International Journal of Mass Spectrometry and Ion Processes, 12(3): 265–272. https://doi.org/10.1016/0020-7381(73)80043-9
    Froelich, F., Misra, S., 2014. Was the Late Paleocene–Early Eocene Hot Because Earth was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Clima. Oceanography, 27(1): 36–49. https://doi.org/10.5670/oceanog.2014.06
    Gahlan, H. A., Azer, M. K., Asimow, P. D., et al., 2023. Geochemistry, Petrogenesis and Alteration of Rare-Metal-Bearing Granitoids and Mineralized Silexite of the Al-Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 34(5): 1488–1510. https://doi.org/10.1007/s12583-022-1708-z
    Gallagher, K., Elliott, T., 2009. Fractionation of Lithium Isotopes in Magmatic Systems as a Natural Consequence of Cooling. Earth and Planetary Science Letters, 278(3/4): 286–296. https://doi.org/10.1016/j.epsl.2008.12.009
    Gao, Y. Y., 2016. Origin of A-Type Granites in East China: Evidence from Hf-O-Li Isotopes: [Dissertation]. Macquarie University, Sydney
    Gordienko, V. V., Gordienko, V. V., Sergeev, A. S., et al., 2007. First Data in Favor of the Crystallization Model of Lithium Isotope Fractionation in the Pegmatitic Process. Doklady Earth Sciences, 413(2): 441–443. https://doi.org/10.1134/S1028334x07030270
    Halama, R., McDonough, W. F., Rudnick, R. L., et al., 2007. The Li Isotopic Composition of Oldoinyo Lengai: Nature of the Mantle Sources and Lack of Isotopic Fractionation during Carbonatite Petrogenesis. Earth and Planetary Science Letters, 254(1/2): 77–89. https://doi.org/10.1016/j.epsl.2006.11.022
    Hart, S. R., Dunn, T., 1993. Experimental Cpx/Melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 113(1): 1–8. https://doi.org/10.1007/bf00320827
    Huang, K. F., You, C. F., Liu, Y. H., et al., 2010. Low-Memory, Small Sample Size, Accurate and High-Precision Determinations of Lithium Isotopic Ratios in Natural Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7): 1019–1024. https://doi.org/10.1039/b926327f
    Huh, Y., Chan, L. H., Zhang, L. B., et al., 1998. Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget. Geochimica et Cosmochimica Acta, 62(12): 2039–2051. https://doi.org/10.1016/s0016-7037(98)00126-4
    Huheey, J. E., Keiter, E. A., Keiter, R. L., et al., 2006. Inorganic Chemistry: Principles of Structure and Reactivity. Pearson Education
    Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11/12): 1229–1251. https://doi.org/10.2138/am-1995-11-1213
    Jackson, M. D., Blundy, J., Sparks, R. S. J., 2018. Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earthʼs Crust. Nature, 564: 405–409. https://doi.org/10.1038/s41586-018-0746-2
    Jahn, S., Wunder, B., 2009. Lithium Speciation in Aqueous Fluids at High P and T Studied by Ab Initio Molecular Dynamics and Consequences for Li-Isotope Fractionation between Minerals and Fluids. Geochimica et Cosmochimica Acta, 73(18): 5428–5434. https://doi.org/10.1016/j.gca.2009.06.017
    Jahns, R. H., 1953. The Genesis of Pegmatites: I. Occurrence and Origin of Giant Crystals. American Mineralogist, 38(7/8): 563–598
    Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; L, a Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8): 843–864. https://doi.org/10.2113/gsecongeo.64.8.843
    Jakopič, R., Richter, S., Kühn, H., et al., 2010. Determination of 240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu Isotope Ratios in Environmental Reference Materials and Samples from Chernobyl by Thermal Ionization Mass Spectrometry (TIMS) and Filament Carburization. Journal of Analytical Atomic Spectrometry, 25(6): 815–821. https://doi.org/10.1039/b925918j
    James, R. H., Palmer, M. R., 2000. The Lithium Isotope Composition of International Rock Standards. Chemical Geology, 166(3/4): 319–326. https://doi.org/10.1016/s0009-2541(99)00217-x
    Jeffcoate, A. B., Kasemann, S. A., Elliott, T., 2004. High-Spatial Resolution Lithium Isotope Variation in Mantle Minerals. Geochimica et Cosmochimica Acta, 68(11): A52
    Jiang, S. -Y., Wang, C. L., Zhang, L., et al., 2021. In situ Trace Element Tracing and Isotopic Dating of Pegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 95(10): 3017–3038 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2021.10.006
    Jiang, S. -Y., Su, H. M., Zhu, X. Y., et al., 2022. A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 33(5): 1095–1113. https://doi.org/10.1007/s12583-022-1736-8
    Jiang, S. -Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295–1298. https://doi.org/10.1007/s12583-023-2001-5
    Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 240: 98–130. https://doi.org/10.1016/j.gca.2018.08.024
    Kasemann, S. A., Jeffcoate, A. B., Elliott, T., 2005. Lithium Isotope Composition of Basalt Glass Reference Material. Analytical Chemistry, 77(16): 5251–5257. https://doi.org/10.1021/ac048178h
    Kimura, J. I., Chang, Q., Ishikawa, T., et al., 2016. Influence of Laser Parameters on Isotope Fractionation and Optimisation of Lithium and Boron Isotope Ratio Measurements Using Laser Ablation-Multiple Faraday Collector-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 31(11): 2305–2320. https://doi.org/10.1039/c6ja00283h
    Košler, J., Kučera, M., Sylvester, P., 2001. Precise Measurement of Li Isotopes in Planktonic Foraminiferal Tests by Quadrupole ICPMS. Chemical Geology, 181(1/2/3/4): 169–179. https://doi.org/10.1016/s0009-2541(01)00280-7
    Kowalski, P. M., Jahn, S., 2011. Prediction of Equilibrium Li Isotope Fractionation between Minerals and Aqueous Solutions at High P and T: An Efficient Ab Initio Approach. Geochimica et Cosmochimica Acta, 75(20): 6112–6123. https://doi.org/10.1016/j.gca.2011.07.039
    Kraiem, M., Richter, S., Kühn, H., et al., 2011. Development of an Improved Method to Perform Single Particle Analysis by TIMS for Nuclear Safeguards. Analytica Chimica Acta, 688(1): 1–7. https://doi.org/10.1016/j.aca.2010.12.003
    Küster, D., 1990. Rare-Metal Pegmatites of Wamba, Central Nigeria—Their Formation in Relationship to Late Pan-African Granites. Mineralium Deposita, 25(1): 25–33. https://doi.org/10.1007/bf03326380
    Le Roux, P. J., 2010. Lithium Isotope Analysis of Natural and Synthetic Glass by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7): 1033–1038. https://doi.org/10.1039/b920341a
    Lefebvre, M. G., Romer, R. L., Glodny, J., et al., 2019. Skarn Formation and Tin Enrichment during Regional Metamorphism: The Hämmerlein Polymetallic Skarn Deposit. Lithos, 348/349: 105171. https://doi.org/10.1016/j.lithos.2019.105171
    Lei, X. F., Romer, R. L., Glodny, J., et al., 2023. Geochemical Significance of Lithium and Boron Isotopic Heterogeneity Evolving during the Crystallization of Granitic Melts. Geology, 51(6): 581–585. https://doi.org/10.1130/g50983.1
    Li, J., 2015. Mineralogical Constraints on Magmatic Evolution and Hydrothermal Processes in South China Mesozoic Rare Metal Granites: [Dissertation]. University of Chinese Academy of Sciences, Beijing (in Chinese with English Abstract)
    Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64–79. https://doi.org/10.1016/j.gca.2018.08.021
    Li, X. H., Li, Q. L., Liu, Y., et al., 2011. Further Characterization of M257 Zircon Standard: A Working Reference for SIMS Analysis of Li Isotopes. Journal of Analytical Atomic Spectrometry, 26(2): 352–358. https://doi.org/10.1039/c0ja00073f
    Li, R. Y., Hao, J. L., Yang, W., et al., 2023. A Silica-Related Matrix Effect on NanoSIMS Li Isotopic Analysis of Glasses and Its Online Calibration. Journal of Analytical Atomic Spectrometry, 38(10): 1962–1972. https://doi.org/10.1039/d3ja00100h
    Lin, J., Liu, Y. S., Hu, Z. C., et al., 2019a. Accurate Analysis of Li Isotopes in Tourmalines by LA-MC-ICP-MS under "Wet" Conditions with Non-Matrix-Matched Calibration. Journal of Analytical Atomic Spectrometry, 34(6): 1145–1153. https://doi.org/10.1039/c9ja00013e
    Lin, J., Liu, Y. S., Hu, Z. C., et al., 2019b. Accurate Measurement of Lithium Isotopes in Eleven Carbonate Reference Materials by MC-ICP-MS with Soft Extraction Mode and 1012 Ω Resistor High-Gain Faraday Amplifiers. Geostandards and Geoanalytical Research, 43(2): 277–289. https://doi.org/10.1111/ggr.12260
    Lin, J., Liu, Y. S., Hu, Z. C., et al., 2016. Accurate Determination of Lithium Isotope Ratios by MC-ICP-MS without Strict Matrix-Matching by Using a Novel Washing Method. Journal of Analytical Atomic Spectrometry, 31(2): 390–397. https://doi.org/10.1039/c5ja00231a
    Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li + F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013–1025. https://doi.org/10.2113/gsecongeo.93.7.1013
    Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275–280. https://doi.org/10.2113/gselements.8.4.275
    Liu, H. Y., Tang, J. X., Zeng, Q. G., et al., 2022. Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet. Earth Science, 47(4): 1217–1233. https://doi.org/10.3799/dqkx.2021.100
    Liu, X. M., Li, W. S., 2019. Optimization of Lithium Isotope Analysis in Geological Materials by Quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry, 34(8): 1708–1717. https://doi.org/10.1039/c9ja00175a
    Liu, Y. H., Huang, K. F., Lee, D. C., 2018. Precise and Accurate Boron and Lithium Isotopic Determinations for Small Sample-Size Geological Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(5): 846–855. https://doi.org/10.1039/c7ja00400a
    Liu, Y. S., Hu, Z. C., Li, M., et al., 2013. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin, 58(32): 3863–3878. https://doi.org/10.1007/s11434-013-5901-4
    London, D., 2008. Pegmatites. The Canadian Mineralogist, 10: 347
    London, D., 2009. The Origin of Primary Textures in Granitic Pegmatites. The Canadian Mineralogist, 47(4): 697–724. https://doi.org/10.3749/canmin.47.4.697
    London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495–519. https://doi.org/10.2113/gsecongeo.90.3.495
    London, D., Morgan, G. B., 2012. The Pegmatite Puzzle. Elements, 8(4): 263–268. https://doi.org/10.2113/gselements.8.4.263
    Ludwig, T., Marschall, H. R., Pogge von Strandmann, P. A. E., et al., 2011. A Secondary Ion Mass Spectrometry (SIMS) Re-evaluation of B and Li Isotopic Compositions of Cu-Bearing Elbaite from Three Global Localities. Mineralogical Magazine, 75(4): 2485–2494. https://doi.org/10.1180/minmag.2011.075.4.2485
    Lundstrom, C. C., Chaussidon, M., Hsui, A. T., et al., 2005. Observations of Li Isotopic Variations in the Trinity Ophiolite: Evidence for Isotopic Fractionation by Diffusion during Mantle Melting. Geochimica et Cosmochimica Acta, 69(3): 735–751. https://doi.org/10.1016/j.gca.2004.08.004
    Magna, T., Day, J. M. D., Mezger, K., et al., 2015. Lithium Isotope Constraints on Crust-Mantle Interactions and Surface Processes on Mars. Geochimica et Cosmochimica Acta, 162: 46–65. https://doi.org/10.1016/j.gca.2015.04.029
    Magna, T., Janoušek, V., Kohút, M., et al., 2010. Fingerprinting Sources of Orogenic Plutonic Rocks from Variscan Belt with Lithium Isotopes and Possible Link to Subduction-Related Origin of Some A-Type Granites. Chemical Geology, 274(1/2): 94–107. https://doi.org/10.1016/j.chemgeo.2010.03.020
    Magna, T., Novák, M., Cempírek, J., et al., 2016. Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-Cesium-Tantalum Pegmatites. Geology, 44(8): 655–658. https://doi.org/10.1130/g37712.1
    Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3/4): 336–353. https://doi.org/10.1016/j.epsl.2006.01.005
    Maloney, J. S., Nabelek, P. I., Sirbescu, M. L C., et al., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905–916. https://doi.org/10.1127/0935-1221/2008/0020-1823
    Marignac, C., Cuney, M., 2012. Evidence of Nb-Ta Mobility in High Temperature F-Rich Fluids Evidenced by the La Bosse Quartz-Nb-Ferberite Stockwork (Echassières, French Massif Central). EGU General Assembly Conference Abstracts. 11121
    Marks, M. A. W., Rudnick, R. L., Ludwig, T., et al., 2008. Sodic Pyroxene and Sodic Amphibole as Potential Reference Materials for in situ Lithium Isotope Determinations by SIMS. Geostandards and Geoanalytical Research, 32(3): 295–310. https://doi.org/10.1111/j.1751-908x.2008.00895.x
    Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left Behind. Elements, 7(5): 313–319. https://doi.org/10.2113/gselements.7.5.313
    Marschall, H. R., Tang, M., 2020. High-Temperature Processes: Is it Time for Lithium Isotopes? Elements, 16(4): 247–252. https://doi.org/10.2138/gselements.16.4.247
    Martin, C., Ponzevera, E., Harlow, G., 2015. In situ Lithium and Boron Isotope Determinations in Mica, Pyroxene, and Serpentine by LA-MC-ICP-MS. Chemical Geology, 412: 107–116. https://doi.org/10.1016/j.chemgeo.2015.07.022
    Masukawa, K., Nishio, Y., Hayashi, K. I., 2013. Lithium-Strontium Isotope and Heavy Metal Content of Fluid Inclusions and Origin of Ore-Forming Fluid Responsible for Tungsten Mineralization at Takatori Mine, Japan. Geochemical Journal, 47(3): 309–319. https://doi.org/10.2343/geochemj.1.0176
    Matthews, A., Putlitz, B., Hamiel, Y., et al., 2003. Volatile Transport during the Crystallization of Anatectic Melts: Oxygen, Boron and Hydrogen Stable Isotope Study on the Metamorphic Complex of Naxos, Greece. Geochimica et Cosmochimica Acta, 67(17): 3145–3163. https://doi.org/10.1016/s0016-7037(02)01168-7
    Maulana, A., Christy, A. G., Ellis, D. J., et al., 2013. Geochemistry of Eclogite- and Blueschist-Facies Rocks from the Bantimala Complex, South Sulawesi, Indonesia: Protolith Origin and Tectonic Setting. Island Arc, 22(4): 427–452. https://doi.org/10.1111/iar.12037
    Misra, S., Froelich, P. N., 2009. Measurement of Lithium Isotope Ratios by Quadrupole-ICP-MS: Application to Seawater and Natural Carbonates. Journal of Analytical Atomic Spectrometry, 24(11): 1524–1533. https://doi.org/10.1039/b907122a
    Moriguti, T., Nakamura, E., 1998. High-Yield Lithium Separation and the Precise Isotopic Analysis for Natural Rock and Aqueous Samples. Chemical Geology, 145(1/2): 91–104. https://doi.org/10.1016/s0009-2541(97)00163-0
    Mungall, J. E., 2002. Kinetic Controls on the Partitioning of Trace Elements between Silicate and Sulfide Liquids. Journal of Petrology, 43(5): 749–768. https://doi.org/10.1093/petrology/43.5.749
    Nishio, Y., Nakai, S., 2002. Accurate and Precise Lithium Isotopic Determinations of Igneous Rock Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 456(2): 271–281. https://doi.org/10.1016/s0003-2670(02)00042-9
    Page, L. R., 1953. Pegmatite Investigations, 1942–1945, Black Hills, South Dakota. U. S. Geological Survey Professional Paper 247. 228
    Parkinson, I., Hammond, S., James, R., et al., 2007. High-Temperature Lithium Isotope Fractionation: Insights from Lithium Isotope Diffusion in Magmatic Systems. Earth and Planetary Science Letters, 257(3/4): 609–621. https://doi.org/10.1016/j.epsl.2007.03.023
    Parmigiani, A., Faroughi, S., Huber, C., et al., 2016. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 532: 492–495 https://doi.org/10.1038/nature17401
    Penniston-Dorland, S., Liu, X. M., Rudnick, R. L., 2017. Lithium Isotope Geochemistry. Non-Traditional Stable Isotopes. De Gruyter. 165–218. https://doi.org/10.1515/9783110545630-007
    Phelps, P. R., Lee, C. T. A., Morton, D. M., 2020. Episodes of Fast Crystal Growth in Pegmatites. Nature Communications, 11: 4986. https://doi.org/10.1038/s41467-020-18806-w
    Phelps, P. R., Lee, C. T. A., 2022. Extreme Lithium Isotope Fractionation in Quartz from the Stewart Pegmatite. Geochimica et Cosmochimica Acta, 336: 208–218. https://doi.org/10.1016/j.gca.2022.09.014
    Pogge von Strandmann, P. A. E., Frings, P. J., Murphy, M. J., 2017. Lithium Isotope Behaviour during Weathering in the Ganges Alluvial Plain. Geochimica et Cosmochimica Acta, 198: 17–31. https://doi.org/10.1016/j.gca.2016.11.017
    Pogge von Strandmann, P. A. E., Kasemann, S. A., Wimpenny, J. B., 2020. Lithium and Lithium Isotopes in Earth's Surface Cycles. Elements, 16(4): 253–258. https://doi.org/10.2138/gselements.16.4.253
    Qi, H. P., Taylor, P. D. P., Berglund, M., et al., 1997. Calibrated Measurements of the Isotopic Composition and Atomic Weight of the Natural Li Isotopic Reference Material IRMM-016. International Journal of Mass Spectrometry and Ion Processes, 171(1/2/3): 263–268. https://doi.org/10.1016/s0168-1176(97)00125-0
    Raimbault, L., 1998. Composition of Complex Lepidolite-Type Granitic Pegmatites and of Constituent Columbite-Tantalite, Chedeville, Massif Central, France. The Canadian Mineralogist, 36(2): 563–583
    Richter, F., Chaussidon, M., Watson, E. B., et al., 2017. Lithium Isotope Fractionation by Diffusion in Minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219: 124–142. https://doi.org/10.1016/j.gca.2017.09.001
    Richter, F. M., Dauphas, N., Teng, F. Z., 2009. Non-Traditional Fractionation of Non-Traditional Isotopes: Evaporation, Chemical Diffusion and Soret Diffusion. Chemical Geology, 258(1/2): 92–103. https://doi.org/10.1016/j.chemgeo.2008.06.011
    Richter, F., Watson, B., Chaussidon, M., et al., 2014. Lithium Isotope Fractionation by Diffusion in Minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126: 352–370. https://doi.org/10.1016/j.gca.2013.11.008
    Richter, F. M., Davis, A. M., DePaolo, D. J., et al., 2003. Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905–3923. https://doi.org/10.1016/s0016-7037(03)00174-1
    Richter, F. M., Liang, Y., Davis, A. M., 1999. Isotope Fractionation by Diffusion in Molten Oxides. Geochimica et Cosmochimica Acta, 63(18): 2853–2861. https://doi.org/10.1016/s0016-7037(99)00164-7
    Richter, S., Kühn, H., Aregbe, Y., et al., 2011. Improvements in Routine Uranium Isotope Ratio Measurements Using the Modified Total Evaporation Method for Multi-Collector Thermal Ionization Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 26(3): 550–564. https://doi.org/10.1039/c0ja00173b
    Roda-Robles, E., Pesquera-Pérez, A., Simmons, W. B., et al., 2019. Evidence for Internal Fractionation from Li Isotopes in Tourmaline and Mica in the Berry-Havey Rare-Element Pegmatite (Maine, USA). The Canadian Mineralogist, 57(5): 779–782. https://doi.org/10.3749/canmin.ab00020
    Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2012. The Puentemocha Beryl-Phosphate Granitic Pegmatite, Salamanca, Spain: Internal Structure, Petrography and Mineralogy. The Canadian Mineralogist, 50(6): 1573–1587. https://doi.org/10.3749/canmin.50.6.1573
    Romer, R. L., Meixner, A., 2014. Lithium and Boron Isotopic Fractionation in Sedimentary Rocks during Metamorphism—The Role of Rock Composition and Protolith Mineralogy. Geochimica et Cosmochimica Acta, 128: 158–177. https://doi.org/10.1016/j.gca.2013.11.032
    Romer, R. L., Meixner, A., Förster, H. J., 2014a. Lithium and Boron in Late-Orogenic Granites—Isotopic Fingerprints for the Source of Crustal Melts? Geochimica et Cosmochimica Acta, 131: 98–114. https://doi.org/10.1016/j.gca.2014.01.018
    Romer, R. L., Meixner, A., Hahne, K., 2014b. Lithium and Boron Isotopic Composition of Sedimentary Rocks—The Role of Source History and Depositional Environment: A 250 Ma Record from the Cadomian Orogeny to the Variscan Orogeny. Gondwana Research, 26(3/4): 1093–1110. https://doi.org/10.1016/j.gr.2013.08.015
    Rubin, A. E., Cooper, K. M., Till, C. B., et al., 2017. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science, 356(6343): 1154–1156. https://doi.org/10.1126/science.aam8720
    Schauble, E. A., 2004. Applying Stable Isotope Fractionation Theory to New Systems. Reviews in Mineralogy and Geochemistry, 55(1): 65–111. https://doi.org/10.2138/gsrmg.55.1.65
    Schönbächler, M., Fehr, M. A., 2014. Basics of Ion Exchange Chromatography for Selected Geological Applications. Treatise on Geochemistry. Elsevier, Amsterdam. 123–146. https://doi.org/10.1016/b978-0-08-095975-7.01408-x
    Seitz, H. M., Brey, G. P., Lahaye, Y., et al., 2004. Lithium Isotopic Signatures of Peridotite Xenoliths and Isotopic Fractionation at High Temperature between Olivine and Pyroxenes. Chemical Geology, 212(1/2): 163–177. https://doi.org/10.1016/j.chemgeo.2004.08.009
    Simmons, W. B. S., Webber, K. L., 2008. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 20(4): 421–438. https://doi.org/10.1127/0935-1221/2008/0020-1833
    Sirbescu, M. L C., Nabelek, P. I., 2003. Crystallization Conditions and Evolution of Magmatic Fluids in the Harney Peak Granite and Associated Pegmatites, Black Hills, South Dakota—Evidence from Fluid Inclusions. Geochimica et Cosmochimica Acta, 67(13): 2443–2465. https://doi.org/10.1016/s0016-7037(02)01408-4
    Soltay, L. G., Henderson, G. S., 2005. The Structure of Lithium-Containing Silicate and Germanate Glasses. The Canadian Mineralogist, 43(5): 1643–1651. https://doi.org/10.2113/gscanmin.43.5.1643
    Steinmann, L. K., Oeser, M., Horn, I., et al., 2019. In situ High-Precision Lithium Isotope Analyses at Low Concentration Levels with Femtosecond-LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(7): 1447–1458. https://doi.org/10.1039/c9ja00088g
    Su, B. X., Gu, X. Y., Deloule, E., et al., 2015. Potential Orthopyroxene, Clinopyroxene and Olivine Reference Materials for in situ Lithium Isotope Determination. Geostandards and Geoanalytical Research, 39(3): 357–369. https://doi.org/10.1111/j.1751-908x.2014.00313.x
    Sun, H., Gao, Y. J., Xiao, Y. L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71–82. https://doi.org/10.1016/j.chemgeo.2016.06.004
    Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences of the United States of America, 115(15): 3782–3787. https://doi.org/10.1073/pnas.1711862115
    Tan, D. B., Xiao, Y. L., Sun, H., et al., 2020. Lithium Isotopic Compositions of Post-Collisional Mafic-Ultramafic Rocks from Dabieshan, China: Implications for Recycling of Deeply Subducted Continental Crust. Lithos, 352: 105327. https://doi.org/10.1016/j.lithos.2019.105327
    Tan, D. B., Xiao, Y. L., Dai, L. Q., et al., 2022. Differentiation between Carbonate and Silicate Metasomatism Based on Lithium Isotopic Compositions of Alkali Basalts. Geology, 50(10): 1150–1155. https://doi.org/10.1130/g50090.1
    Tan, H. Q., Lü, F. Q., Li, C., et al., 2023. Genetic Linking between Pegmatite⁃Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan. Earth Science, 48(11): 3978–3994. https://doi.org/10.3799/dqkx.2022.027 (in Chinese with English Abstract)
    Tang, Y. J., Zhang, H. F., Ying, J. F., 2007a. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374–388. https://doi.org/10.2747/0020-6814.49.4.374
    Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2007b. Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 71(17): 4327–4341. https://doi.org/10.1016/j.gca.2007.07.006
    Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149: 79–90. https://doi.org/10.1016/j.lithos.2011.12.001
    Tang, Y. J., Zhang, H. F., Ying, J. F., 2010. A Brief Review of Isotopically Light Li—A Feature of the Enriched Mantle? International Geology Review, 52(9): 964–976. https://doi.org/10.1080/00206810903211385
    Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2011. Multistage Melt/Fluid-Peridotite Interactions in the Refertilized Lithospheric Mantle beneath the North China Craton: Constraints from the Li-Sr-Nd Isotopic Disequilibrium between Minerals of Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 161(6): 845–861. https://doi.org/10.1007/s00410-010-0568-1
    Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3/4): 370–379. https://doi.org/10.1016/j.chemgeo.2009.02.009
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167–4178. https://doi.org/10.1016/j.gca.2004.03.031
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3/4): 701–710. https://doi.org/10.1016/j.epsl.2006.01.036
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488–1498. https://doi.org/10.2138/am.2006.2083
    Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1/2): 47–59. https://doi.org/10.1016/j.chemgeo.2008.06.009
    Thomas, R., Davidson, P., 2013. The Missing Link between Granites and Granitic Pegmatites. Journal of Geosciences, 58(2): 183–200. https://doi.org/10.3190/jgeosci.135
    Thomas, R., Davidson, P., 2016. Revisiting Complete Miscibility between Silicate Melts and Hydrous Fluids, and the Extreme Enrichment of some Elements in the Supercritical State—Consequences for the Formation of Pegmatites and Ore Deposits. Ore Geology Reviews, 72: 1088–1101. https://doi.org/10.1016/j.oregeorev.2015.10.004
    Tian, H. C., Tian, S. H., Hou, Z. Q., et al., 2022. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Post-Collisional Adakitic Rocks. Geochimica et Cosmochimica Acta, 332: 19–32. https://doi.org/10.1016/j.gca.2022.06.010
    Tian, S. H., Zhao, Y., Hou, Z. Q., et al., 2017. Lithium Isotopic Composition and Concentration of Himalayan Leucogranites and the Indian Lower Continental Crust. Lithos, 284/285: 416–428. https://doi.org/10.1016/j.lithos.2017.05.001
    Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409): 809–834. https://doi.org/10.1180/minmag.1997.061.409.05
    Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153–195. https://doi.org/10.2138/gsrmg.55.1.153
    Tomascak, P. B., Carlson, R. W., Shirey, S. B., 1999a. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 158(1/2): 145–154. https://doi.org/10.1016/s0009-2541(99)00022-4
    Tomascak, P. B., Tera, F., Helz, R. T., et al., 1999b. The Absence of Lithium Isotope Fractionation during Basalt Differentiation: New Measurements by Multicollector Sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6): 907–910. https://doi.org/10.1016/s0016-7037(98)00318-4
    Tomascak, P. B., Magna, T., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer. 205
    Troch, J., Huber, C., Bachmann, O., 2022. The Physical and Chemical Evolution of Magmatic Fluids in Near-Solidus Silicic Magma Reservoirs: Implications for the Formation of Pegmatites. American Mineralogist, 107(2): 190–205. https://doi.org/10.2138/am-2021-7915
    Van Lichtervelde, M., Grégoire, M., Linnen, R. L., et al., 2008. Trace Element Geochemistry by Laser Ablation ICP-MS of Micas Associated with Ta Mineralization in the Tanco Pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791–806. https://doi.org/10.1007/s00410-007-0271-z
    Van Lichtervelde, M., Holtz, F., Hanchar, J. M., 2010. Solubility of Manganotantalite, Zircon and Hafnon in Highly Fluxed Peralkaline to Peraluminous Pegmatitic Melts. Contributions to Mineralogy and Petrology, 160(1): 17–32. https://doi.org/10.1007/s00410-009-0462-x
    Veksler, I. V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1/2/3/4): 7–31. https://doi.org/10.1016/j.chemgeo.2004.06.002
    Vigier, N., Gislason, S. R., Burton, K. W., et al., 2009. The Relationship between Riverine Lithium Isotope Composition and Silicate Weathering Rates in Iceland. Earth and Planetary Science Letters, 287(3/4): 434–441. https://doi.org/10.1016/j.epsl.2009.08.026
    Walder, A. J., Freedman, P. A., 1992. Communication. Isotopic Ratio Measurement Using a Double Focusing Magnetic Sector Mass Analyser with an Inductively Coupled Plasma as an Ion Source. Journal of Analytical Atomic Spectrometry, 7(3): 571. https://doi.org/10.1039/ja9920700571
    Walker, R. J., Hanson, G. N., Papike, J. J., 1989. Trace Element Constraints on Pegmatite Genesis: Tin Mountain Pegmatite, Black Hills, South Dakota. Contributions to Mineralogy and Petrology, 101: 290–300
    Wang, W., Jiang, S. Y., Xiao, Y. L., 2023. Fluid-Rock Interaction Effects on Li Isotope Behavior in Continental Geothermal Systems. Chemical Geology, 631: 121525. https://doi.org/10.1016/j.chemgeo.2023.121525
    Webster, J. D., Holloway, J. R., Hervig, R. L., 1989. Partitioning of Lithophile Trace Elements between H2O and H2O + CO2 Fluids and Topaz Rhyolite Melt. Economic Geology, 84(1): 116–134. https://doi.org/10.2113/gsecongeo.84.1.116
    Wenger, M., Armbruster, T., 1991. Crystal Chemistry of Lithium: Oxygen Coordination and Bonding. European Journal of Mineralogy, 3(2): 387–400. https://doi.org/10.1127/ejm/3/2/0387
    Wiedenbeck, M., Trumbull, R. B., Rosner, M., et al., 2021. Tourmaline Reference Materials for the in situ Analysis of Oxygen and Lithium Isotope Ratio Compositions. Geostandards and Geoanalytical Research, 45(1): 97–119. https://doi.org/10.1111/ggr.12362
    Wolf, M., Romer, R. L., Glodny, J., 2019. Isotope Disequilibrium during Partial Melting of Metasedimentary Rocks. Geochimica et Cosmochimica Acta, 257: 163–183. https://doi.org/10.1016/j.gca.2019.05.008
    Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3/4): 277–290. https://doi.org/10.1016/j.chemgeo.2006.12.001
    Wunder, B., Meixner, A., Romer, R. L., et al., 2006. Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 151(1): 112–120. https://doi.org/10.1007/s00410-005-0049-0
    Wunder, B., Meixner, A., Romer, R. L., et al., 2011. Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 23(3): 333–342. https://doi.org/10.1127/0935-1221/2011/0023-2095
    Xiang, L., Romer, R. L., Glodny, J., et al., 2020. Li and B Isotopic Fractionation at the Magmatic-Hydrothermal Transition of Highly Evolved Granites. Lithos, 376/377: 105753. https://doi.org/10.1016/j.lithos.2020.105753
    Yamaji, K., Makita, Y., Watanabe, H., et al., 2001. Theoretical Estimation of Lithium Isotopic Reduced Partition Function Ratio for Lithium Ions in Aqueous Solution. The Journal of Physical Chemistry A, 105(3): 602–613. https://doi.org/10.1021/jp001303i
    Yang, A., Lin, J., Liu, Y. S., et al., 2023. Development of Synthetic Clinopyroxene Reference Materials for in situ Lithium Isotope Measurement by LA-MC-ICP-MS. Geostandards and Geoanalytical Research, 47(3): 535–546. https://doi.org/10.1111/ggr.12491
    Ye, X. Y., Li, B., Chen, X. D., et al., 2023. Lithium Isotopic Systematics and Numerical Simulation for Highly-Fractionated Granite-Pegmatite System: Implications for the Pegmatite-Type Rare-Metal Mineralization. Ore Geology Reviews, 163: 105722. https://doi.org/10.1016/j.oregeorev.2023.105722
    Zhang, C. X., Zhao, H., Zhang, W., et al., 2020. A High Performance Method for the Accurate and Precise Determination of Silicon Isotopic Compositions in Bulk Silicate Rock Samples Using Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(9): 1887–1896. https://doi.org/10.1039/d0ja00036a
    Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139
    Zhao, Z., Yang, X. Y., Li, W. Y., et al., 2022a. Petrogenesis of the Granite Related to the Baishaziling Sn Deposit, Dayishan Ore Field, Southern China. Geochemistry, 82(2): 125873. https://doi.org/10.1016/j.chemer.2022.125873
    Zhao, Z., Yang, X. Y., Lu, Y. Y., et al., 2022b. Geochemistry and Boron Isotope Compositions of Tourmalines from the Granite-Greisen-Quartz Vein System in Dayishan Pluton, Southern China: Implications for Potential Mineralization. American Mineralogist, 107(3): 495–508. https://doi.org/10.2138/am-2021-7591
    Zhao, Z., Yang, X. Y., Zhang, T. Y., et al., 2022c. Geochemical Characteristics and Boron Isotopes of Tourmaline from the Baishaziling Tin Deposit, Nanling Range: Constraints on Magmatic-Hydrothermal Processes. Ore Geology Reviews, 142: 104695. https://doi.org/10.1016/j.oregeorev.2022.104695
    Zhao, Z., Yang, X. Y., Liu, Q. Y., et al., 2021a. In-situ Boron Isotopic and Geochemical Compositions of Tourmaline from the Shangbao Nb-Ta Bearing Monzogranite, Nanling Range: Implication for Magmatic-Hydrothermal Evolution of Nb and Ta. Lithos, 386/387: 106010. https://doi.org/10.1016/j.lithos.2021.106010
    Zhao, Z., Yang, X. Y., Lu, S. M., et al., 2021b. Genesis of Late Cretaceous Granite and Its Related Nb-Ta-W Mineralization in Shangbao, Nanling Range: Insights from Geochemistry of Whole-Rock and Nb-Ta Minerals. Ore Geology Reviews, 131: 103975. https://doi.org/10.1016/j.oregeorev.2020.103975
    Zheng, Y., 2022. Does the Mantle Contribute to Granite Petrogenesis?. Journal of Earth Science, 33(5): 1320–1320. https://doi.org/10.1007/s12583-022-1747-5
    Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484
    Zhu, Z. Y., Yang, T., Zhu, X. K., 2019. Achieving Rapid Analysis of Li Isotopes in High-Matrix and Low-Li Samples with MC-ICP-MS: New Developments in Sample Preparation and Mass Bias Behavior of Li in ICPMS. Journal of Analytical Atomic Spectrometry, 34(7): 1503–1513. https://doi.org/10.1039/c9ja00076c
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(67) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return