Citation: | Xiangying Ye, Bin Li, Dongbo Tan, Kecheng Liu, Zhiyong Zhu, Hafiz Muhammad Siddique, Yilin Xiao. Lithium Isotope Analytical Methods and Implications for Rare-Metal Mineralization in Granite-Pegmatite Systems: An Overview. Journal of Earth Science, 2024, 35(6): 1878-1894. doi: 10.1007/s12583-023-1972-1 |
The origin of highly-fractionated granite-pegmatite systems and their associated rare metal mineralization has been widely studied, but there is still ongoing debate. Prevailing hypotheses suggest that pegmatite formation and the associated rare metal mineralization are closely related to aqueous fluid processes. Lithium (Li) isotope analysis has been widely applied to trace granite-pegmatite evolution. This is because lithium is widely present in various minerals (e.g., mica, tourmaline) that record the melt and fluid compositions, and lithium isotopes are sensitive to magmatic-hydrothermal processes. We briefly review the methodology of Li isotope analyses, the mechanisms of Li isotopic fractionation, and, in particular, Li isotope fractionation in granite-pegmatite system based on Li isotope data we have collected and the latest developments in Li isotope geochemistry. With the development of analytical technology, high-precision measurement of the Li content and isotopic compositions have facilitated a series of scientific breakthroughs in understanding the magmatic-hydrothermal evolution of rare-element ore deposits. Li isotope analyses on bulk mineral separates have demonstrated their ability to trace various hydrothermal processes.
Aulbach, S., Rudnick, R. L., 2009. Origins of Non-Equilibrium Lithium Isotopic Fractionation in Xenolithic Peridotite Minerals: Examples from Tanzania. Chemical Geology, 258(1/2): 17–27. https://doi.org/10.1016/j.chemgeo.2008.07.015 |
Bachmann, O., Bergantz, G. W., 2004. On the Origin of Crystal-Poor Rhyolites: Extracted from Batholithic Crystal Mushes. Journal of Petrology, 45(8): 1565–1582. https://doi.org/10.1093/petrology/egh019 |
Badanina, E. V., Trumbull, R. B., Dulski, P., et al., 2006. The Behavior of Rare-Earth and Lithophile Trace Elements in Rare-Metal Granites: A Study of Fluorite, Melt Inclusions and Host Rocks from the Khangilay Complex, Transbaikalia, Russia. The Canadian Mineralogist, 44(3): 667–692. https://doi.org/10.2113/gscanmin.44.3.667 |
Badanina, E. V., Veksler, I. V., Thomas, R., et al., 2004. Magmatic Evolution of Li-F, Rare-Metal Granites: A Case Study of Melt Inclusions in the Khangilay Complex, Eastern Transbaikalia (Russia). Chemical Geology, 210(1/2/3/4): 113–133. https://doi.org/10.1016/j.chemgeo.2004.06.006 |
Barnes, E. M., Weis, D., Groat, L. A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132/133: 21–36. https://doi.org/10.1016/j.lithos.2011.11.014 |
Bazarkina, E. F., Pokrovski, G. S., Zotov, A. V., et al., 2010. Structure and Stability of Cadmium Chloride Complexes in Hydrothermal Fluids. Chemical Geology, 276(1/2): 1–17. https://doi.org/10.1016/j.chemgeo.2010.03.006 |
Bell, D. R., Hervig, R. L., Buseck, P. R., et al., 2009. Lithium Isotope Analysis of Olivine by SIMS: Calibration of a Matrix Effect and Application to Magmatic Phenocrysts. Chemical Geology, 258(1/2): 5–16. https://doi.org/10.1016/j.chemgeo.2008.10.008 |
Bertoldi, C., Proyer, A., Garbe-Schönberg, D., et al., 2004. Comprehensive Chemical Analyses of Natural Cordierites: Implications for Exchange Mechanisms. Lithos, 78(4): 389–409. https://doi.org/10.1016/j.lithos.2004.07.003 |
Blundy, J. D., Robinson, J. A. C., Wood, B. J., 1998. Heavy REE are Compatible in Clinopyroxene on the Spinel Lherzolite Solidus. Earth and Planetary Science Letters, 160(3/4): 493–504. https://doi.org/10.1016/s0012-821x(98)00106-x |
Bohlin, M. S., Misra, S., Lloyd, N., et al., 2018. High-Precision Determination of Lithium and Magnesium Isotopes Utilising Single Column Separation and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry: RCM, 32(2): 93–104. https://doi.org/10.1002/rcm.8020 |
Bouvier, A. S., Ushikubo, T., Kita, N. T., et al., 2012. Li Isotopes and Trace Elements as a Petrogenetic Tracer in Zircon: Insights from Archean TTGs and Sanukitoids. Contributions to Mineralogy and Petrology, 163(5): 745–768. https://doi.org/10.1007/s00410-011-0697-1 |
Brigatti, M. F., Kile, D. E., Poppi, L., 2003. Crystal Structure and Chemistry of Lithium-Bearing Trioctahedral Micas-3T. European Journal of Mineralogy, 15(2): 349–355. https://doi.org/10.1127/0935-1221/2003/0015-0349 |
Cerny, P., London, D., Novak, M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements, 8(4): 289–294. https://doi.org/10.2113/gselements.8.4.289 |
Cameron, E. N., Jahns, R. H., McNair, A. H., et al., 1950. Internal Structure of Granitic Pegmatites. Geologiska Föreningen i Stockholm Förhandlingar, 72(3): 361–362. https://doi.org/10.1080/11035895009451857 |
Candela, P. A., Piccoli, P. M., 1995. Model Ore-Metal Partitioning from Melts into Vapor and Vapor/Brine Mixtures. In: Mineralogical Association of Canada Short Course Series, v. 23. Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada. 101–127 |
Cashman, K. V., Sparks, R. S. J., Blundy, J. D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science, 355(6331): eaag3055. https://doi.org/10.1126/science.aag3055 |
Chan, L. H., Edmond, J. M., 1988. Variation of Lithium Isotope Composition in the Marine Environment: A Preliminary Report. Geochimica et Cosmochimica Acta, 52(6): 1711–1717. https://doi.org/10.1016/0016-7037(88)90239-6 |
Chan, L. H., Edmond, J. M., Thompson, G., 1993. A Lithium Isotope Study of Hot Springs and Metabasalts from Mid-Ocean Ridge Hydrothermal Systems. Journal of Geophysical Research: Solid Earth, 98(B6): 9653–9659. https://doi.org/10.1029/92jb00840 |
Chan, L. H., 1987. Lithium Isotope Analysis by Thermal Ionization Mass Spectrometry of Lithium Tetraborate. Analytical Chemistry, 59(22): 2662–2665. https://doi.org/10.1021/ac00149a007 |
Chan, L. H., Leeman, W. P., You, C. F., 1999. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids. Chemical Geology, 160(4): 255–280. https://doi.org/10.1016/s0009-2541(99)00101-1 |
Chan, L. H., Leeman, W. P., You, C. F., 2002. Lithium Isotopic Composition of Central American Volcanic Arc Lavas: Implications for Modification of Subarc Mantle by Slab-Derived Fluids: Correction. Chemical Geology, 182(2/3/4): 293–300. https://doi.org/10.1016/s0009-2541(01)00298-4 |
Charlier, B. L. A., Ginibre, C., Morgan, D., et al., 2006. Methods for the Microsampling and High-Precision Analysis of Strontium and Rubidium Isotopes at Single Crystal Scale for Petrological and Geochronological Applications. Chemical Geology, 232(3/4): 114–133. https://doi.org/10.1016/j.chemgeo.2006.02.015 |
Chen, B., Gu, H. O., Chen, Y. J., et al., 2018. Lithium Isotope Behaviour during Partial Melting of Metapelites from the Jiangnan Orogen, South China: Implications for the Origin of REE Tetrad Effect of F-Rich Granite and Associated Rare-Metal Mineralization. Chemical Geology, 483: 372–384. https://doi.org/10.1016/j.chemgeo.2018.03.002 |
Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551: 119769. https://doi.org/10.1016/j.chemgeo.2020.119769 |
Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite-Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957–3960. https://doi.org/10.3799/dqkx.2023.189 (in Chinese with English Abstract) |
Choi, H. B., Ryu, J. S., Shin, W. J., et al., 2019. The Impact of Anthropogenic Inputs on Lithium Content in River and Tap Water. Nature Communications, 10: 5371. https://doi.org/10.1038/s41467-019-13376-y |
Choi, M. S., Shin, H. S., Kil, Y. W., 2010. Precise Determination of Lithium Isotopes in Seawater Using MC-ICP-MS. Microchemical Journal, 95(2): 274–278. https://doi.org/10.1016/j.microc.2009.12.013 |
Coogan, L. A., 2011. Preliminary Experimental Determination of the Partitioning of Lithium between Plagioclase Crystals of Different Anorthite Contents. Lithos, 125(1/2): 711–715. https://doi.org/10.1016/j.lithos.2011.03.016 |
Coogan, L., Kasemann, S., Chakraborty, S., 2005. Rates of Hydrothermal Cooling of New Oceanic Upper Crust Derived from Lithium-Geospeedometry. Earth and Planetary Science Letters, 240(2): 415–424. https://doi.org/10.1016/j.epsl.2005.09.020 |
Cooper, K. M., 2019. Time Scales and Temperatures of Crystal Storage in Magma Reservoirs: Implications for Magma Reservoir Dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 377(2139): 20180009. https://doi.org/10.1098/rsta.2018.0009 |
Coplen, T. B., Böhlke, J. K., De Bièvre, P., et al., 2002. Isotope-Abundance Variations of Selected Elements (IUPAC Technical Report). Pure and Applied Chemistry, 74(10): 1987–2017. https://doi.org/10.1351/pac200274101987 |
Dargent, M., Dubessy, J., Truche, L., et al., 2014. Experimental Study of Uranyl(VI) Chloride Complex Formation in Acidic LiCl Aqueous Solutions under Hydrothermal Conditions (T = 21 ℃–350 ℃, Psat) Using Raman Spectroscopy. European Journal of Mineralogy, 25(5): 765–775. https://doi.org/10.1127/0935-1221/2013/0025-2319 |
Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97–111. https://doi.org/10.1016/j.chemgeo.2015.06.029 |
Elliott, T., Jeffcoate, A., Bouman, C., 2004. The Terrestrial Li Isotope Cycle: Light-Weight Constraints on Mantle Convection. Earth and Planetary Science Letters, 220(3/4): 231–245. https://doi.org/10.1016/s0012-821x(04)00096-2 |
Elliott, T., Thomas, A., Jeffcoate, A., et al., 2006. Lithium Isotope Evidence for Subduction-Enriched Mantle in the Source of Mid-Ocean-Ridge Basalts. Nature, 443: 565–568. https://doi.org/10.1038/nature05144 |
Ellis, B. S., Neukampf, J., Bachmann, O., et al., 2022. Biotite as a Recorder of an Exsolved Li-Rich Volatile Phase in Upper-Crustal Silicic Magma Reservoirs. Geology, 50(4): 481–485. https://doi.org/10.1130/g49484.1 |
Fan, J. J., Tang, G. J., Wei, G. J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352: 105236. https://doi.org/10.1016/j.lithos.2019.105236 |
Flesch, G. D., Anderson, A. R., Svec, H. J., 1973. A Secondary Isotopic Standard for 6Li/7Li Determinations. International Journal of Mass Spectrometry and Ion Processes, 12(3): 265–272. https://doi.org/10.1016/0020-7381(73)80043-9 |
Froelich, F., Misra, S., 2014. Was the Late Paleocene–Early Eocene Hot Because Earth was Flat? An Ocean Lithium Isotope View of Mountain Building, Continental Weathering, Carbon Dioxide, and Earth's Cenozoic Clima. Oceanography, 27(1): 36–49. https://doi.org/10.5670/oceanog.2014.06 |
Gahlan, H. A., Azer, M. K., Asimow, P. D., et al., 2023. Geochemistry, Petrogenesis and Alteration of Rare-Metal-Bearing Granitoids and Mineralized Silexite of the Al-Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 34(5): 1488–1510. https://doi.org/10.1007/s12583-022-1708-z |
Gallagher, K., Elliott, T., 2009. Fractionation of Lithium Isotopes in Magmatic Systems as a Natural Consequence of Cooling. Earth and Planetary Science Letters, 278(3/4): 286–296. https://doi.org/10.1016/j.epsl.2008.12.009 |
Gao, Y. Y., 2016. Origin of A-Type Granites in East China: Evidence from Hf-O-Li Isotopes: [Dissertation]. Macquarie University, Sydney |
Gordienko, V. V., Gordienko, V. V., Sergeev, A. S., et al., 2007. First Data in Favor of the Crystallization Model of Lithium Isotope Fractionation in the Pegmatitic Process. Doklady Earth Sciences, 413(2): 441–443. https://doi.org/10.1134/S1028334x07030270 |
Halama, R., McDonough, W. F., Rudnick, R. L., et al., 2007. The Li Isotopic Composition of Oldoinyo Lengai: Nature of the Mantle Sources and Lack of Isotopic Fractionation during Carbonatite Petrogenesis. Earth and Planetary Science Letters, 254(1/2): 77–89. https://doi.org/10.1016/j.epsl.2006.11.022 |
Hart, S. R., Dunn, T., 1993. Experimental Cpx/Melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 113(1): 1–8. https://doi.org/10.1007/bf00320827 |
Huang, K. F., You, C. F., Liu, Y. H., et al., 2010. Low-Memory, Small Sample Size, Accurate and High-Precision Determinations of Lithium Isotopic Ratios in Natural Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7): 1019–1024. https://doi.org/10.1039/b926327f |
Huh, Y., Chan, L. H., Zhang, L. B., et al., 1998. Lithium and Its Isotopes in Major World Rivers: Implications for Weathering and the Oceanic Budget. Geochimica et Cosmochimica Acta, 62(12): 2039–2051. https://doi.org/10.1016/s0016-7037(98)00126-4 |
Huheey, J. E., Keiter, E. A., Keiter, R. L., et al., 2006. Inorganic Chemistry: Principles of Structure and Reactivity. Pearson Education |
Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11/12): 1229–1251. https://doi.org/10.2138/am-1995-11-1213 |
Jackson, M. D., Blundy, J., Sparks, R. S. J., 2018. Chemical Differentiation, Cold Storage and Remobilization of Magma in the Earthʼs Crust. Nature, 564: 405–409. https://doi.org/10.1038/s41586-018-0746-2 |
Jahn, S., Wunder, B., 2009. Lithium Speciation in Aqueous Fluids at High P and T Studied by Ab Initio Molecular Dynamics and Consequences for Li-Isotope Fractionation between Minerals and Fluids. Geochimica et Cosmochimica Acta, 73(18): 5428–5434. https://doi.org/10.1016/j.gca.2009.06.017 |
Jahns, R. H., 1953. The Genesis of Pegmatites: I. Occurrence and Origin of Giant Crystals. American Mineralogist, 38(7/8): 563–598 |
Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; L, a Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64(8): 843–864. https://doi.org/10.2113/gsecongeo.64.8.843 |
Jakopič, R., Richter, S., Kühn, H., et al., 2010. Determination of 240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu Isotope Ratios in Environmental Reference Materials and Samples from Chernobyl by Thermal Ionization Mass Spectrometry (TIMS) and Filament Carburization. Journal of Analytical Atomic Spectrometry, 25(6): 815–821. https://doi.org/10.1039/b925918j |
James, R. H., Palmer, M. R., 2000. The Lithium Isotope Composition of International Rock Standards. Chemical Geology, 166(3/4): 319–326. https://doi.org/10.1016/s0009-2541(99)00217-x |
Jeffcoate, A. B., Kasemann, S. A., Elliott, T., 2004. High-Spatial Resolution Lithium Isotope Variation in Mantle Minerals. Geochimica et Cosmochimica Acta, 68(11): A52 |
Jiang, S. -Y., Wang, C. L., Zhang, L., et al., 2021. In situ Trace Element Tracing and Isotopic Dating of Pegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 95(10): 3017–3038 (in Chinese with English Abstract) doi: 10.3969/j.issn.0001-5717.2021.10.006 |
Jiang, S. -Y., Su, H. M., Zhu, X. Y., et al., 2022. A New Type of Li Deposit: Hydrothermal Crypto-Explosive Breccia Pipe Type. Journal of Earth Science, 33(5): 1095–1113. https://doi.org/10.1007/s12583-022-1736-8 |
Jiang, S. -Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295–1298. https://doi.org/10.1007/s12583-023-2001-5 |
Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 240: 98–130. https://doi.org/10.1016/j.gca.2018.08.024 |
Kasemann, S. A., Jeffcoate, A. B., Elliott, T., 2005. Lithium Isotope Composition of Basalt Glass Reference Material. Analytical Chemistry, 77(16): 5251–5257. https://doi.org/10.1021/ac048178h |
Kimura, J. I., Chang, Q., Ishikawa, T., et al., 2016. Influence of Laser Parameters on Isotope Fractionation and Optimisation of Lithium and Boron Isotope Ratio Measurements Using Laser Ablation-Multiple Faraday Collector-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 31(11): 2305–2320. https://doi.org/10.1039/c6ja00283h |
Košler, J., Kučera, M., Sylvester, P., 2001. Precise Measurement of Li Isotopes in Planktonic Foraminiferal Tests by Quadrupole ICPMS. Chemical Geology, 181(1/2/3/4): 169–179. https://doi.org/10.1016/s0009-2541(01)00280-7 |
Kowalski, P. M., Jahn, S., 2011. Prediction of Equilibrium Li Isotope Fractionation between Minerals and Aqueous Solutions at High P and T: An Efficient Ab Initio Approach. Geochimica et Cosmochimica Acta, 75(20): 6112–6123. https://doi.org/10.1016/j.gca.2011.07.039 |
Kraiem, M., Richter, S., Kühn, H., et al., 2011. Development of an Improved Method to Perform Single Particle Analysis by TIMS for Nuclear Safeguards. Analytica Chimica Acta, 688(1): 1–7. https://doi.org/10.1016/j.aca.2010.12.003 |
Küster, D., 1990. Rare-Metal Pegmatites of Wamba, Central Nigeria—Their Formation in Relationship to Late Pan-African Granites. Mineralium Deposita, 25(1): 25–33. https://doi.org/10.1007/bf03326380 |
Le Roux, P. J., 2010. Lithium Isotope Analysis of Natural and Synthetic Glass by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7): 1033–1038. https://doi.org/10.1039/b920341a |
Lefebvre, M. G., Romer, R. L., Glodny, J., et al., 2019. Skarn Formation and Tin Enrichment during Regional Metamorphism: The Hämmerlein Polymetallic Skarn Deposit. Lithos, 348/349: 105171. https://doi.org/10.1016/j.lithos.2019.105171 |
Lei, X. F., Romer, R. L., Glodny, J., et al., 2023. Geochemical Significance of Lithium and Boron Isotopic Heterogeneity Evolving during the Crystallization of Granitic Melts. Geology, 51(6): 581–585. https://doi.org/10.1130/g50983.1 |
Li, J., 2015. Mineralogical Constraints on Magmatic Evolution and Hydrothermal Processes in South China Mesozoic Rare Metal Granites: [Dissertation]. University of Chinese Academy of Sciences, Beijing (in Chinese with English Abstract) |
Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64–79. https://doi.org/10.1016/j.gca.2018.08.021 |
Li, X. H., Li, Q. L., Liu, Y., et al., 2011. Further Characterization of M257 Zircon Standard: A Working Reference for SIMS Analysis of Li Isotopes. Journal of Analytical Atomic Spectrometry, 26(2): 352–358. https://doi.org/10.1039/c0ja00073f |
Li, R. Y., Hao, J. L., Yang, W., et al., 2023. A Silica-Related Matrix Effect on NanoSIMS Li Isotopic Analysis of Glasses and Its Online Calibration. Journal of Analytical Atomic Spectrometry, 38(10): 1962–1972. https://doi.org/10.1039/d3ja00100h |
Lin, J., Liu, Y. S., Hu, Z. C., et al., 2019a. Accurate Analysis of Li Isotopes in Tourmalines by LA-MC-ICP-MS under "Wet" Conditions with Non-Matrix-Matched Calibration. Journal of Analytical Atomic Spectrometry, 34(6): 1145–1153. https://doi.org/10.1039/c9ja00013e |
Lin, J., Liu, Y. S., Hu, Z. C., et al., 2019b. Accurate Measurement of Lithium Isotopes in Eleven Carbonate Reference Materials by MC-ICP-MS with Soft Extraction Mode and 1012 Ω Resistor High-Gain Faraday Amplifiers. Geostandards and Geoanalytical Research, 43(2): 277–289. https://doi.org/10.1111/ggr.12260 |
Lin, J., Liu, Y. S., Hu, Z. C., et al., 2016. Accurate Determination of Lithium Isotope Ratios by MC-ICP-MS without Strict Matrix-Matching by Using a Novel Washing Method. Journal of Analytical Atomic Spectrometry, 31(2): 390–397. https://doi.org/10.1039/c5ja00231a |
Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li + F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013–1025. https://doi.org/10.2113/gsecongeo.93.7.1013 |
Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275–280. https://doi.org/10.2113/gselements.8.4.275 |
Liu, H. Y., Tang, J. X., Zeng, Q. G., et al., 2022. Petrogenesis and Geological Significance of Early Cretaceous Granites in Tajigang Mining Area, Central Tibet. Earth Science, 47(4): 1217–1233. https://doi.org/10.3799/dqkx.2021.100 |
Liu, X. M., Li, W. S., 2019. Optimization of Lithium Isotope Analysis in Geological Materials by Quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry, 34(8): 1708–1717. https://doi.org/10.1039/c9ja00175a |
Liu, Y. H., Huang, K. F., Lee, D. C., 2018. Precise and Accurate Boron and Lithium Isotopic Determinations for Small Sample-Size Geological Materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(5): 846–855. https://doi.org/10.1039/c7ja00400a |
Liu, Y. S., Hu, Z. C., Li, M., et al., 2013. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin, 58(32): 3863–3878. https://doi.org/10.1007/s11434-013-5901-4 |
London, D., 2008. Pegmatites. The Canadian Mineralogist, 10: 347 |
London, D., 2009. The Origin of Primary Textures in Granitic Pegmatites. The Canadian Mineralogist, 47(4): 697–724. https://doi.org/10.3749/canmin.47.4.697 |
London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495–519. https://doi.org/10.2113/gsecongeo.90.3.495 |
London, D., Morgan, G. B., 2012. The Pegmatite Puzzle. Elements, 8(4): 263–268. https://doi.org/10.2113/gselements.8.4.263 |
Ludwig, T., Marschall, H. R., Pogge von Strandmann, P. A. E., et al., 2011. A Secondary Ion Mass Spectrometry (SIMS) Re-evaluation of B and Li Isotopic Compositions of Cu-Bearing Elbaite from Three Global Localities. Mineralogical Magazine, 75(4): 2485–2494. https://doi.org/10.1180/minmag.2011.075.4.2485 |
Lundstrom, C. C., Chaussidon, M., Hsui, A. T., et al., 2005. Observations of Li Isotopic Variations in the Trinity Ophiolite: Evidence for Isotopic Fractionation by Diffusion during Mantle Melting. Geochimica et Cosmochimica Acta, 69(3): 735–751. https://doi.org/10.1016/j.gca.2004.08.004 |
Magna, T., Day, J. M. D., Mezger, K., et al., 2015. Lithium Isotope Constraints on Crust-Mantle Interactions and Surface Processes on Mars. Geochimica et Cosmochimica Acta, 162: 46–65. https://doi.org/10.1016/j.gca.2015.04.029 |
Magna, T., Janoušek, V., Kohút, M., et al., 2010. Fingerprinting Sources of Orogenic Plutonic Rocks from Variscan Belt with Lithium Isotopes and Possible Link to Subduction-Related Origin of Some A-Type Granites. Chemical Geology, 274(1/2): 94–107. https://doi.org/10.1016/j.chemgeo.2010.03.020 |
Magna, T., Novák, M., Cempírek, J., et al., 2016. Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-Cesium-Tantalum Pegmatites. Geology, 44(8): 655–658. https://doi.org/10.1130/g37712.1 |
Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3/4): 336–353. https://doi.org/10.1016/j.epsl.2006.01.005 |
Maloney, J. S., Nabelek, P. I., Sirbescu, M. L C., et al., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905–916. https://doi.org/10.1127/0935-1221/2008/0020-1823 |
Marignac, C., Cuney, M., 2012. Evidence of Nb-Ta Mobility in High Temperature F-Rich Fluids Evidenced by the La Bosse Quartz-Nb-Ferberite Stockwork (Echassières, French Massif Central). EGU General Assembly Conference Abstracts. 11121 |
Marks, M. A. W., Rudnick, R. L., Ludwig, T., et al., 2008. Sodic Pyroxene and Sodic Amphibole as Potential Reference Materials for in situ Lithium Isotope Determinations by SIMS. Geostandards and Geoanalytical Research, 32(3): 295–310. https://doi.org/10.1111/j.1751-908x.2008.00895.x |
Marschall, H. R., Jiang, S. Y., 2011. Tourmaline Isotopes: No Element Left Behind. Elements, 7(5): 313–319. https://doi.org/10.2113/gselements.7.5.313 |
Marschall, H. R., Tang, M., 2020. High-Temperature Processes: Is it Time for Lithium Isotopes? Elements, 16(4): 247–252. https://doi.org/10.2138/gselements.16.4.247 |
Martin, C., Ponzevera, E., Harlow, G., 2015. In situ Lithium and Boron Isotope Determinations in Mica, Pyroxene, and Serpentine by LA-MC-ICP-MS. Chemical Geology, 412: 107–116. https://doi.org/10.1016/j.chemgeo.2015.07.022 |
Masukawa, K., Nishio, Y., Hayashi, K. I., 2013. Lithium-Strontium Isotope and Heavy Metal Content of Fluid Inclusions and Origin of Ore-Forming Fluid Responsible for Tungsten Mineralization at Takatori Mine, Japan. Geochemical Journal, 47(3): 309–319. https://doi.org/10.2343/geochemj.1.0176 |
Matthews, A., Putlitz, B., Hamiel, Y., et al., 2003. Volatile Transport during the Crystallization of Anatectic Melts: Oxygen, Boron and Hydrogen Stable Isotope Study on the Metamorphic Complex of Naxos, Greece. Geochimica et Cosmochimica Acta, 67(17): 3145–3163. https://doi.org/10.1016/s0016-7037(02)01168-7 |
Maulana, A., Christy, A. G., Ellis, D. J., et al., 2013. Geochemistry of Eclogite- and Blueschist-Facies Rocks from the Bantimala Complex, South Sulawesi, Indonesia: Protolith Origin and Tectonic Setting. Island Arc, 22(4): 427–452. https://doi.org/10.1111/iar.12037 |
Misra, S., Froelich, P. N., 2009. Measurement of Lithium Isotope Ratios by Quadrupole-ICP-MS: Application to Seawater and Natural Carbonates. Journal of Analytical Atomic Spectrometry, 24(11): 1524–1533. https://doi.org/10.1039/b907122a |
Moriguti, T., Nakamura, E., 1998. High-Yield Lithium Separation and the Precise Isotopic Analysis for Natural Rock and Aqueous Samples. Chemical Geology, 145(1/2): 91–104. https://doi.org/10.1016/s0009-2541(97)00163-0 |
Mungall, J. E., 2002. Kinetic Controls on the Partitioning of Trace Elements between Silicate and Sulfide Liquids. Journal of Petrology, 43(5): 749–768. https://doi.org/10.1093/petrology/43.5.749 |
Nishio, Y., Nakai, S., 2002. Accurate and Precise Lithium Isotopic Determinations of Igneous Rock Samples Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 456(2): 271–281. https://doi.org/10.1016/s0003-2670(02)00042-9 |
Page, L. R., 1953. Pegmatite Investigations, 1942–1945, Black Hills, South Dakota. U. S. Geological Survey Professional Paper 247. 228 |
Parkinson, I., Hammond, S., James, R., et al., 2007. High-Temperature Lithium Isotope Fractionation: Insights from Lithium Isotope Diffusion in Magmatic Systems. Earth and Planetary Science Letters, 257(3/4): 609–621. https://doi.org/10.1016/j.epsl.2007.03.023 |
Parmigiani, A., Faroughi, S., Huber, C., et al., 2016. Bubble Accumulation and Its Role in the Evolution of Magma Reservoirs in the Upper Crust. Nature, 532: 492–495 https://doi.org/10.1038/nature17401 |
Penniston-Dorland, S., Liu, X. M., Rudnick, R. L., 2017. Lithium Isotope Geochemistry. Non-Traditional Stable Isotopes. De Gruyter. 165–218. https://doi.org/10.1515/9783110545630-007 |
Phelps, P. R., Lee, C. T. A., Morton, D. M., 2020. Episodes of Fast Crystal Growth in Pegmatites. Nature Communications, 11: 4986. https://doi.org/10.1038/s41467-020-18806-w |
Phelps, P. R., Lee, C. T. A., 2022. Extreme Lithium Isotope Fractionation in Quartz from the Stewart Pegmatite. Geochimica et Cosmochimica Acta, 336: 208–218. https://doi.org/10.1016/j.gca.2022.09.014 |
Pogge von Strandmann, P. A. E., Frings, P. J., Murphy, M. J., 2017. Lithium Isotope Behaviour during Weathering in the Ganges Alluvial Plain. Geochimica et Cosmochimica Acta, 198: 17–31. https://doi.org/10.1016/j.gca.2016.11.017 |
Pogge von Strandmann, P. A. E., Kasemann, S. A., Wimpenny, J. B., 2020. Lithium and Lithium Isotopes in Earth's Surface Cycles. Elements, 16(4): 253–258. https://doi.org/10.2138/gselements.16.4.253 |
Qi, H. P., Taylor, P. D. P., Berglund, M., et al., 1997. Calibrated Measurements of the Isotopic Composition and Atomic Weight of the Natural Li Isotopic Reference Material IRMM-016. International Journal of Mass Spectrometry and Ion Processes, 171(1/2/3): 263–268. https://doi.org/10.1016/s0168-1176(97)00125-0 |
Raimbault, L., 1998. Composition of Complex Lepidolite-Type Granitic Pegmatites and of Constituent Columbite-Tantalite, Chedeville, Massif Central, France. The Canadian Mineralogist, 36(2): 563–583 |
Richter, F., Chaussidon, M., Watson, E. B., et al., 2017. Lithium Isotope Fractionation by Diffusion in Minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219: 124–142. https://doi.org/10.1016/j.gca.2017.09.001 |
Richter, F. M., Dauphas, N., Teng, F. Z., 2009. Non-Traditional Fractionation of Non-Traditional Isotopes: Evaporation, Chemical Diffusion and Soret Diffusion. Chemical Geology, 258(1/2): 92–103. https://doi.org/10.1016/j.chemgeo.2008.06.011 |
Richter, F., Watson, B., Chaussidon, M., et al., 2014. Lithium Isotope Fractionation by Diffusion in Minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126: 352–370. https://doi.org/10.1016/j.gca.2013.11.008 |
Richter, F. M., Davis, A. M., DePaolo, D. J., et al., 2003. Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905–3923. https://doi.org/10.1016/s0016-7037(03)00174-1 |
Richter, F. M., Liang, Y., Davis, A. M., 1999. Isotope Fractionation by Diffusion in Molten Oxides. Geochimica et Cosmochimica Acta, 63(18): 2853–2861. https://doi.org/10.1016/s0016-7037(99)00164-7 |
Richter, S., Kühn, H., Aregbe, Y., et al., 2011. Improvements in Routine Uranium Isotope Ratio Measurements Using the Modified Total Evaporation Method for Multi-Collector Thermal Ionization Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 26(3): 550–564. https://doi.org/10.1039/c0ja00173b |
Roda-Robles, E., Pesquera-Pérez, A., Simmons, W. B., et al., 2019. Evidence for Internal Fractionation from Li Isotopes in Tourmaline and Mica in the Berry-Havey Rare-Element Pegmatite (Maine, USA). The Canadian Mineralogist, 57(5): 779–782. https://doi.org/10.3749/canmin.ab00020 |
Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2012. The Puentemocha Beryl-Phosphate Granitic Pegmatite, Salamanca, Spain: Internal Structure, Petrography and Mineralogy. The Canadian Mineralogist, 50(6): 1573–1587. https://doi.org/10.3749/canmin.50.6.1573 |
Romer, R. L., Meixner, A., 2014. Lithium and Boron Isotopic Fractionation in Sedimentary Rocks during Metamorphism—The Role of Rock Composition and Protolith Mineralogy. Geochimica et Cosmochimica Acta, 128: 158–177. https://doi.org/10.1016/j.gca.2013.11.032 |
Romer, R. L., Meixner, A., Förster, H. J., 2014a. Lithium and Boron in Late-Orogenic Granites—Isotopic Fingerprints for the Source of Crustal Melts? Geochimica et Cosmochimica Acta, 131: 98–114. https://doi.org/10.1016/j.gca.2014.01.018 |
Romer, R. L., Meixner, A., Hahne, K., 2014b. Lithium and Boron Isotopic Composition of Sedimentary Rocks—The Role of Source History and Depositional Environment: A 250 Ma Record from the Cadomian Orogeny to the Variscan Orogeny. Gondwana Research, 26(3/4): 1093–1110. https://doi.org/10.1016/j.gr.2013.08.015 |
Rubin, A. E., Cooper, K. M., Till, C. B., et al., 2017. Rapid Cooling and Cold Storage in a Silicic Magma Reservoir Recorded in Individual Crystals. Science, 356(6343): 1154–1156. https://doi.org/10.1126/science.aam8720 |
Schauble, E. A., 2004. Applying Stable Isotope Fractionation Theory to New Systems. Reviews in Mineralogy and Geochemistry, 55(1): 65–111. https://doi.org/10.2138/gsrmg.55.1.65 |
Schönbächler, M., Fehr, M. A., 2014. Basics of Ion Exchange Chromatography for Selected Geological Applications. Treatise on Geochemistry. Elsevier, Amsterdam. 123–146. https://doi.org/10.1016/b978-0-08-095975-7.01408-x |
Seitz, H. M., Brey, G. P., Lahaye, Y., et al., 2004. Lithium Isotopic Signatures of Peridotite Xenoliths and Isotopic Fractionation at High Temperature between Olivine and Pyroxenes. Chemical Geology, 212(1/2): 163–177. https://doi.org/10.1016/j.chemgeo.2004.08.009 |
Simmons, W. B. S., Webber, K. L., 2008. Pegmatite Genesis: State of the Art. European Journal of Mineralogy, 20(4): 421–438. https://doi.org/10.1127/0935-1221/2008/0020-1833 |
Sirbescu, M. L C., Nabelek, P. I., 2003. Crystallization Conditions and Evolution of Magmatic Fluids in the Harney Peak Granite and Associated Pegmatites, Black Hills, South Dakota—Evidence from Fluid Inclusions. Geochimica et Cosmochimica Acta, 67(13): 2443–2465. https://doi.org/10.1016/s0016-7037(02)01408-4 |
Soltay, L. G., Henderson, G. S., 2005. The Structure of Lithium-Containing Silicate and Germanate Glasses. The Canadian Mineralogist, 43(5): 1643–1651. https://doi.org/10.2113/gscanmin.43.5.1643 |
Steinmann, L. K., Oeser, M., Horn, I., et al., 2019. In situ High-Precision Lithium Isotope Analyses at Low Concentration Levels with Femtosecond-LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(7): 1447–1458. https://doi.org/10.1039/c9ja00088g |
Su, B. X., Gu, X. Y., Deloule, E., et al., 2015. Potential Orthopyroxene, Clinopyroxene and Olivine Reference Materials for in situ Lithium Isotope Determination. Geostandards and Geoanalytical Research, 39(3): 357–369. https://doi.org/10.1111/j.1751-908x.2014.00313.x |
Sun, H., Gao, Y. J., Xiao, Y. L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71–82. https://doi.org/10.1016/j.chemgeo.2016.06.004 |
Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences of the United States of America, 115(15): 3782–3787. https://doi.org/10.1073/pnas.1711862115 |
Tan, D. B., Xiao, Y. L., Sun, H., et al., 2020. Lithium Isotopic Compositions of Post-Collisional Mafic-Ultramafic Rocks from Dabieshan, China: Implications for Recycling of Deeply Subducted Continental Crust. Lithos, 352: 105327. https://doi.org/10.1016/j.lithos.2019.105327 |
Tan, D. B., Xiao, Y. L., Dai, L. Q., et al., 2022. Differentiation between Carbonate and Silicate Metasomatism Based on Lithium Isotopic Compositions of Alkali Basalts. Geology, 50(10): 1150–1155. https://doi.org/10.1130/g50090.1 |
Tan, H. Q., Lü, F. Q., Li, C., et al., 2023. Genetic Linking between Pegmatite⁃Type Veined Molybdenum Deposit and Dichishan Highly Differentiated Granite in West Sichuan. Earth Science, 48(11): 3978–3994. https://doi.org/10.3799/dqkx.2022.027 (in Chinese with English Abstract) |
Tang, Y. J., Zhang, H. F., Ying, J. F., 2007a. Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 49(4): 374–388. https://doi.org/10.2747/0020-6814.49.4.374 |
Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2007b. Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 71(17): 4327–4341. https://doi.org/10.1016/j.gca.2007.07.006 |
Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149: 79–90. https://doi.org/10.1016/j.lithos.2011.12.001 |
Tang, Y. J., Zhang, H. F., Ying, J. F., 2010. A Brief Review of Isotopically Light Li—A Feature of the Enriched Mantle? International Geology Review, 52(9): 964–976. https://doi.org/10.1080/00206810903211385 |
Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2011. Multistage Melt/Fluid-Peridotite Interactions in the Refertilized Lithospheric Mantle beneath the North China Craton: Constraints from the Li-Sr-Nd Isotopic Disequilibrium between Minerals of Peridotite Xenoliths. Contributions to Mineralogy and Petrology, 161(6): 845–861. https://doi.org/10.1007/s00410-010-0568-1 |
Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2009. Lithium Isotopic Systematics of A-Type Granites and Their Mafic Enclaves: Further Constraints on the Li Isotopic Composition of the Continental Crust. Chemical Geology, 262(3/4): 370–379. https://doi.org/10.1016/j.chemgeo.2009.02.009 |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167–4178. https://doi.org/10.1016/j.gca.2004.03.031 |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3/4): 701–710. https://doi.org/10.1016/j.epsl.2006.01.036 |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488–1498. https://doi.org/10.2138/am.2006.2083 |
Teng, F. Z., Rudnick, R. L., McDonough, W. F., et al., 2008. Lithium Isotopic Composition and Concentration of the Deep Continental Crust. Chemical Geology, 255(1/2): 47–59. https://doi.org/10.1016/j.chemgeo.2008.06.009 |
Thomas, R., Davidson, P., 2013. The Missing Link between Granites and Granitic Pegmatites. Journal of Geosciences, 58(2): 183–200. https://doi.org/10.3190/jgeosci.135 |
Thomas, R., Davidson, P., 2016. Revisiting Complete Miscibility between Silicate Melts and Hydrous Fluids, and the Extreme Enrichment of some Elements in the Supercritical State—Consequences for the Formation of Pegmatites and Ore Deposits. Ore Geology Reviews, 72: 1088–1101. https://doi.org/10.1016/j.oregeorev.2015.10.004 |
Tian, H. C., Tian, S. H., Hou, Z. Q., et al., 2022. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Post-Collisional Adakitic Rocks. Geochimica et Cosmochimica Acta, 332: 19–32. https://doi.org/10.1016/j.gca.2022.06.010 |
Tian, S. H., Zhao, Y., Hou, Z. Q., et al., 2017. Lithium Isotopic Composition and Concentration of Himalayan Leucogranites and the Indian Lower Continental Crust. Lithos, 284/285: 416–428. https://doi.org/10.1016/j.lithos.2017.05.001 |
Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409): 809–834. https://doi.org/10.1180/minmag.1997.061.409.05 |
Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153–195. https://doi.org/10.2138/gsrmg.55.1.153 |
Tomascak, P. B., Carlson, R. W., Shirey, S. B., 1999a. Accurate and Precise Determination of Li Isotopic Compositions by Multi-Collector Sector ICP-MS. Chemical Geology, 158(1/2): 145–154. https://doi.org/10.1016/s0009-2541(99)00022-4 |
Tomascak, P. B., Tera, F., Helz, R. T., et al., 1999b. The Absence of Lithium Isotope Fractionation during Basalt Differentiation: New Measurements by Multicollector Sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6): 907–910. https://doi.org/10.1016/s0016-7037(98)00318-4 |
Tomascak, P. B., Magna, T., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. Springer. 205 |
Troch, J., Huber, C., Bachmann, O., 2022. The Physical and Chemical Evolution of Magmatic Fluids in Near-Solidus Silicic Magma Reservoirs: Implications for the Formation of Pegmatites. American Mineralogist, 107(2): 190–205. https://doi.org/10.2138/am-2021-7915 |
Van Lichtervelde, M., Grégoire, M., Linnen, R. L., et al., 2008. Trace Element Geochemistry by Laser Ablation ICP-MS of Micas Associated with Ta Mineralization in the Tanco Pegmatite, Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791–806. https://doi.org/10.1007/s00410-007-0271-z |
Van Lichtervelde, M., Holtz, F., Hanchar, J. M., 2010. Solubility of Manganotantalite, Zircon and Hafnon in Highly Fluxed Peralkaline to Peraluminous Pegmatitic Melts. Contributions to Mineralogy and Petrology, 160(1): 17–32. https://doi.org/10.1007/s00410-009-0462-x |
Veksler, I. V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1/2/3/4): 7–31. https://doi.org/10.1016/j.chemgeo.2004.06.002 |
Vigier, N., Gislason, S. R., Burton, K. W., et al., 2009. The Relationship between Riverine Lithium Isotope Composition and Silicate Weathering Rates in Iceland. Earth and Planetary Science Letters, 287(3/4): 434–441. https://doi.org/10.1016/j.epsl.2009.08.026 |
Walder, A. J., Freedman, P. A., 1992. Communication. Isotopic Ratio Measurement Using a Double Focusing Magnetic Sector Mass Analyser with an Inductively Coupled Plasma as an Ion Source. Journal of Analytical Atomic Spectrometry, 7(3): 571. https://doi.org/10.1039/ja9920700571 |
Walker, R. J., Hanson, G. N., Papike, J. J., 1989. Trace Element Constraints on Pegmatite Genesis: Tin Mountain Pegmatite, Black Hills, South Dakota. Contributions to Mineralogy and Petrology, 101: 290–300 |
Wang, W., Jiang, S. Y., Xiao, Y. L., 2023. Fluid-Rock Interaction Effects on Li Isotope Behavior in Continental Geothermal Systems. Chemical Geology, 631: 121525. https://doi.org/10.1016/j.chemgeo.2023.121525 |
Webster, J. D., Holloway, J. R., Hervig, R. L., 1989. Partitioning of Lithophile Trace Elements between H2O and H2O + CO2 Fluids and Topaz Rhyolite Melt. Economic Geology, 84(1): 116–134. https://doi.org/10.2113/gsecongeo.84.1.116 |
Wenger, M., Armbruster, T., 1991. Crystal Chemistry of Lithium: Oxygen Coordination and Bonding. European Journal of Mineralogy, 3(2): 387–400. https://doi.org/10.1127/ejm/3/2/0387 |
Wiedenbeck, M., Trumbull, R. B., Rosner, M., et al., 2021. Tourmaline Reference Materials for the in situ Analysis of Oxygen and Lithium Isotope Ratio Compositions. Geostandards and Geoanalytical Research, 45(1): 97–119. https://doi.org/10.1111/ggr.12362 |
Wolf, M., Romer, R. L., Glodny, J., 2019. Isotope Disequilibrium during Partial Melting of Metasedimentary Rocks. Geochimica et Cosmochimica Acta, 257: 163–183. https://doi.org/10.1016/j.gca.2019.05.008 |
Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3/4): 277–290. https://doi.org/10.1016/j.chemgeo.2006.12.001 |
Wunder, B., Meixner, A., Romer, R. L., et al., 2006. Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 151(1): 112–120. https://doi.org/10.1007/s00410-005-0049-0 |
Wunder, B., Meixner, A., Romer, R. L., et al., 2011. Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 23(3): 333–342. https://doi.org/10.1127/0935-1221/2011/0023-2095 |
Xiang, L., Romer, R. L., Glodny, J., et al., 2020. Li and B Isotopic Fractionation at the Magmatic-Hydrothermal Transition of Highly Evolved Granites. Lithos, 376/377: 105753. https://doi.org/10.1016/j.lithos.2020.105753 |
Yamaji, K., Makita, Y., Watanabe, H., et al., 2001. Theoretical Estimation of Lithium Isotopic Reduced Partition Function Ratio for Lithium Ions in Aqueous Solution. The Journal of Physical Chemistry A, 105(3): 602–613. https://doi.org/10.1021/jp001303i |
Yang, A., Lin, J., Liu, Y. S., et al., 2023. Development of Synthetic Clinopyroxene Reference Materials for in situ Lithium Isotope Measurement by LA-MC-ICP-MS. Geostandards and Geoanalytical Research, 47(3): 535–546. https://doi.org/10.1111/ggr.12491 |
Ye, X. Y., Li, B., Chen, X. D., et al., 2023. Lithium Isotopic Systematics and Numerical Simulation for Highly-Fractionated Granite-Pegmatite System: Implications for the Pegmatite-Type Rare-Metal Mineralization. Ore Geology Reviews, 163: 105722. https://doi.org/10.1016/j.oregeorev.2023.105722 |
Zhang, C. X., Zhao, H., Zhang, W., et al., 2020. A High Performance Method for the Accurate and Precise Determination of Silicon Isotopic Compositions in Bulk Silicate Rock Samples Using Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(9): 1887–1896. https://doi.org/10.1039/d0ja00036a |
Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139 |
Zhao, Z., Yang, X. Y., Li, W. Y., et al., 2022a. Petrogenesis of the Granite Related to the Baishaziling Sn Deposit, Dayishan Ore Field, Southern China. Geochemistry, 82(2): 125873. https://doi.org/10.1016/j.chemer.2022.125873 |
Zhao, Z., Yang, X. Y., Lu, Y. Y., et al., 2022b. Geochemistry and Boron Isotope Compositions of Tourmalines from the Granite-Greisen-Quartz Vein System in Dayishan Pluton, Southern China: Implications for Potential Mineralization. American Mineralogist, 107(3): 495–508. https://doi.org/10.2138/am-2021-7591 |
Zhao, Z., Yang, X. Y., Zhang, T. Y., et al., 2022c. Geochemical Characteristics and Boron Isotopes of Tourmaline from the Baishaziling Tin Deposit, Nanling Range: Constraints on Magmatic-Hydrothermal Processes. Ore Geology Reviews, 142: 104695. https://doi.org/10.1016/j.oregeorev.2022.104695 |
Zhao, Z., Yang, X. Y., Liu, Q. Y., et al., 2021a. In-situ Boron Isotopic and Geochemical Compositions of Tourmaline from the Shangbao Nb-Ta Bearing Monzogranite, Nanling Range: Implication for Magmatic-Hydrothermal Evolution of Nb and Ta. Lithos, 386/387: 106010. https://doi.org/10.1016/j.lithos.2021.106010 |
Zhao, Z., Yang, X. Y., Lu, S. M., et al., 2021b. Genesis of Late Cretaceous Granite and Its Related Nb-Ta-W Mineralization in Shangbao, Nanling Range: Insights from Geochemistry of Whole-Rock and Nb-Ta Minerals. Ore Geology Reviews, 131: 103975. https://doi.org/10.1016/j.oregeorev.2020.103975 |
Zheng, Y., 2022. Does the Mantle Contribute to Granite Petrogenesis?. Journal of Earth Science, 33(5): 1320–1320. https://doi.org/10.1007/s12583-022-1747-5 |
Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484 |
Zhu, Z. Y., Yang, T., Zhu, X. K., 2019. Achieving Rapid Analysis of Li Isotopes in High-Matrix and Low-Li Samples with MC-ICP-MS: New Developments in Sample Preparation and Mass Bias Behavior of Li in ICPMS. Journal of Analytical Atomic Spectrometry, 34(7): 1503–1513. https://doi.org/10.1039/c9ja00076c |