Citation: | Jie Lin, Ao Yang, Ran Lin, Ji Mao, Zhaochu Hu, Yongsheng Liu. Review on in situ Isotopic Analysis by LA-MC-ICP-MS. Journal of Earth Science, 2023, 34(6): 1663-1691. doi: 10.1007/s12583-023-2002-4 |
The method of LA-MC-ICP-MS has become one choice for the analysis of many isotopic systems due to its relatively low cost, high analysis speed, high spatial resolution, and low matrix effect. However, there are still many challenges in the accuracy, precision, and spatial resolution of
Agatemor, C., Beauchemin, D., 2011. Matrix Effects in Inductively Coupled Plasma Mass Spectrometry: A Review. Analytica Chimica Acta, 706(1): 66–83. https://doi.org/10.1016/j.aca.2011.08.027 |
Albarède, F., Telouk, P., Blichert-Toft, J., et al., 2004. Precise and Accurate Isotopic Measurements Using Multiple-Collector ICPMS. Geochimica et Cosmochimica Acta, 68(12): 2725–2744. https://doi.org/10.1016/j.gca.2003.11.024 |
Aleinikoff, J. N., Wintsch, R. P., Tollo, R. P., et al., 2007. Ages and Origins of Rocks of the Killingworth Dome, South-Central Connecticut: Implications for the Tectonic Evolution of Southern New England. American Journal of Science, 307(1): 63–118. https://doi.org/10.2475/01.2007.04 |
Andersen, T., 2008. ComPbCorr-Software for Common Lead Correction of U-Th-Pb Analyses that do not Report 204Pb, Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 40: 312–314 |
Appelblad, P. K., Rodushkin, I., Baxter, D. C., 2000. The Use of Pt Guard Electrode in Inductively Coupled Plasma Sector Field Mass Spectrometry: Advantages and Limitations. Journal of Analytical Atomic Spectrometry, 15(4): 359–364. https://doi.org/10.1039/a906531h |
Axelsson, E., Pape, J., Berndt, J., et al., 2018. Rutile R632—A New Natural Reference Material for U-Pb and Zr Determination. Geostandards and Geoanalytical Research, 42(3): 319–338. https://doi.org/10.1111/ggr.12213 |
Aysal, N., Guillong, M., Bayanova, T., et al., 2023. A New Natural Secondary Reference Material for Garnet U-Pb Dating by TIMS and LA-ICP-MS. Geostandards and Geoanalytical Research, 47(2): 297–310. https://doi.org/10.1111/ggr.12493 |
Bao, Z. A., Chen, L., Zong, C. L., et al., 2017. Development of Pressed Sulfide Powder Tablets for in situ Sulfur and Lead Isotope Measurement Using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255–262. https://doi.org/10.1016/j.ijms.2017.07.015 |
Bao, Z. A., Lü, N., Chen, K. Y., et al., 2021. A Potential New Chalcopyrite Reference Material for LA-MC-ICP-MS Copper Isotope Ratio Measurement. Geostandards and Geoanalytical Research, 45(2): 401–418. https://doi.org/10.1111/ggr.12372 |
Bao, Z. A., Nie, X. J., Chen, K. Y., et al., 2022. Sphalerite and Zinc Metal Nugget Reference Materials for in situ Zinc Isotope Ratio Determination Using FsLA-MC-ICP-MS. Geostandards and Geoanalytical Research, 46(3): 433–449. https://doi.org/10.1111/ggr.12427 |
Barth, S., Oberli, F., Meier, M., 1994. Th-Pb versus U-Pb Isotope Systematics in Allanite from Co-Genetic Rhyolite and Granodiorite: Implications for Geochronology. Earth and Planetary Science Letters, 124(1/2/3/4): 149–159. https://doi.org/10.1016/0012-821x(94)00073-5 |
Bayon, G., Barrat, J. A., Etoubleau, J., et al., 2009. Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm Addition and Alkaline Fusion. Geostandards and Geoanalytical Research, 33(1): 51–62. https://doi.org/10.1111/j.1751-908x.2008.00880.x |
Becker, S., 2008. Inorganic Mass Spectrometry: Principles and Applications. John Wiley & Sons |
Bevan, D., Coath, C. D., Lewis, J., et al., 2021. In situ Rb-Sr Dating by Collision Cell, Multicollection Inductively-Coupled Plasma Mass-Spectrometry with Pre-Cell Mass-Filter, (CC-MC-ICPMS/MS). Journal of Analytical Atomic Spectrometry, 36(5): 917–931. https://doi.org/10.1039/d1ja00006c |
Beyer, E. E., Griffin, W. L., O'Reilly, S. Y., 2006. Transformation of Archaean Lithospheric Mantle by Refertilization: Evidence from Exposed Peridotites in the Western Gneiss Region, Norway. Journal of Petrology, 47(8): 1611–1636. https://doi.org/10.1093/petrology/egl022 |
Black, L. P., Gulson, B. L., 1978. The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3(3): 227–232 |
Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1/2): 155–170. https://doi.org/10.1016/s0009-2541(03)00165-7 |
Bracciali, L., Parrish, R. R., Horstwood, M. S. A., et al., 2013. U-Pb LA-(MC)-ICP-MS Dating of Rutile: New Reference Materials and Applications to Sedimentary Provenance. Chemical Geology, 347: 82–101. https://doi.org/10.1016/j.chemgeo.2013.03.013 |
Cenki-Tok, B., Oliot, E., Rubatto, D., et al., 2011. Preservation of Permian Allanite within an Alpine Eclogite Facies Shear Zone at Mt Mucrone, Italy: Mechanical and Chemical Behavior of Allanite during Myloni-tization. Lithos, 125(1/2): 40–50. https://doi.org/10.1016/j.lithos.2011. 01.005 doi: 10.1016/j.lithos.2011.01.005 |
Champion, E., 2013. Sintering of Calcium Phosphate Bioceramics. Acta Bio-materialia, 9(4): 5855–5875. https://doi.org/10.1016/j.actbio.2012. 11.029 doi: 10.1016/j.actbio.2012.11.029 |
Chen, H., Saunders, N. J., Jerram, M., et al., 2021. High-Precision Potassium Isotopic Measurements by Collision Cell Equipped MC-ICPMS. Chemical Geology, 578: 120281. https://doi.org/10.1016/j.chemgeo.2021.120281 |
Chen, K. Y., Yuan, H. L., Liang, P., et al., 2017. Improved Nickel-Corrected Isotopic Analysis of Iron Using High-Resolution Multi-Collector Inductively Coupled Plasma Mass Spectrometry. International Journal of Mass Spectrometry, 421: 196–203. https://doi.org/10.1016/j.ijms.2017.07.002 |
Chen, T., Hu, Z. C., Liu, S. H., et al., 2015. Improved Performance of a Shielded Torch Using Ethanol in Inductively Coupled Plasma-Sector Field Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 106: 36–44. https://doi.org/10.1016/j.sab.2015.02.001 |
Chen, W., Lu, J. E., Jiang, S. Y., et al., 2017. In situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS. Analytical Chemistry, 89(24): 13415–13421. https://doi.org/10.1021/acs.analchem.7b03678 |
Chernonozhkin, S. M., Costas-Rodríguez, M., Claeys, P., et al., 2017. Evaluation of the Use of Cold Plasma Conditions for Fe Isotopic Analysis via Multi-Collector ICP-Mass Spectrometry: Effect on Spectral Interferences and Instrumental Mass Discrimination. Journal of Analytical Atomic Spectrometry, 32(3): 538–547. https://doi.org/10.1039/c6ja00428h |
Chew, D. M., Sylvester, P. J., Tubrett, M. N., 2011. U-Pb and Th-Pb Dating of Apatite by LA-ICPMS. Chemical Geology, 280(1/2): 200–216. https://doi.org/10.1016/j.chemgeo.2010.11.010 |
Chmeleff, J., Horn, I., Steinhoefel, G., et al., 2008. In situ Determination of Precise Stable Si Isotope Ratios by UV-Femtosecond Laser Ablation High-Resolution Multi-Collector ICP-MS. Chemical Geology, 249(1/2): 155–166. https://doi.org/10.1016/j.chemgeo.2007.12.003 |
Christensen, J. N., Halliday, A. N., Lee, D. C., et al., 1995. In situ Sr Isotopic Analysis by Laser Ablation. Earth and Planetary Science Letters, 136(1/2): 79–85. https://doi.org/10.1016/0012-821x(95)00181-6 |
Cotta, A. J. B., Enzweiler, J., 2012. Classical and New Procedures of Whole Rock Dissolution for Trace Element Determination by ICP-MS. Geostandards and Geoanalytical Research, 36(1): 27–50. https://doi.org/10.1111/j.1751-908x.2011.00115.x |
Czas, J., Jochum, K. P., Stoll, B., et al., 2012. Investigation of Matrix Effects in 193 nm Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis Using Reference Glasses of Different Transparencies. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 20–28. https://doi.org/10.1016/j.sab.2012.09.004 |
d'Abzac, F. X., Seydoux-Guillaume, A. M., Chmeleff, J., et al., 2012. In situ Characterization of Infra Red Femtosecond Laser Ablation in Geological Samples. Part B: The Laser Induced Particles. Journal of Analytical Atomic Spectrometry, 27(1): 108–119. https://doi.org/10.1039/c1ja10154d |
Dauphas, N., Hopp, T., Craig, G., et al., 2022. In situ 87Rb-87Sr Analyses of Terrestrial and Extraterrestrial Samples by LA-MC-ICP-MS/MS with Double Wien Filter and Collision Cell Technologies. Journal of Analytical Atomic Spectrometry, 37(11): 2420–2441. https://doi.org/10.1039/d2ja00135g |
Decitre, S., Deloule, E., Reisberg, L., et al., 2002. Behavior of Li and Its Isotopes during Serpentinization of Oceanic Peridotites. Geochemistry, Geophysics, Geosystems, 3(1): 1–20. https://doi.org/10.1029/2001gc000178 |
DePaolo, D. J., 2011. Surface Kinetic Model for Isotopic and Trace Element Fractionation during Precipitation of Calcite from Aqueous Solutions. Geochimica et Cosmochimica Acta, 75(4): 1039–1056. https://doi.org/10.1016/j.gca.2010.11.020 |
Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410-017-1389-2 |
Ding, T., Valkiers, S., Wan, D. F., et al., 2001. The Δ33S and Δ34S Values and Absolute 32S/33S and 32S/34S Ratios of IAEA and Chinese Sulfur Isotope Reference Materials. Bulletin of Mineralogy Petrology and Geochemistry, 20: 425–427 (in Chinese with English Abstract) doi: 10.3969/j.issn.1007-2802.2001.04.062 |
Ding, T., Wan, D., Bai, R., et al., 2005. Silicon Isotope Abundance Ratios and Atomic Weights of NBS-28 and other Reference Materials. Geochimica et Cosmochimica Acta, 69(23): 5487–5494. https://doi.org/10.1016/j.gca.2005.06.015 |
Dyar, M. D., Wiedenbeck, M., Robertson, D., et al., 2001. Reference Minerals for the Microanalysis of Light Elements. Geostandards Newsletter, 25(2/3): 441–463. https://doi.org/10.1111/j.1751-908x.2001.tb00616.x |
Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP-MS. Applied Surface Science, 127/128/129: 278–286. https://doi.org/10.1016/s0169-4332(97)00643-0 |
Feng, R., Machado, N., Ludden, J., 1993. Lead Geochronology of Zircon by LaserProbe-Inductively Coupled Plasma Mass Spectrometry (LP-ICPMS). Geochimica et Cosmochimica Acta, 57(14): 3479–3486. https://doi.org/10.1016/0016-7037(93)90553-9 |
Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S-Pb Isotope Analyses by LA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172–2183. https://doi.org/10.1039/c8ja00305j |
Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022a. A New Analytical Mode and Application of the Laser Ablation Inductively Coupled Plasma Mass Spectrometer in the Earth Sciences. Science China Earth Sciences, 65(1): 182–196. https://doi.org/10.1007/s11430-021-9827-2 |
Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022b. A New Synthesis Scheme of Pyrite and Chalcopyrite Reference Materials for in situ Iron and Sulfur Isotope Analysis Using LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(3): 551–562. https://doi.org/10.1039/d1ja00392e |
Fietzke, J., Eisenhauer, A., 2006. Determination of Temperature-Dependent Stable Strontium Isotope (88Sr/86Sr) Fractionation via Bracketing Standard MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08009. https://doi.org/10.1029/2006gc001243 |
Fietzke, J., Frische, M., Hansteen, T. H., et al., 2008a. A Simplified Procedure for the Determination of Stable Chlorine Isotope Ratios (Δ37Cl) Using LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 23(5): 769–772. https://doi.org/10.1039/b718597a |
Fietzke, J., Liebetrau, V., Günther, D., et al., 2008b. An Alternative Data Acquisition and Evaluation Strategy for Improved Isotope Ratio Precision Using LA-MC-ICP-MS Applied to Stable and Radiogenic Strontium Isotopes in Carbonates. Journal of Analytical Atomic Spectrometry, 23(7): 955–961. https://doi.org/10.1039/b717706b |
Fisher, C. M., Hanchar, J. M., Samson, S. D., et al., 2011a. Synthetic Zircon Doped with Hafnium and Rare Earth Elements: A Reference Material for in situ Hafnium Isotope Analysis. Chemical Geology, 286(1/2): 32–47. https://doi.org/10.1016/j.chemgeo.2011.04.013 |
Fisher, C. M., McFarlane, C. R. M., Hanchar, J. M., et al., 2011b. Sm-Nd Isotope Systematics by Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry: Methods and Potential Natural and Synthetic Reference Materials. Chemical Geology, 284(1/2): 1–20. https://doi.org/10.1016/j.chemgeo.2011.01.012 |
Fisher, C. M., Vervoort, J. D., Hanchar, J. M., 2014. Guidelines for Reporting Zircon Hf Isotopic Data by LA-MC-ICPMS and Potential Pitfalls in the Interpretation of These Data. Chemical Geology, 363: 125–133. https://doi.org/10.1016/j.chemgeo.2013.10.019 |
Flamigni, L., Koch, J., Günther, D., 2014. The Effect of Carrier Gas Humidity on the Vaporization of Laser-Produced Aerosols in Inductively Coupled Plasmas. Journal of Analytical Atomic Spectrometry, 29(2): 280–286. https://doi.org/10.1039/c3ja50314c |
Fletcher, I. R., McNaughton, N. J., Aleinikoff, J. A., et al., 2004. Improved Calibration Procedures and New Standards for U-Pb and Th-Pb Dating of Phanerozoic Xenotime by Ion Microprobe. Chemical Geology, 209(3/4): 295–314. https://doi.org/10.1016/j.chemgeo.2004.06.015 |
Fliegel, D., Frei, C., Fontaine, G., et al., 2011. Sensitivity Improvement in Laser Ablation Inductively Coupled Plasma Mass Spectrometry Achieved Using a Methane/Argon and Methanol/Water/Argon Mixed Gas Plasma. Analyst, 136(23): 4925–4934. https://doi.org/10.1039/c0an00953a |
Fontaine, G. H., Hattendorf, B., Bourdon, B., et al., 2009. Effects of Operating Conditions and Matrix on Mass Bias in MC-ICPMS. Journal of Analytical Atomic Spectrometry, 24(5): 637–648. https://doi.org/10.1039/b816948a |
Foster, G. L., Vance, D., 2006. In situ Nd Isotopic Analysis of Geological Materials by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 21(3): 288–296. https://doi.org/10.1039/b513945g |
Frick, D. A., Schuessler, J. A., von Blanckenburg, F., 2016. Development of Routines for Simultaneous in situ Chemical Composition and Stable Si Isotope Ratio Analysis by Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Analytica Chimica Acta, 938: 33–43. https://doi.org/10.1016/j.aca.2016.08.029 |
Fryer, B. J., Jackson, S. E., Longerich, H. P., 1993. The Application of Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ U-Pb Geochronology. Chemical Geology, 109(1/2/3/4): 1–8. https://doi.org/10.1016/0009-2541(93)90058-q |
Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In situ Sulfur Isotopes (Δ34S and Δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC-ICP-MS. Analytica Chimica Acta, 911: 14–26. https://doi.org/10.1016/j.aca.2016.01.026 |
Gao, B. Y., Su, B. X., Li, W. J., et al., 2022. High-Precision Analysis of Calcium Isotopes Using a Nu Sapphire Collision Cell (CC)-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(10): 2111–2121. https://doi.org/10.1039/d2ja00150k |
Gao, T. H., Ren, T. X., Zhou, Y. J., et al., 2023. The Production of Polymer Reference Materials for Microanalysis with High Homogeneity by a 3D Printing Method. Journal of Analytical Atomic Spectrometry, 38(4): 893–901. https://doi.org/10.1039/d2ja00415a |
Garcia, C. C., Lindner, H., Niemax, K., 2009. Laser Ablation Inductively Coupled Plasma Mass Spectrometry—Current Shortcomings, Practical Suggestions for Improving Performance, and Experiments to Guide Future Development. Journal of Analytical Atomic Spectrometry, 24(1): 14–26. https://doi.org/10.1039/b813124b |
Gilbert, S. E., Danyushevsky, L. V., Goemann, K., et al., 2014a. Fractionation of Sulphur Relative to Iron during Laser Ablation-ICP-MS Analyses of Sulphide Minerals: Implications for Quantification. Journal of Analytical Atomic Spectrometry, 29(6): 1024–1033. https://doi.org/10.1039/c4ja00012a |
Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014b. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042–1051. https://doi.org/10.1039/c4ja00011k |
Gonfiantini, R., Tonarini, S., Gröning, M., et al., 2003. Intercomparison of Boron Isotope and Concentration Measurements. Part Ⅱ: Evaluation of Results. Geostandards Newsletter, 27(1): 41–57. https://doi.org/10.1111/j.1751-908x.2003.tb00711.x |
Gray, A. L., 1985. Solid Sample Introduction by Laser Ablation for Induc-tively Coupled Plasma Source Mass Spectrometry. Analyst, 110(5): 551–556. https://doi.org/10.1039/an9851000551 |
Gray, A. L., 1986. Communication. Influence of Load Coil Geometry on Oxide and Doubly Charged Ion Response in Inductively Coupled Plasma Source Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 1(3): 247–249. https://doi.org/10.1039/ja9860100247 |
Gregory, C. J., Rubatto, D., Allen, C. M., et al., 2007. Allanite Micro-Geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb Study. Chemical Geology, 245(3/4): 162–182. https://doi.org/10.1016/j.chemgeo.2007.07.029 |
Griffin, W. L., Wang, X., Jackson, S. E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3/4): 237–269. https://doi.org/10.1016/s0024-4937(02)00082-8 |
Guéguen, F., Isnard, H., Nonell, A., et al., 2015. Neodymium Isotope Ratio Measurements by LC-MC-ICPMS for Nuclear Applications: Investigation of Isotopic Fractionation and Mass Bias Correction. Journal of Analytical Atomic Spectrometry, 30(2): 443–452. https://doi.org/10.1039/c4ja00361f |
Guillong, M., Günther, D., 2002. Effect of Particle Size Distribution on ICP-Induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 17(8): 831–837. https://doi.org/10.1039/b202988j |
Guillong, M., Heinrich, C. A., 2007. Sensitivity Enhancement in Laser Ablation ICP-MS Using Small Amounts of Hydrogen in the Carrier Gas. Journal of Analytical Atomic Spectrometry, 22(12): 1488–1494. https://doi.org/10.1039/b709489b |
Guillong, M., Meier, D., Allan, M., et al., 2008. SILLS: A MATLAB-Based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions. Mineralogical Association of Canada Short Course, 40: 328–333 |
Günther, D., Audétat, A., Frischknecht, R., et al., 1998. Quantitative Analysis of Major, Minor and Trace Elements in Fluid Inclusions Using Laser Ablation-Inductively Coupled Plasmamass Spectrometry. Journal of Analytical Atomic Spectrometry, 13(4): 263–270. https://doi.org/10.1039/a707372k |
Günther, D., Heinrich, C. A., 1999. Enhanced Sensitivity in Laser Ablation-ICP Mass Spectrometry Using Helium-Argon Mixtures as Aerosol Carrier. Journal of Analytical Atomic Spectrometry, 14(9): 1363–1368. https://doi.org/10.1039/a901648a |
Günther, D., Jackson, S. E., Longerich, H. P., 1999. Laser Ablation and Arc/Spark Solid Sample Introduction into Inductively Coupled Plasma Mass Spectrometers. Spectrochimica Acta Part B: Atomic Spectroscopy, 54(3/4): 381–409. https://doi.org/10.1016/s0584-8547(99)00011-7 |
Günther, D., Koch, J., 2008. Formation of Aerosols Generated by Laser Ablation and Their Impact on Elemental Fractionation in LA-ICP-MS. In: Sylvester, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 40: 19–34. |
Halas, S., Szaran, J., 2001. Improved Thermal Decomposition of Sulfates to SO2 and Mass Spectrometric Determination of δ34S of IAEA SO-5, IAEA SO-6 and NBS-127 Sulfate Standards. Rapid Communications in Mass Spectrometry, 15(17): 1618–1620. https://doi.org/10.1002/rcm.416 |
Heaman, L. M., 2009. The Application of U-Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology, 261(1/2): 43–52. https://doi.org/10.1016/j.chemgeo.2008.10.021 |
Hergenröder, R., 2006. Laser-Generated Aerosols in Laser Ablation for Inductively Coupled Plasma Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(3): 284–300. https://doi.org/10.1016/j.sab.2006.02.001 |
Hirata, T., Iizuka, T., Orihashi, Y., 2005. Reduction of Mercury Background on ICP-Mass Spectrometry for in situ U-Pb Age Determinations of Zircon Samples. Journal of Analytical Atomic Spectrometry, 20(8): 696–701. https://doi.org/10.1039/b504153h |
Hirata, T., Kon, Y., 2008. Evaluation of the Analytical Capability of NIR Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Analytical Sciences, 24(3): 345–353. https://doi.org/10.2116/analsci.24.345 |
Hogmalm, K. J., Dahlgren, I., Fridolfsson, I., et al., 2019. First in situ Re-Os Dating of Molybdenite by LA-ICP-MS/MS. Mineralium Deposita, 54(6): 821–828. https://doi.org/10.1007/s00126-019-00889-1 |
Holliday, A. E., Beauchemin, D., 2004. Spatial Profiling of Analyte Signal Intensities in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(3): 291–311. https://doi.org/10.1016/j.sab.2003.12.018 |
Hoover, W. F., Penniston-Dorland, S. C., Baumgartner, L. P., et al., 2021. A Method for Secondary Ion Mass Spectrometry Measurement of Lithium Isotopes in Garnet: The Utility of Glass Reference Materials. Geostandards and Geoanalytical Research, 45(3): 477–499. https://doi.org/10.1111/ggr.12383 |
Horn, I., 2008. Comparison of Femtosecond and Nanosecond Laser Interactions with Geological Matrices and Their Influence on Accuracy and Precision of LA-ICP-MS Data. In: Sylvester, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series, 40: 53–65 |
Horn, I., Guillong, M., Günther, D., 2001. Wavelength Dependant Ablation Rates for Metals and Silicate Glasses Using Homogenized Laser Beam Profiles—Implications for LA-ICP-MS. Applied Surface Science, 182(1/2): 91–102. https://doi.org/10.1016/s0169-4332(01)00465-2 |
Horn, I., Günther, D., 2003. The Influence of Ablation Carrier Gasses Ar, He and Ne on the Particle Size Distribution and Transport Efficiencies of Laser Ablation-Induced Aerosols: Implications for LA-ICP-MS. Applied Surface Science, 207(1/2/3/4): 144–157. https://doi.org/10.1016/s0169-4332(02)01324-7 |
Horn, I., von Blanckenburg, F., 2007. Investigation on Elemental and Isotopic Fractionation during 196 nm Femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(4): 410–422. https://doi.org/10.1016/j.sab.2007.03.034 |
Horn, I., von Blanckenburg, F., Schoenberg, R., et al., 2006. In situ Iron Isotope Ratio Determination Using UV-Femtosecond Laser Ablation with Application to Hydrothermal Ore Formation Processes. Geochimica et Cosmochimica Acta, 70(14): 3677–3688. https://doi.org/10.1016/j.gca.2006.05.002 |
Hoshino, M., Kimata, M., Nishida, N., et al., 2005. The Chemistry of Allanite from the Daibosatsu Pass, Yamanashi, Japan. Mineralogical Magazine, 69(4): 403–424. https://doi.org/10.1180/0026461056940259 |
Hou, K. J., Li, Y. H., Xiao, Y. K., et al., 2010. In situ Boron Isotope Measurements of Natural Geological Materials by LA-MC-ICP-MS. Chinese Science Bulletin, 55(29): 3305–3311. https://doi.org/10.1007/s11434-010-4064-9 |
Hu, P., Luo, T., Crowley, J., et al., 2023. Characterisation of Three Sri Lankan Zircon Megacrysts as Potential Reference Materials for Microbeam U-Pb Geochronology and Hf-O-Zr Isotope Measurements. Geostandards and Geoanalytical Research, 47(3): 509–533. https://doi.org/10.1111/ggr.12495 |
Hu, Z. C., Hu, S. H., Gao, S., et al., 2004. Volatile Organic Solvent-Induced Signal Enhancements in Inductively Coupled Plasma-Mass Spectrometry: A Case Study of Methanol and Acetone. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(9): 1463–1470. https://doi.org/10.1016/j.sab.2004.07.007 |
Hu, Z. C., Li, X. H., Luo, T., et al., 2021. Tanz Zircon Megacrysts: A New Zircon Reference Material for the Microbeam Determination of U-Pb Ages and Zr-O Isotopes. Journal of Analytical Atomic Spectrometry, 36(12): 2715–2734. https://doi.org/10.1039/d1ja00311a |
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391–1399. https://doi.org/10.1039/c2ja30078h |
Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008a. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093–1101. https://doi.org/10.1039/b804760j |
Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008b. Niobium and Tantalum Concentrations in NIST SRM 610 Revisited. Geostandards and Geoanalytical Research, 32(3): 347–360. https://doi.org/10.1111/j.1751-908x.2008.00889.x |
Hu, Z. C., Gao, S., Liu, Y. S., et al., 2010. NH4F Assisted High Pressure Digestion of Geological Samples for Multi-Element Analysis by ICP-MS. Journal of Analytical Atomic Spectrometry, 25(3): 408–413. https://doi.org/10.1039/b921006g |
Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152–1157. https://doi.org/10.1021/ac503749k |
Huang, C., Chen, J. Y., Yang, Y. H., et al., 2023. A New Reference Material for O-Sr Isotope Determination in Epidote Using a Micro-Beam. Journal of Analytical Atomic Spectrometry, 38(8): 1592–1601. https://doi.org/10.1039/d3ja00038a |
Huang, C., Wang, H., Xie, L. W., et al., 2022. In situ Ti Isotopic Analysis by Femtosecond Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(10): 2165–2175. https://doi.org/10.1039/d2ja00189f |
Huang, C., Wang, H., Yang, J. H., et al., 2020. SA01—A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103–123. https://doi.org/10.1111/ggr.12307 |
Huang, C., Wang, H., Yang, J., et al., 2021. Characterization of the Potential Reference Material SA02 for Micro-Beam U-Pb Geochronology and Hf-O Isotopic Composition Analysis of Zircon. Journal of Analytical Atomic Spectrometry, 36(2): 368–374. https://doi.org/10.1039/d0ja00409j |
Hutton, R. C., 1986. Application of Inductively Coupled Plasma Source Mass Spectrometry (ICP-MS) to the Determination of Trace Metals in Organics. Journal of Analytical Atomic Spectrometry, 1(4): 259–263. https://doi.org/10.1039/ja9860100259 |
Iizuka, T., Eggins, S. M., McCulloch, M. T., et al., 2011. Precise and Accurate Determination of 147Sm/144Nd and 143Nd/144Nd in Monazite Using Laser Ablation-MC-ICPMS. Chemical Geology, 282(1/2): 45–57. https://doi.org/10.1016/j.chemgeo.2011.01.008 |
Iizuka, T., Hirata, T., 2005. Improvements of Precision and Accuracy in in situ Hf Isotope Microanalysis of Zircon Using the Laser Ablation-MC-ICPMS Technique. Chemical Geology, 220(1/2): 121–137. https://doi.org/10.1016/j.chemgeo.2005.03.010 |
Ikehata, K., Hirata, T., 2013. Evaluation of UV-Fs-LA-MC-ICP-MS for Precise in situ Copper Isotopic Microanalysis of Cubanite. Analytical Sciences, 29(12): 1213–1217. https://doi.org/10.2116/analsci.29.1213 |
Ikehata, K., Notsu, K., Hirata, T., 2008. In situ Determination of Cu Isotope Ratios in Copper-Rich Materials by NIR Femtosecond LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 23(7): 1003–1008. https://doi.org/10.1039/b801044g |
Inoue, M., Nohara, M., Okai, T., et al., 2004. Concentrations of Trace Elements in Carbonate Reference Materials Coral JCP-1 and Giant Clam JCT-1 by Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 411–416. https://doi.org/10.1111/j.1751-908x.2004.tb00759.x |
Ishii, I., Golightly, D. W., Montaser, A., 1988. Radial Excitation Temperatures in Argon-Nitrogen Inductively Coupled Plasmas. Journal of Analytical Atomic Spectrometry, 3(7): 965–968. https://doi.org/10.1039/ja9880300965 |
Jackson, S. E., 2008. LAMTRACE Data Reduction Software for LA-ICP-MS. In: Sylvestor, P., ed., Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course 40. 307 |
Jackson, S. E., Günther, D., 2003. The Nature and Sources of Laser Induced Isotopic Fractionation in Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 18(3): 205–212. https://doi.org/10.1039/b209620j |
Jackson, S., Longerich, H., Dunning, G., et al., 1992. The Application of Laser-Ablation Microprobe: Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in situ Trace-Element Determinations in Minerals. Canadian Mineralogist, 30: 1049–1064. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology. Chemical Geology, 211(1/2): 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017 |
Janney, P. E., Richter, F. M., Mendybaev, R. A., et al., 2011. Matrix Effects in the Analysis of Mg and Si Isotope Ratios in Natural and Synthetic Glasses by Laser Ablation-Multicollector ICPMS: A Comparison of Single- and Double-Focusing Mass Spectrometers. Chemical Geology, 281(1/2): 26–40. https://doi.org/10.1016/j.chemgeo.2010.11.026 |
Jenner, G. A., Foley, S. F., Jackson, S. E., et al., 1993. Determination of Partition Coefficients for Trace Elements in High Pressure-Temperature Experimental Run Products by Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS). Geochimica et Cosmochimica Acta, 57(23/24): 5099–5103. https://doi.org/10.1016/0016-7037(93)90611-y |
Jiang, S. J., Houk, R. S., Stevens, M. A., 1988. Alleviation of Overlap Interferences for Determination of Potassium Isotope Ratios by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 60(11): 1217–1221. https://doi.org/10.1021/ac00162a023 |
Jochum, K. P., Stoll, B., Herwig, K., et al., 2006. MPI-DING Reference Glasses for in situ Microanalysis: New Reference Values for Element Concentrations and Isotope Ratios. Geochemistry, Geophysics, Geosystems, 7(2): Q02008. https://doi.org/10.1029/2005gc001060 |
Jochum, K. P., Stoll, B., Weis, U., et al., 2009. In situ Sr Isotopic Analysis of Low Sr Silicates Using LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 24(9): 1237. https://doi.org/10.1039/b905045k |
Jochum, K. P., Willbold, M., Raczek, I., et al., 2005. Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards and Geoanalytical Research, 29(3): 285–302. https://doi.org/10.1111/j.1751-908x.2005.tb00901.x |
Johnson, C. M., Beard, B. L., Albarede, F., 2004. Overview and General Concepts. Reviews in Mineralogy and Geochemistry, 55(1): 1–24. https://doi.org/10.2138/gsrmg.55.1.1 |
Kasemann, S. A., Jeffcoate, A. B., Elliott, T., 2005. Lithium Isotope Composition of Basalt Glass Reference Material. Analytical Chemistry, 77(16): 5251–5257. https://doi.org/10.1021/ac048178h |
Kasemann, S. A., Schmidt, D. N., Bijma, J., et al., 2009. In situ Boron Isotope Analysis in Marine Carbonates and Its Application for Foraminifera and Palaeo-pH. Chemical Geology, 260(1/2): 138–147. https://doi.org/10.1016/j.chemgeo.2008.12.015 |
Kennedy, A. K., Kamo, S. L., Nasdala, L., et al., 2010. Grenville Skarn Titanite: Potential Reference Material for SIMS U-Th-Pb Analysis. The Canadian Mineralogist, 48(6): 1423–1443. https://doi.org/10.3749/canmin.48.5.1423 |
Kimura, J. I., Chang, Q., Ishikawa, T., et al., 2016. Influence of Laser Parameters on Isotope Fractionation and Optimisation of Lithium and Boron Isotope Ratio Measurements Using Laser Ablation-Multiple Faraday Collector-Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 31(11): 2305–2320. https://doi.org/10.1039/c6ja00283h |
Kimura, J. I., Chang, Q., Kawabata, H., 2013a. Standardless Determination of Nd Isotope Ratios in Glasses and Minerals Using Laser-Ablation Multiple-Collector Inductively Coupled Plasma Mass Spectrometry with a Low-Oxide Molecular Yield Interface Setup. Journal of Analytical Atomic Spectrometry, 28(9): 1522–1529. https://doi.org/10.1039/c3ja50109d |
Kimura, J. I., Takahashi, T., Chang, Q., 2013b. A New Analytical Bias Correction for in situ Sr Isotope Analysis of Plagioclase Crystals Using Laser-Ablation Multiple-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 28(6): 945–957. https://doi.org/10.1039/c3ja30329b |
Kimura, J. I., Ohki, K., Chang, Q., 2017. Homogenised 266 nm Femtosecond Laser Ablation for Isotopic and Elemental Microanalyses Using Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 32(6): 1203–1210. https://doi.org/10.1039/c6ja00445h |
Kinny, P. D., Griffin, B., Heaman, L. M., et al., 1997. SHRIMP U-Pb Ages of Perovskite from Yakutian Kimberlites. Geologiya I Geofizika, 38: 91–99 |
Kinny, P. D., Compston, W., Williams, I. S., 1991. A Reconnaissance Ion-Probe Study of Hafnium Isotopes in Zircons. Geochimica et Cosmochimica Acta, 55(3): 849–859. https://doi.org/10.1016/0016-7037(91)90346-7 |
Klötzli, U., Klötzli, E., Günes, Z., et al., 2009. Accuracy of Laser Ablation U-Pb Zircon Dating: Results from a Test Using Five Different Reference Zircons. Geostandards and Geoanalytical Research, 33(1): 5–15. https://doi.org/10.1111/j.1751-908x.2009.00921.x |
Kobayashi, K., Tanaka, R., Moriguti, T., et al., 2004. Lithium, Boron, and Lead Isotope Systematics of Glass Inclusions in Olivines from Hawaiian Lavas: Evidence for Recycled Components in the Hawaiian Plume. Chemical Geology, 212(1/2): 143–161. https://doi.org/10.1016/j.chemgeo.2004.08.050 |
Koch, J., Schlamp, S., Rösgen, T., et al., 2007. Visualization of Aerosol Particles Generated by near Infrared Nano- and Femtosecond Laser Ablation. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(1): 20–29. https://doi.org/10.1016/j.sab.2006.11.006 |
Konter, J. G., Storm, L. P., 2014. High Precision 87Sr/86Sr Measurements by MC-ICP-MS, Simultaneously Solving for Kr Interferences and Mass-Based Fractionation. Chemical Geology, 385: 26–34. https://doi.org/10.1016/j.chemgeo.2014.07.009 |
Koornneef, J. M., Bouman, C., Schwieters, J. B., et al., 2014. Measurement of Small Ion Beams by Thermal Ionisation Mass Spectrometry Using New 1013 Ohm Resistors. Analytica Chimica Acta, 819: 49–55. https://doi.org/10.1016/j.aca.2014.02.007 |
Koornneef, J. M., Bouman, C., Schwieters, J. B., et al., 2013. Use of 1012 Ohm Current Amplifiers in Sr and Nd Isotope Analyses by TIMS for Application to Sub-Nanogram Samples. Journal of Analytical Atomic Spectrometry, 28(5): 749–754. https://doi.org/10.1039/c3ja30326h |
Koornneef, J. M., Nikogosian, I., van Bergen, M. J., et al., 2015. TIMS Analysis of Sr and Nd Isotopes in Melt Inclusions from Italian Potassium-Rich Lavas Using Prototype 1013 Ohm Amplifiers. Chemical Geology, 397: 14–23. https://doi.org/10.1016/j.chemgeo.2015.01.005 |
Koppenaal, D. W., Barinaga, C. J., Denton, M. B., et al., 2005. MS Detectors. Analytical Chemistry, 77(21): 418–427. https://doi.org/10.1021/ac053495p |
Košler, J., Pedersen, R. B., Kruber, C., et al., 2005. Analysis of Fe Isotopes in Sulfides and Iron Meteorites by Laser Ablation High-Mass Resolution Multi-Collector ICP Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 20(3): 192–199. https://doi.org/10.1039/b412169d |
Kralj, P., Veber, M., 2003. Investigations into Nonspectroscopic Effects of Organic Compounds in Inductively Coupled Plasma Mass Spectrometry. Acta Chimica Slovenica, 50: 633–644. https://doi.org/10.1016/j.sab.2014.11.003 |
Kroslakova, I., Günther, D., 2007. Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry: Evidence for Mass Load Induced Matrix Effects in the ICP during Ablation of a Silicate Glass. Journal of Analytical Atomic Spectrometry, 22(1): 51–62. https://doi.org/10.1039/b606522h |
Kuhn, H. R., Pearson, N. J., Jackson, S. E., 2007. The Influence of the Laser Ablation Process on Isotopic Fractionation of Copper in LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 22(5): 547–552. https://doi.org/10.1039/b616232k |
Lazarov, M., Horn, I., 2015. Matrix and Energy Effects during in-situ Determination of Cu Isotope Ratios by UV-Femtosecond Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 111: 64–73. https://doi.org/10.1016/j.sab.2015.06.013 |
Le Roux, P. J., 2010. Lithium Isotope Analysis of Natural and Synthetic Glass by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7): 1033–1038. https://doi.org/10.1039/b920341a |
Li, C., Zhou, L. M., Zhao, Z., et al., 2018. In-situ Sr Isotopic Measurement of Scheelite Using Fs-LA-MC-ICPMS. Journal of Asian Earth Sciences, 160: 38–47. https://doi.org/10.1016/j.jseaes.2018.03.025 |
Li, D. F., Fu, Y., Hollings, P., et al., 2022. PL57 Garnet as a New Natural Reference Material for in situ U-Pb Isotope Analysis and Its Perspective for Geological Applications. Contributions to Mineralogy and Petrology, 177(2): 19. https://doi.org/10.1007/s00410-021-01884-4 |
Li, Q. L., Lin, W., Su, W., et al., 2011. SIMS U-Pb Rutile Age of Low-Temperature Eclogites from Southwestern Chinese Tianshan, NW China. Lithos, 122(1/2): 76–86. https://doi.org/10.1016/j.lithos.2010.11.007 |
Li, R. C., Xia, X. P., Chen, H. Y., et al., 2020. A Potential New Chalcopyrite Reference Material for Secondary Ion Mass Spectrometry Sulfur Isotope Ratio Analysis. Geostandards and Geoanalytical Research, 44(3): 485–500. https://doi.org/10.1111/ggr.12330 |
Li, W. Q., Beard, B. L., Li, S. L., 2016. Precise Measurement of Stable Potassium Isotope Ratios Using a Single Focusing Collision Cell Multi-Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 31(4): 1023–1029. https://doi.org/10.1039/c5ja00487j |
Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117–134. https://doi.org/10.1111/j.1751-908x.2010.00036.x |
Li, X. H., Li, Q. L., Liu, Y., et al., 2011. Further Characterization of M257 Zircon Standard: A Working Reference for SIMS Analysis of Li Isotopes. Journal of Analytical Atomic Spectrometry, 26(2): 352–358. https://doi.org/10.1039/c0ja00073f |
Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647–4654. https://doi.org/10.1007/s11434-013-5932-x |
Li, Z., Hu, Z. C., Günther, D., et al., 2016. Ablation Characteristic of Ilmenite Using UV Nanosecond and Femtosecond Lasers: Implications for Non-Matrix-Matched Quantification. Geostandards and Geoanalytical Research, 40(4): 477–491. https://doi.org/10.1111/ggr.12117 |
Liang, P., Bao, Z. A., Yang, W. Q., et al., 2023. A Natural Calcite Reference Material for Microbeam Sr Isotope Analysis. Journal of Analytical Atomic Spectrometry, 38(2): 414–421. https://doi.org/10.1039/d2ja00311b |
Liebmann, J., Ware, B. D., Hartnady, M. I., et al., 2023. Albany K-Feldspar: A New Pb Isotope Reference Material. Geostandards and Geoanalytical Research, 47(3): 637–655. https://doi.org/10.1111/ggr.12487 |
Lin, J., Liu, Y. S., Chen, H. H., et al., 2015. Review of High-Precision Sr Isotope Analyses of Low-Sr Geological Samples. Journal of Earth Science, 26(5): 763–774. https://doi.org/10.1007/s12583-015-0593-0 |
Lin, J., Liu, Y. S., Hu, Z. C., et al., 2019. Accurate Analysis of Li Isotopes in Tourmalines by LA-MC-ICP-MS under "Wet" Conditions with Non-Matrix-Matched Calibration. Journal of Analytical Atomic Spectrometry, 34(6): 1145–1153. https://doi.org/10.1039/c9ja00013e |
Lin, J., Liu, Y. S., Hu, Z. C., et al., 2016a. Accurate Determination of Lithium Isotope Ratios by MC-ICP-MS without Strict Matrix-Matching by Using a Novel Washing Method. Journal of Analytical Atomic Spectrometry, 31(2): 390–397. https://doi.org/10.1039/c5ja00231a |
Lin, J., Liu, Y. S., Yang, Y. H., et al., 2016b. Calibration and Correction of LA-ICP-MS and LA-MC-ICP-MS Analyses for Element Contents and Isotopic Ratios. Solid Earth Sciences, 1(1): 5–27. https://doi.org/10.1016/j.sesci.2016.04.002 |
Lin, J., Liu, Y. S., Tong, X. R., et al., 2017. Improved in situ Li Isotopic Ratio Analysis of Silicates by Optimizing Signal Intensity, Isotopic Ratio Stability and Intensity Matching Using Ns-LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(4): 834–842. https://doi.org/10.1039/c6ja00409a |
Lin, J., Liu, Y. S., Yang, A., et al., 2022. Non-Matrix-Matched Calibration of Mg Isotopic Ratios in Silicate Samples by Fs-LA-MC-ICP-MS with Low Mass Resolution under Wet Plasma Conditions. Journal of Analytical Atomic Spectrometry, 37(3): 592–602. https://doi.org/10.1039/d1ja00396h |
Lin, J., Liu, Y. S., Zhu, L., et al., 2021. Investigation of Nitrogen Addition, Position Effect and Mismatch Intensity Effect in Li Isotopic Analysis by Nanosecond Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 177: 106074. https://doi.org/10.1016/j.sab.2021.106074 |
Lin, L., Hu, Z. C., Yang, L., et al., 2014. Determination of Boron Isotope Compositions of Geological Materials by Laser Ablation MC-ICP-MS Using Newly Designed High Sensitivity Skimmer and Sample Cones. Chemical Geology, 386: 22–30. https://doi.org/10.1016/j.chemgeo.2014.08.001 |
Liu, P., Mao, J. W., Lehmann, B., et al., 2021. Tin Isotopes via Fs-LA-MC-ICP-MS Analysis Record Complex Fluid Evolution in Single Cassiterite Crystals. American Mineralogist, 106(12): 1980–1986. https://doi.org/10.2138/am-2021-7558 |
Liu, S. H., Hu, Z. C., Günther, D., et al., 2014. Signal Enhancement in Laser Ablation Inductively Coupled Plasma-Mass Spectrometry Using Water and/or Ethanol Vapor in Combination with a Shielded Torch. Journal of Analytical Atomic Spectrometry, 29(3): 536–544. https://doi.org/10.1039/c3ja50329a |
Liu, Y. S., Hu, S. H., Liu X. M., Gao, S., 2003. Accurate Analysis of Zr, Hf, Nb and Ta in High-Grade Metamorphic Rocks with ICP-MS. Earth Science, 28(2): 151–156 (in Chinese with English Abstract) |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Liu, Y. S., Hu, Z. C., Li, M., et al., 2013. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin, 58(32): 3863–3878. https://doi.org/10.1007/s11434-013-5901-4 |
Liu, Y., Li, X. H., Savage, P. S., et al., 2022. New Quartz and Zircon Si Isotopic Reference Materials for Precise and Accurate SIMS Isotopic Microanalysis. Atomic Spectroscopy, 43(2): 99–106. https://doi.org/10.46770/as.2021.1110 |
Llorente, I., Gómez, M., Cámara, C., 1997. Improvement of Selenium Determination in Water by Inductively Coupled Plasma Mass Spectrometry through Use of Organic Compounds as Matrix Modifiers. Spectrochimica Acta Part B: Atomic Spectroscopy, 52(12): 1825–1838. https://doi.org/10.1016/s0584-8547(97)00067-0 |
Lloyd, N. S., Sadekov, A. Y., Misra, S., 2018. Application of 1013 Ohm Faraday Cup Current Amplifiers for Boron Isotopic Analyses by Solution Mode and Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry. Rapid Communications in Mass Spectrometry, 32(1): 9–18. https://doi.org/10.1002/rcm.8009 |
Louie, H., Soo, S. Y. P., 1992. Use of Nitrogen and Hydrogen in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 7(3): 557–564. https://doi.org/10.1039/ja9920700557 |
Lu, J., Chen, W., Sun, J., et al., 2022a. High-Precision Magnesium Isotope Analysis of Carbonates by Laser Ablation MC-ICP-MS Using Wet and Dry Conditions. Journal of Analytical Atomic Spectrometry, 37(8): 1665–1674. https://doi.org/10.1039/d2ja00163b |
Lu, J., Chen, W., Zhang, W., et al., 2022b. Determination of Carbon Isotopes in Carbonates (Calcite, Dolomite, Magnesite, and Siderite) by Femtosecond Laser Ablation Multi-Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 37(2): 278–288. https://doi.org/10.1039/d1ja00356a |
Luo, T., Hu, Z. C., Zhang, W., et al., 2018. Water Vapor-Assisted "Universal" Nonmatrix-Matched Analytical Method for the in situ U-Pb Dating of Zircon, Monazite, Titanite, and Xenotime by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 90(15): 9016–9024. https://doi.org/10.1021/acs.analchem.8b01231 |
Luo, T., Li, Q., Ling, X., et al., 2021. Jilin Zircon—A New Natural Reference Material for Microbeam U-Pb Geochronology and Hf-O Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 36(10): 2216–2226. https://doi.org/10.1039/d1ja00258a |
Luo, T., Hu, Z. C., 2022. Recent Advances in U-Th-Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Earth Science, 47(11): 4122–4144. https://doi.org/10.3799/dqkx.2022.365 (in Chinese with English Abstract) |
Luvizotto, G. L., Zack, T., Meyer, H. P., et al., 2009. Rutile Crystals as Potential Trace Element and Isotope Mineral Standards for Microanalysis. Chemical Geology, 261(3/4): 346–369. https://doi.org/10.1016/j.chemgeo.2008.04.012 |
Lü, N., Bao, Z. A., Chen, K. Y., et al., 2022a. Accurate Analysis of Cu Isotopes by Fs-LA-MC-ICP-MS with Non-Matrix-Matched Calibration. Science China Earth Sciences, 65(10): 2005–2017. https://doi.org/10.1007/s11430-021-9943-y |
Lü, N., Bao, Z. A., Chen, K. Y., et al., 2022b. New Potential Sphalerite, Chalcopyrite, Galena and Pyrite Reference Materials for Sulfur Isotope Determination by Laser Ablation-MC-ICP-MS. Geostandards and Geoanalytical Research, 46(3): 451–463. https://doi.org/10.1111/ggr.12440 |
Ma, J. L., Wei, G. J., Liu, Y., et al., 2013. Precise Measurement of Stable (Δ88/86Sr) and Radiogenic (87Sr/86Sr) Strontium Isotope Ratios in Geological Standard Reference Materials Using MC-ICP-MS. Chinese Science Bulletin, 58(25): 3111–3118. https://doi.org/10.1007/s11434-013-5803-5 |
Ma, Q., Evans, N. J., Ling, X. X., et al., 2019. Natural Titanite Reference Materials for in situ U-Pb and Sm-Nd Isotopic Measurements by LA-(MC)-ICP-MS. Geostandards and Geoanalytical Research, 43(3): 355–384. https://doi.org/10.1111/ggr.12264 |
Magna, T., Wiechert, U., Halliday, A. N., 2006. New Constraints on the Lithium Isotope Compositions of the Moon and Terrestrial Planets. Earth and Planetary Science Letters, 243(3/4): 336–353. https://doi.org/10.1016/j.epsl.2006.01.005 |
Maréchal, C. N., Télouk, P., Albarède, F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology, 156(1/2/3/4): 251–273. https://doi.org/10.1016/s0009-2541(98)00191-0 |
Martelat, B., Isnard, H., Vio, L., et al., 2018. Precise U and Pu Isotope Ratio Measurements in Nuclear Samples by Hyphenating Capillary Electrophoresis and MC-ICPMS. Analytical Chemistry, 90(14): 8622–8628. https://doi.org/10.1021/acs.analchem.8b01884 |
Martin, C., Ponzevera, E., Harlow, G., 2015. In situ Lithium and Boron Isotope Determinations in Mica, Pyroxene, and Serpentine by LA-MC-ICP-MS. Chemical Geology, 412: 107–116. https://doi.org/10.1016/j.chemgeo.2015.07.022 |
McDowell, F. W., McIntosh, W. C., Farley, K. A., 2005. A Precise 40Ar-39Ar Reference Age for the Durango Apatite (U-Th)/He and Fission-Track Dating Standard. Chemical Geology, 214(3/4): 249–263. https://doi.org/10.1016/j.chemgeo.2004.10.002 |
McFarlane, C. R. M., McCulloch, M. T., 2007. Coupling of in-situ Sm-Nd Systematics and U-Pb Dating of Monazite and Allanite with Applications to Crustal Evolution Studies. Chemical Geology, 245(1/2): 45–60. https://doi.org/10.1016/j.chemgeo.2007.07.020 |
McGinnis, C. E., Jain, J. C., Neal, C. R., 1997. Characterisation of Memory Effects and Development of an Effective Wash Protocol for the Measurement of Petrogenetically Critical Trace Elements in Geological Samples by ICP-MS. Geostandards Newsletter, 21(2): 289–305. https://doi.org/10.1111/j.1751-908x.1997.tb00677.x |
Meija, J., Yang, L., Mester, Z., et al., 2012. Correction of Instrumental Mass Discrimination for Isotope Ratio Determination with Multi‐Collector Inductively Coupled Plasma Mass Spectrometry. In: Vanhaecke, F., Degryse, P., eds., Isotopic Analysis: Fundamentals and Applications Using ICP-MS. Wiley. 113–137. |
Mischel, S. A., Mertz-Kraus, R., Jochum, K. P., et al., 2017. TERMITE: An R Script for Fast Reduction of Laser Ablation Inductively Coupled Plasma Mass Spectrometry Data and Its Application to Trace Element Measurements. Rapid Communications in Mass Spectrometry, 31(13): 1079–1087. https://doi.org/10.1002/rcm.7895 |
Misra, S., Froelich, P. N., 2009. Measurement of Lithium Isotope Ratios by Quadrupole-ICP-MS: Application to Seawater and Natural Carbonates. Journal of Analytical Atomic Spectrometry, 24(11): 1524–1533. https://doi.org/10.1039/b907122a |
Mitchell, R. H., Wu, F. Y., Yang, Y. H., 2011. In situ U-Pb, Sr and Nd Isotopic Analysis of Loparite by LA-(MC)-ICP-MS. Chemical Geology, 280(1/2): 191–199. https://doi.org/10.1016/j.chemgeo.2010.11.008 |
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., et al., 1998. Non-Chondritic Meteorites from Asteroidal Bodies. Reviews in Mineralogy and Geo-chemistry, 36(1): 1–196. https://doi.org/10.1515/9781501508806-019 |
Moens, L. J., Vanhaecke, F. F., Bandura, D. R., et al., 2001. Elimination of Isobaric Interferences in ICP-MS, Using Ion-Molecule Reaction Chemistry: Rb/Sr Age Determination of Magmatic Rocks, a Case Study. Journal of Analytical Atomic Spectrometry, 16(9): 991–994. https://doi.org/10.1039/b103707m |
Montaser, A., van Hoven, R. L., Barnes, R. M., 1987. Mixed-Gas, Molecular-Gas, and Helium Inductively Coupled Plasmas for Analytical Atomic Spectrometry: A Critical Review. Critical Reviews in Analytical Chemistry, 18(1): 45–103. https://doi.org/10.1080/10408348708085563 |
Mukherjee, P. K., Khanna, P. P., Saini, N. K., 2014. Rapid Determination of Trace and Ultra Trace Level Elements in Diverse Silicate Rocks in Pressed Powder Pellet Targets by LA-ICP-MS Using a Matrix-Independent Protocol. Geostandards and Geoanalytical Research, 38(3): 363–379. https://doi.org/10.1111/j.1751-908x.2013.00260.x |
Mulder, J., Hagen-Peter, G., Ubide, T., et al., 2023. New Reference Materials, Analytical Procedures and Data Reduction Strategies for Sr Isotope Measurements in Geological Materials by LA-MC-ICP-MS. Geostandards and Geoanalytical Research, 47(2): 311–336. https://doi.org/10.1111/ggr.12480 |
Murphy, K. E., Long, S. E., Rearick, M. S., et al., 2002. The Accurate Determination of Potassium and Calcium Using Isotope Dilution Inductively Coupled "Cold" Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 17(5): 469–477. https://doi.org/10.1039/b200029f |
Müller, W., Anczkiewicz, R., 2016. Accuracy of Laser-Ablation (LA)-MC-ICPMS Sr Isotope Analysis of (Bio)Apatite—A Problem Reassessed. Journal of Analytical Atomic Spectrometry, 31(1): 259–269. https://doi.org/10.1039/c5ja00311c |
Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/Back Arc System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1/2): 23–45. https://doi.org/10.1016/s0009-2541(97)00105-8 |
Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257—A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247–265. https://doi.org/10.1111/j.1751-908x.2008.00914.x |
Nelms, S. M., Quétel, C. R., Prohaska, T., et al., 2001. Evaluation of Detector Dead Time Calculation Models for ICP-MS. Journal of Analytical Atomic Spectrometry, 16(4): 333–338. https://doi.org/10.1039/b007913h |
Newman, K., 2012. Effects of the Sampling Interface in MC-ICP-MS: Relative Elemental Sensitivities and Non-Linear Mass Dependent Fractionation of Nd Isotopes. Journal of Analytical Atomic Spectrometry, 27(1): 63–70. https://doi.org/10.1039/c1ja10222b |
Nishio, Y., Ijiri, A., Toki, T., et al., 2015. Origins of Lithium in Submarine Mud Volcano Fluid in the Nankai Accretionary Wedge. Earth and Planetary Science Letters, 414: 144–155. https://doi.org/10.1016/j.epsl.2015.01.018 |
Norman, M., McCulloch, M., Oneill, H., et al., 2004. Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS. Lunar and Planetary Science, XXXV: 1447 |
Norman, M. D., Yaxley, G. M., Bennett, V. C., et al., 2006. Magnesium Isotopic Composition of Olivine from the Earth, Mars, Moon, and Pallasite Parent Body. Geophysical Research Letters, 33(15): L15202. https://doi.org/10.1029/2006gl026446 |
O'Connor, C., Sharp, B. L., Evans, P., 2006. On-Line Additions of Aqueous Standards for Calibration of Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Theory and Comparison of Wet and Dry Plasma Conditions. Journal of Analytical Atomic Spectrometry, 21(6): 556–565. https://doi.org/10.1039/b600916f |
Oeser, M., Weyer, S., Horn, I., et al., 2014. High-Precision Fe and Mg Isotope Ratios of Silicate Reference Glasses Determined in situ by Femtosecond LA-MC-ICP-MS and by Solution Nebulisation MC-ICP-MS. Geostandards and Geoanalytical Research, 38(3): 311–328. https://doi.org/10.1111/j.1751-908x.2014.00288.x |
Onuk, P., Melcher, F., Mertz-Kraus, R., et al., 2017. Development of a Matrix-Matched Sphalerite Reference Material (MUL-ZnS-1) for Calibration of in situ Trace Element Measurements by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 41(2): 263–272. https://doi.org/10.1111/ggr.12154 |
Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009gc002618 |
Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508–2518. https://doi.org/10.1039/c1ja10172b |
Pearson, N. J., Alard, O., Griffin, W. L., et al., 2002. In situ Measurement of Re-Os Isotopes in Mantle Sulfides by Laser Ablation Multicollector-Inductively Coupled Plasma Mass Spectrometry: Analytical Methods and Preliminary Results. Geochimica et Cosmochimica Acta, 66(6): 1037–1050. https://doi.org/10.1016/s0016-7037(01)00823-7 |
Pearson, N. J., Griffin, W. L., Alard, O., et al., 2006. The Isotopic Composition of Magnesium in Mantle Olivine: Records of Depletion and Metasomatism. Chemical Geology, 226(3/4): 115–133. https://doi.org/10.1016/j.chemgeo.2005.09.029 |
Perkins, W. T., Pearce, N. J. G., Jeffries, T. E., 1993. Laser Ablation Inductively Coupled Plasma Mass Spectrometry: A New Technique for the Determination of Trace and Ultra-Trace Elements in Silicates. Geochimica et Cosmochimica Acta, 57(2): 475–482. https://doi.org/10.1016/0016-7037(93)90447-5 |
Petrus, J. A., Chew, D. M., Leybourne, M. I., et al., 2017. A New Approach to Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) Using the Flexible Map Interrogation Tool 'Monocle'. Chemical Geology, 463: 76–93. https://doi.org/10.1016/j.chemgeo.2017.04.027 |
Petrus, J. A., Kamber, B. S., 2012. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3): 247–270. https://doi.org/10.1111/j.1751-908x.2012.00158.x |
Poitrasson, F., d'Abzac, F. X., 2017. Femtosecond Laser Ablation Inductively Coupled Plasma Source Mass Spectrometry for Elemental and Isotopic Analysis: Are Ultrafast Lasers Worthwhile? Journal of Analytical Atomic Spectrometry, 32(6): 1075–1091. https://doi.org/10.1039/c7ja00084g |
Qi, H. P., Coplen, T. B., 2003. Evaluation of the 34S/32S Ratio of Soufre de Lacq Elemental Sulfur Isotopic Reference Material by Continuous Flow Isotope-Ratio Mass Spectrometry. Chemical Geology, 199(1/2): 183–187. https://doi.org/10.1016/s0009-2541(03)00075-5 |
Qi, H. P., Taylor, P. D. P., Berglund, M., et al., 1997. Calibrated Measurements of the Isotopic Composition and Atomic Weight of the Natural Li Isotopic Reference Material IRMM-016. International Journal of Mass Spectrometry and Ion Processes, 171(1/2/3): 263–268. https://doi.org/10.1016/s0168-1176(97)00125-0 |
Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA-MC-ICPMS. Chemical Geology, 211(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2004.06.025 |
Regnery, J., Stoll, B., Jochum, K. P., 2010. High-Resolution LA-ICP-MS for Accurate Determination of Low Abundances of K, Sc and other Trace Elements in Geological Samples. Geostandards and Geoanalytical Research, 34(1): 19–38. https://doi.org/10.1111/j.1751-908X.2009.00025.x |
Reid, J. E., Poe, B. T., Rubie, D. C., et al., 2001. The Self-Diffusion of Silicon and Oxygen in Diopside (CaMgSi2O6) Liquid up to 15 GPa. Chemical Geology, 174(1/2/3): 77–86. https://doi.org/10.1016/s0009-2541(00)00308-9 |
Renpenning, J., Hitzfeld, K. L., Gilevska, T., et al., 2015. Development and Validation of an Universal Interface for Compound-Specific Stable Isotope Analysis of Chlorine (37Cl/35Cl) by GC-High-Temperature Conversion (HTC)-MS/IRMS. Analytical Chemistry, 87(5): 2832–2839. https://doi.org/10.1021/ac504232u |
Richter, S., Konegger-Kappel, S., Boulyga, S. F., et al., 2016. Linearity Testing and Dead-Time Determination for MC-ICP-MS Ion Counters Using the IRMM-072 Series of Uranium Isotope Reference Materials. Journal of Analytical Atomic Spectrometry, 31(8): 1647–1657. https://doi.org/10.1039/c6ja00203j |
Rubatto, D., Regis, D., Hermann, J., et al., 2011. Yo-Yo Subduction Recorded by Accessory Minerals in the Italian Western Alps. Nature Geoscience, 4(5): 338–342. https://doi.org/10.1038/ngeo1124 |
Santos, M. M., Lana, C., Scholz, R., et al., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostandards and Geoanalytical Research, 41(3): 335–358. https://doi.org/10.1111/ggr.12167 |
Sadekov, A., Lloyd, N., Misra, S., et al., 2020. In-situ Mg Isotopes Measurements of Biogenic Carbonates Using Laser Ablation-Multi-Collector Inductively Coupled Plasma Mass Spectrometry: A New Tool to Understand Biomineralisation. Rapid Communications in Mass Spectrometry, 34(23): E8918. https://doi.org/10.1002/rcm.8918 |
Scheffler, G. L., Pozebon, D., 2014. Advantages, Drawbacks and Applications of Mixed Ar-N2 Sources in Inductively Coupled Plasma-Based Techniques: An Overview. Analytical Methods, 6(16): 6170–6182. https://doi.org/10.1039/c4ay00178h |
Schmitz, M. D., Bowring, S. A., 2001. U-Pb Zircon and Titanite Systematics of the Fish Canyon Tuff: An Assessment of High-Precision U-Pb Geochronology and Its Application to Young Volcanic Rocks. Geochimica et Cosmochimica Acta, 65(15): 2571–2587. https://doi.org/10.1016/s0016-7037(01)00616-0 |
Schuessler, J. A., von Blanckenburg, F., 2014. Testing the Limits of Micro-Scale Analyses of Si Stable Isotopes by Femtosecond Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry with Application to Rock Weathering. Spectrochimica Acta Part B: Atomic Spectroscopy, 98: 1–18. https://doi.org/10.1016/j.sab.2014.05.002 |
Schulze, M., Ziegerick, M., Horn, I., et al., 2017. Determination of Tin Isotope Ratios in Cassiterite by Femtosecond Laser Ablation Multicollector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 130: 26–34. https://doi.org/10.1016/j.sab.2017.02.002 |
Schuth, S., Horn, I., Brüske, A., et al., 2017. First Vanadium Isotope Analyses of V-Rich Minerals by Femtosecond Laser Ablation and Solution-Nebulization MC-ICP-MS. Ore Geology Reviews, 81: 1271–1286. https://doi.org/10.1016/j.oregeorev.2016.09.028 |
Seman, S., Stockli, D. F., McLean, N. M., 2017. U-Pb Geochronology of Grossular-Andradite Garnet. Chemical Geology, 460: 106–116. https://doi.org/10.1016/j.chemgeo.2017.04.020 |
Sforna, M. C., Lugli, F., 2017. MapIT!: A Simple and User-Friendly MATLAB Script to Elaborate Elemental Distribution Images from LA-ICP-MS Data. Journal of Analytical Atomic Spectrometry, 32(5): 1035–1043. https://doi.org/10.1039/c7ja00023e |
Shaheen, M. E., Gagnon, J. E., Fryer, B. J., 2012. Femtosecond (Fs) Lasers Coupled with Modern ICP-MS Instruments Provide New and Improved Potential for in situ Elemental and Isotopic Analyses in the Geosciences. Chemical Geology, 330/331: 260–273. https://doi.org/10.1016/j.chemgeo.2012.09.016 |
Shimizu, K., Chang, Q., Nakamura, K., 2011. Flux-Free Fusion of Silicate Rock Preceding Acid Digestion for ICP-MS Bulk Analysis. Geostandards and Geoanalytical Research, 35(1): 45–55. https://doi.org/10.1111/j.1751-908x.2010.00059.x |
Simon, J. I., Jordan, M. K., Tappa, M. J., et al., 2017. Calcium and Titanium Isotope Fractionation in Refractory Inclusions: Tracers of Condensation and Inheritance in the Early Solar Protoplanetary Disk. Earth and Planetary Science Letters, 472: 277–288. https://doi.org/10.1016/j.epsl.2017.05.002 |
Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
Smye, A. J., Roberts, N. M. W., Condon, D. J., et al., 2014. Characterising the U-Th-Pb Systematics of Allanite by ID and LA-ICPMS: Implications for Geochronology. Geochimica et Cosmochimica Acta, 135: 1–28. https://doi.org/10.1016/j.gca.2014.03.021 |
Spandler, C., Hammerli, J., Sha, P., et al., 2016. MKED1: A New Titanite Standard for in situ Analysis of Sm-Nd Isotopes and U-Pb Geochronology. Chemical Geology, 425: 110–126. https://doi.org/10.1016/j.chemgeo.2016.01.002 |
Steinhoefel, G., Horn, I., von Blanckenburg, F., 2009a. Matrix-Independent Fe Isotope Ratio Determination in Silicates Using UV Femtosecond Laser Ablation. Chemical Geology, 268(1/2): 67–73. https://doi.org/10.1016/j.chemgeo.2009.07.010 |
Steinhoefel, G., Horn, I., von Blanckenburg, F., 2009b. Micro-Scale Tracing of Fe and Si Isotope Signatures in Banded Iron Formation Using Femtosecond Laser Ablation. Geochimica et Cosmochimica Acta, 73(18): 5343–5360. https://doi.org/10.1016/j.gca.2009.05.037 |
Steinmann, L. K., Oeser, M., Horn, I., et al., 2019. In situ High-Precision Lithium Isotope Analyses at Low Concentration Levels with Femtosecond-LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 34(7): 1447–1458. https://doi.org/10.1039/c9ja00088g |
Stern, R. A., Rayner, N., 2003. Ages of Several Xenotime Megacrysts by ID-TIMS: Potential Reference Materials for Ion Microprobe U-Pb Geochronology. Geological Survey of Canada, Current Research No. 2003-F1, Ontario. 7. |
Su, B. X., Gu, X. Y., Deloule, E., et al., 2015. Potential Orthopyroxene, Clinopyroxene and Olivine Reference Materials for in situ Lithium Isotope Determination. Geostandards and Geoanalytical Research, 39(3): 357–369. https://doi.org/10.1111/j.1751-908x.2014.00313.x |
Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2012. In situ U-Pb Dating of Titanite by LA-ICPMS. Chinese Science Bulletin, 57(20): 2506–2516. https://doi.org/10.1007/s11434-012-5177-0 |
Sylvester, P. J., 2008. Matrix Effects in Laser Ablation ICP-MS, Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series 40, Vancouver. 67–78 |
Tacail, T., Télouk, P., Balter, V., 2016. Precise Analysis of Calcium Stable Isotope Variations in Biological Apatites Using Laser Ablation MC-ICPMS. Journal of Analytical Atomic Spectrometry, 31(1): 152–162. https://doi.org/10.1039/c5ja00239g |
Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2007. Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 71(17): 4327–4341. https://doi.org/10.1016/j.gca.2007.07.006 |
Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2014. Abnormal Lithium Isotope Composition from the Ancient Lithospheric Mantle beneath the North China Craton. Scientific Reports, 4: 4274. https://doi.org/10.1038/srep04274 |
Tanner, S. D., Baranov, V. I., Bandura, D. R., 2002. Reaction Cells and Collision Cells for ICP-MS: A Tutorial Review. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(9): 1361–1452. https://doi.org/10.1016/s0584-8547(02)00069-1 |
Taylor, P. D. P., Maeck, R., De Bièvre, P., 1992. Determination of the Absolute Isotopic Composition and Atomic Weight of a Reference Sample of Natural Iron. International Journal of Mass Spectrometry and Ion Processes, 121(1/2): 111–125. https://doi.org/10.1016/0168-1176(92)80075-c |
Thirlwall, M. F., 2002. Multicollector ICP-MS Analysis of Pb Isotopes Using a 207Pb-204Pb Double Spike Demonstrates up to 400 ppm/amu Systematic Errors in Tl-Normalization. Chemical Geology, 184(3/4): 255–279. https://doi.org/10.1016/s0009-2541(01)00365-5 |
Thirlwall, M. F., Walder, A. J., 1995. In situ Hafnium Isotope Ratio Analysis of Zircon by Inductively Coupled Plasma Multiple Collector Mass Spectrometry. Chemical Geology, 122(1/2/3/4): 241–247. https://doi.org/10.1016/0009-2541(95)00003-5 |
Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low-Damage Apatite U-Pb Dating Using Laser Ablation-Multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA21. https://doi.org/10.1029/2011gc003928 |
Tong, C. L., Liu, Y. S., Hu, S. H., et al., 2009. Specific Chemical Behavior of Nb and Ta in Geological Sample Preparation with PTFE Bomb for ICP-MS Analysis. Geochimica, 38(1): 43–52 (in Chinese with English Abstract) |
Tonarini, S., Pennisi, M., Adorni-Braccesi, A., et al., 2003. Intercomparison of Boron Isotope and Concentration Measurements. Part Ⅰ: Selection, Preparation and Homogeneity Tests of the Intercomparison Materials. Geostandards Newsletter, 27(1): 21–39. https://doi.org/10.1111/j.1751-908x.2003.tb00710.x |
Tong, X. R., Liu, Y. S., Hu, Z. C., et al., 2016. Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LA-MC-ICP-MS. Geostandards and Geoanalytical Research, 40(1): 85–99. https://doi.org/10.1111/j.1751-908x.2015.00315.x |
Ushikubo, T., Kita, N. T., Cavosie, A. J., et al., 2008. Lithium in Jack Hills Zircons: Evidence for Extensive Weathering of Earth's Earliest Crust. Earth and Planetary Science Letters, 272(3/4): 666–676. https://doi.org/10.1016/j.epsl.2008.05.032 |
Vance, D., Thirlwall, M., 2002. An Assessment of Mass Discrimination in MC-ICPMS Using Nd Isotopes. Chemical Geology, 185(3/4): 227–240. https://doi.org/10.1016/s0009-2541(01)00402-8 |
Vasconcelos, A. D., Gonçalves, G. O., Lana, C., et al., 2018. Characterization of Xenotime from Datas (Brazil) as a Potential Reference Material for in situ U-Pb Geochronology. Geochemistry, Geophysics, Geosystems, 19(7): 2262–2282. https://doi.org/10.1029/2017gc007412 |
von Blackenburg, F., 1992. Combined High-Precision Chronometry and Geochemical Tracing Using Accessory Minerals: Applied to the Central-Alpine Bergell Intrusion (Central Europe). Chemical Geology, 100(1/2): 19–40. https://doi.org/10.1016/0009-2541(92)90100-j |
Vroon, P. Z., van der Wagt, B., Koornneef, J. M., et al., 2008. Problems in Obtaining Precise and Accurate Sr Isotope Analysis from Geological Materials Using Laser Ablation MC-ICPMS. Analytical and Bioanalytical Chemistry, 390(2): 465–476. https://doi.org/10.1007/s00216-007-1742-9 |
Walder, A. J., Abell, I. D., Platzner, I., et al., 1993. Lead Isotope Ratio Measurement of NIST 610 Glass by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(3): 397–402. https://doi.org/10.1016/0584-8547(93)80044-u |
Wang, J., Tang, D. M., Su, B. X., et al., 2022. High-Precision Iron Isotopic Measurements in Low Resolution Using Collision Cell (CC)-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(9): 1869–1875. https://doi.org/10.1039/d2ja00084a |
Wasson, J. T., Lange, D. E., Francis, C. A., et al., 1999. Massive Chromite in the Brenham Pallasite and the Fractionation of Cr during the Crystallization of Asteroidal Cores. Geochimica et Cosmochimica Acta, 63(7/8): 1219–1232. https://doi.org/10.1016/s0016-7037(98)00307-x |
Wei, Q. D., Wang, H., Yang, Y. H., et al., 2020. KV01 Zircon—A Potential New Archean Reference Material for Microbeam U-Pb Age and Hf-O Isotope Determinations. Science China Earth Sciences, 63(11): 1780–1790. https://doi.org/10.1007/s11430-019-9638-y |
Weber, M., Lugli, F., Hattendorf, B., et al., 2020. NanoSr—A New Carbonate Microanalytical Reference Material for in situ Strontium Isotope Analysis. Geostandards and Geoanalytical Research, 44(1): 69–83. https://doi.org/10.1111/ggr.12296 |
Weyrauch, M., Oeser, M., Brüske, A., et al., 2017. In situ High-Precision Ni Isotope Analysis of Metals by Femtosecond-LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(7): 1312–1319. https://doi.org/10.1039/c7ja00147a |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x |
Wiedenbeck, M., Trumbull, R. B., Rosner, M., et al., 2021. Tourmaline Reference Materials for the in situ Analysis of Oxygen and Lithium Isotope Ratio Compositions. Geostandards and Geoanalytical Research, 45(1): 97–119. https://doi.org/10.1111/ggr.12362 |
Wieser, M. E., Schwieters, J. B., 2005. The Development of Multiple Collector Mass Spectrometry for Isotope Ratio Measurements. International Journal of Mass Spectrometry, 242(2/3): 97–115. https://doi.org/10.1016/j.ijms.2004.11.029 |
Williams, C. D., Janney, P. E., Hines, R. R., et al., 2016. Precise Titanium Isotope Compositions of Refractory Inclusions in the Allende CV3 Chondrite by LA-MC-ICPMS. Chemical Geology, 436: 1–10. https://doi.org/10.1016/j.chemgeo.2016.04.021 |
Wilson, S. A., Ridley, W. I., Koenig, A. E., 2002. Development of Sulfide Calibration Standards for the Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Technique. Journal of Analytical Atomic Spectrometry, 17(4): 406–409. https://doi.org/10.1039/b108787h |
Witte, T. M., Houk, R. S., 2012. Origins of Polyatomic Ions in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry: An Exami-nation of Metal Oxide Ions and Effects of Nitrogen and Helium in the Aerosol Gas Flow. Spectrochimica Acta Part B: Atomic Spectroscopy, 69: 9–19. https://doi.org/10.1016/j.sab.2012.02.005 |
Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1/2): 121–135. https://doi.org/10.1016/j.chemgeo.2004.04.026 |
Woodhead, J., Swearer, S., Hergt, J., et al., 2005. In situ Sr-Isotope Analysis of Carbonates by LA-MC-ICP-MS: Interference Corrections, High Spatial Resolution and an Example from Otolith Studies. Journal of Analytical Atomic Spectrometry, 20(1): 22–27. https://doi.org/10.1039/b412730g |
Wu, F. Y., Arzamastsev, A. A., Mitchell, R. H., et al., 2013. Emplacement Age and Sr-Nd Isotopic Compositions of the Afrikanda Alkaline Ultramafic Complex, Kola Peninsula, Russia. Chemical Geology, 353: 210–229. https://doi.org/10.1016/j.chemgeo.2012.09.027 |
Wu, F. Y., Yang, Y. H., Marks, M. A. W., et al., 2010. In situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1/2): 8–34. https://doi.org/10.1016/j.chemgeo. 2010.02.007 doi: 10.1016/j.chemgeo.2010.02.007 |
Wu, S. T., Karius, V., Schmidt, B., et al., 2018. Comparison of Ultrafine Powder Pellet and Flux‐Free Fusion Glass for Bulk Analysis of Granitoids by Laser Ablation‐Inductively Coupled Plasma‐Mass Spec-trometry. Geostandards and Geoanalytical Research, 42(4): 575–591. https://doi.org/10.1111/ggr.12230 |
Wu, S. T., Yang, Y. H., Jochum, K. P., et al., 2021. Isotopic Compositions (Li-B-Si-O-Mg-Sr-Nd-Hf-Pb) and Fe2+/ΣFe Ratios of Three Synthetic Andesite Glass Reference Materials (ARM-1, ARM-2, ARM-3). Geostandards and Geoanalytical Research, 45(4): 719–745. https://doi.org/10.1111/ggr.12399 |
Wu, S. T., Wang, H., Yang, Y. H., et al., 2023. In situ Lu-Hf Geochronology with LA-ICP-MS/MS Analysis. Journal of Analytical Atomic Spectrometry, 38(6): 1285–1300. https://doi.org/10.1039/d2ja00407k |
Xie, J. C., Zhu, D. C., Wang, Q., et al., 2023. Ban-1 Zircon: a New Natural Zircon Reference Material for LA-MC-ICP-MS Zr and Hf Isotopic Determinations. Geostandards and Geoanalytical Research, 47(1): 143–154. https://doi.org/10.1111/ggr.12468 |
Xie, L. W., Yang, J. H., Yin, Q. Z., et al., 2017. High Spatial Resolution in situ U-Pb Dating Using Laser Ablation Multiple Ion Counting Inductively Coupled Plasma Mass Spectrometry (LA-MIC-ICP-MS). Journal of Analytical Atomic Spectrometry, 32(5): 975–986. https://doi.org/10.1039/c6ja00387g |
Xie, L. W., Yin, Q. Z., Yang, J. H., et al., 2011. High Precision Analysis of Mg Isotopic Composition in Olivine by Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 26(9): 1773–1780. https://doi.org/10.1039/c1ja10034c |
Xiong, Z. W., Xu H. J., Wang P., et al., 2021. Zircon U-Pb Age and Hf Isotope of Paleoproterozoic Pelitic Granulites at Weihai, Sulu Orogen: Implications for Tectonic Affinity. Earth Science, 46(2): 504–526. https://doi.org/10.3799/dqkx.2020.036 (in Chinese with English Abstract) |
Xu, L., Hu, Z. C., Zhang, W., et al., 2015. In situ Nd Isotope Analyses in Geological Materials with Signal Enhancement and Non-Linear Mass Dependent Fractionation Reduction Using Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(1): 232–244. https://doi.org/10.1039/c4ja00243a |
Xu, L., Yang, J. H., Wang, H., et al., 2022a. A Natural Plagioclase Reference Material for Microbeam Sr Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 37(8): 1706–1714. https://doi.org/10.1039/d2ja00110a |
Xu, L., Yang, J. H., Wang, H., et al., 2022b. Analytical Feasibility of a New Reference Material (IRMM-524A Fe Metal) for the in situ Fe Isotopic Analysis of Pyrite and Ilmenite without Matrix Effects by Femtosecond LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(9): 1835–1845. https://doi.org/10.1039/d2ja00151a |
Xu, L., Zhang, W., Luo, T., et al., 2021. In situ Fe Isotopic Analyses of Fourteen Reference Materials Using a Synthetic Cr Standard for Mass Bias and Isobaric Interference Corrections by Femtosecond LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 36(4): 747–757. https://doi.org/10.1039/d0ja00465k |
Yang, A., Lin, J., Liu, Y., et al., 2023. Development of Synthetic Clinopyroxene Reference Materials for in situ Lithium Isotope Measurement by LA-MC-ICP-MS. Geostandards and Geoanalytical Research, 47(3): 535–546. https://doi.org/10.1111/ggr.12491 |
Yang, L., 2009. Accurate and Precise Determination of Isotopic Ratios by MC-ICP-MS: A Review. Mass Spectrometry Reviews, 28(6): 990–1011. https://doi.org/10.1002/mas.20251 |
Yang, L., Tong, S. Y., Zhou, L., et al., 2018. A Critical Review on Isotopic Fractionation Correction Methods for Accurate Isotope Amount Ratio Measurements by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(11): 1849–1861. https://doi.org/10.1039/c8ja00210j |
Yang, M., Yang, Y. H., Kamo, S. L., et al., 2022. Natural Allanite Reference Materials for in situ U-Th-Pb and Sm-Nd Isotopic Measurements by LA-(MC)-ICP-MS. Geostandards and Geoanalytical Research, 46(2): 169–203. https://doi.org/10.1111/ggr.12417 |
Yang, M., Yang, Y. H., Romer, R. L., et al., 2023. In situ Hf Isotope Analysis of Cassiterite by LA-MC-ICP-MS: Protocol and Applications. Journal of Analytical Atomic Spectrometry, 38(2): 437–448. https://doi.org/10.1039/d2ja00340f |
Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2018. U-Pb Age Determination of Schorlomite Garnet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 33(2): 231–239. https://doi.org/10.1039/c7ja00315c |
Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U-Th-Pb Geochronology. Chemical Geology, 385: 35–55. https://doi.org/10.1016/j.chemgeo.2014.07.012 |
Yang, Y. H., Sun, J. F., Xie, L. W., et al., 2008. In situ Nd Isotopic Measurement of Natural Geological Materials by LA-MC-ICPMS. Chinese Science Bulletin, 53(7): 1062–1070. https://doi.org/10.1007/s11434-008-0166-z |
Yang, Z. P., Jackson, S. E., Skulski, T., 2021. Characterization of Four Copper Materials for Application as Reference Materials for High Precision Copper Isotope Analysis by Laser Ablation Inductively Coupled Plasma Multi-Collector Mass Spectrometry. Frontiers in Chemistry, 9: 617205. https://doi.org/10.3389/fchem.2021.617205 |
Yin, H. M., Lin, J., Yu, H. M., et al., 2022. Determination of Sr Isotope Ratios in Biogenic Carbonates Using LA-MC-ICP-MS: A Case Study of Chinese Mitten Crabs. Atomic Spectroscopy, 43(6): 437–442. https://doi.org/10.46770/as.2022.135 |
Young, E. D., Tonui, E., Manning, C. E., et al., 2009. Spinel-Olivine Magnesium Isotope Thermometry in the Mantle and Implications for the Mg Isotopic Composition of Earth. Earth and Planetary Science Letters, 288(3/4): 524–533. https://doi.org/10.1016/j.epsl.2009.10.014 |
Young, E. D., Ash, R. D., Galy, A., et al., 2002. Mg Isotope Heterogeneity in the Allende Meteorite Measured by UV Laser Ablation-MC-ICPMS and Comparisons with O Isotopes. Geochimica et Cosmochimica Acta, 66(4): 683–698. https://doi.org/10.1016/s0016-7037(01)00796-7 |
Yu, H. X., Zhang, Y. H., Liu, X. J., et al., 2022. Improved in situ Analysis of Lead Isotopes in Low-Pb Melt inclusions Using Laser Ablation-Multi-Collector-Inductively Coupled Plasma-Mass Spectrometry. Rapid Communications in Mass Spectrometry, 36(22): e9383. https://doi.org/10.1002/rcm.9383 |
Yuan, H. L., Yin, C., Liu, X., et al., 2015. High Precision in-Situ Pb Isotopic Analysis of Sulfide Minerals by Femtosecond Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Science China Earth Sciences, 58(10): 1713–1721. https://doi.org/10.1007/s11430-015-5095-5 |
Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1/2): 100–118. https://doi.org/10.1016/j.chemgeo.2007.10.003 |
Yuan, H. L., Liu, X., Chen, L., et al., 2018. Simultaneous Measurement of Sulfur and Lead Isotopes in Sulfides Using Nanosecond Laser Ablation Coupled with Two Multi-Collector Inductively Coupled Plasma Mass Spectrometers. Journal of Asian Earth Sciences, 154: 386–396. https://doi.org/10.1016/j.jseaes.2017.12.040 |
Yuan, H. L., Wu, F. Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411–2421. https://doi.org/10.1360/03wd0139 |
Zeng, X., Mao, X. L., Greif, R., et al., 2005. Experimental Investigation of Ablation Efficiency and Plasma Expansion during Femtosecond and Nanosecond Laser Ablation of Silicon. Applied Physics A, 80(2): 237–241. https://doi.org/10.1007/s00339-004-2963-9 |
Zhang, D., Bao, Z. A., Liu, P., et al., 2023. A High-Temperature Sintered Cassiterite Reference Material for in situ Determination of Sn Isotope Ratios. Journal of Analytical Atomic Spectrometry, 38(1): 204–211. https://doi.org/10.1039/d2ja00362g |
Zhang, L., Wu, J. L., Tu, J. R., et al., 2020. RMJG Rutile: A New Natural Reference Material for Microbeam U-Pb Dating and Hf Isotopic Analysis. Geostandards and Geoanalytical Research, 44(1): 133–145. https://doi.org/10.1111/ggr.12304 |
Zhang, S. H., Zhang, W., Yu, H. M., et al., 2022. Accurate Determination of Ba Isotope Ratios in Barite Samples by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(12): 2637–2646. https://doi.org/10.1039/d2ja00270a |
Zhang, W., Hu, Z. C., 2019. Recent Advances in Sample Preparation Methods for Elemental and Isotopic Analysis of Geological Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 160: 105690. https://doi.org/10.1016/j.sab.2019.105690 |
Zhang, W., Hu, Z. C., 2020. A Critical Review of Isotopic Fractionation and Interference Correction Methods for Isotope Ratio Measurements by Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 171: 105929. https://doi.org/10.1016/j.sab.2020.105929 |
Zhang, W., Hu, Z. C., Feng, L. P., et al., 2022. Accurate Determination of Zr Isotopic Ratio in Zircons by Femtosecond Laser Ablation MC-ICP-MS with "Wet" Plasma Technique. Journal of Earth Science, 33(1): 67–75. https://doi.org/10.1007/s12583-021-1535-7 |
Zhang, W., Hu, Z. C., Günther, D., et al., 2016a. Direct Lead Isotope Analysis in Hg-Rich Sulfides by LA-MC-ICP-MS with a Gas Exchange Device and Matrix-Matched Calibration. Analytica Chimica Acta, 948: 9–18. https://doi.org/10.1016/j.aca.2016.10.040 |
Zhang, W., Qi, L., Hu, Z. C., et al., 2016b. An Investigation of Digestion Methods for Trace Elements in Bauxite and Their Determination in Ten Bauxite Reference Materials Using Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 40(2): 195–216. https://doi.org/10.1111/j.1751-908x.2015.00356.x |
Zhang, W., Hu, Z. C., Liu, Y. S., 2020. Iso-Compass: New Freeware Software for Isotopic Data Reduction of LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(6): 1087–1096. https://doi.org/10.1039/d0ja00084a |
Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2019a. In situ Calcium Isotopic Ratio Determination in Calcium Carbonate Materials and Calcium Phosphate Materials Using Laser Ablation-Multiple Collector-Inductively Coupled Plasma Mass Spectrometry. Chemical Geology, 522: 16–25. https://doi.org/10.1016/j.chemgeo.2019.04.027 |
Zhang, W., Wang, Z. C., Moynier, F., et al., 2019b. Determination of Zr Isotopic Ratios in Zircons Using Laser-Ablation Multiple-Collector Inductively Coupled-Plasma Mass-Spectrometry. Journal of Analytical Atomic Spectrometry, 34(9): 1800–1809. https://doi.org/10.1039/c9ja00192a |
Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2018. Improved in situ Sr Isotopic Analysis by a 257 nm Femtosecond Laser in Combination with the Addition of Nitrogen for Geological Minerals. Chemical Geology, 479: 10–21. https://doi.org/10.1016/j.chemgeo.2017.12.018 |
Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2012. Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: A New Development in Open-Vessel Digestion. Analytical Chemistry, 84(24): 10686–10693. https://doi.org/10.1021/ac302327g |
Zhang, W., Hu, Z. C., Jin, Z. M., et al., 2017. Analysis of in situ Pb Isotope in Sulfides by Laser Ablation Multiple Collector Inductively Coupled Plasma Masss Spectrometry. Chinese Journal of Analytical Chemistry, 45(1): 14–22. https://doi.org/10.11895/j.issn.0253-3820.160605 (in Chinese with English Abstract) |
Zhao, H., Zhao, X. M., Le Roux, P. J., et al., 2020. Natural Clinopyroxene Reference Materials for in situ Sr Isotopic Analysis via LA-MC-ICP-MS. Frontiers in Chemistry, 8: 594316. https://doi.org/10.3389/fchem.2020.594316 |
Zheng, J., Yamada, M., Wang, Z. L., et al., 2004. Determination of Plutonium and Its Isotopic Ratio in Marine Sediment Samples Using Quadrupole ICP-MS with the Shield Torch System under Normal Plasma Conditions. Analytical and Bioanalytical Chemistry, 379(3): 532–539. https://doi.org/10.1007/s00216-004-2626-x |
Zheng, X. Y., Chen, X. Y., Ding, W. M., et al., 2022. High Precision Analysis of Stable Potassium (K) Isotopes by the Collision Cell MC-ICP-MS "Sapphire" and a Correction Method for Concentration Mismatch. Journal of Analytical Atomic Spectrometry, 37(6): 1273–1287. https://doi.org/10.1039/d2ja00078d |
Zheng, X. Y., Beard, B. L., Johnson, C. M., 2018. Assessment of Matrix Effects Associated with Fe Isotope Analysis Using 266 nm Femtosecond and 193 nm Nanosecond Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 33(1): 68–83. https://doi.org/10.1039/c7ja00272f |
Zhou, H. Y., Geng, J. Z., Cui, Y. R., et al., 2012. In situ U-Pb Dating of Apatite Using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6): 857–864 (in Chinese with English Abstract) |
Zhou, H. Y., Liu, D. Y., Nemchim, A., et al., 2007. 3.0 Ga Thermo-Tectonic Events Suffered by the 3.8 Ga Meta-Quartz-Diorite in the Anshan Area: Constraints from Apatite SHRIMP U-Th-Pb Dating. Geological Review, 53(1): 120–125. https://doi.org/10.16509/j.georeview.2007.01.017 (in Chinese with English Abstract) |
Zhou, Q., Herd, C. D. K., Yin, Q. Z., et al., 2013. Geochronology of the Martian Meteorite Zagami Revealed by U-Pb Ion Probe Dating of Accessory Minerals. Earth and Planetary Science Letters, 374: 156–163. https://doi.org/10.1016/j.epsl.2013.05.035 |
Zhu, L. Y., Liu, Y. S., Jiang, S. Y., et al., 2019. An Improved in situ Technique for the Analysis of the Os Isotope Ratio in Sulfides Using Laser Ablation-Multiple Ion Counter Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 34(8): 1546–1552. https://doi.org/10.1039/c9ja00066f |
Zhu, L. Y., Zhang, G. L., Liu, Y. S., et al., 2020. Improved in-situ Determination of Sr Isotope Ratio in Silicate Samples Using LA-MC-ICP-MS and Its Wider Application for Fused Rock Powder. Journal of Earth Science, 31(2): 262–270. https://doi.org/10.1007/s12583-019-1214-0 |
Zhu, L. Y., Liu, Y. S., Ma, T. T., et al., 2016. In situ Measurement of Os Isotopic Ratios in Sulfides Calibrated Against Ultra-Fine Particle Standards Using LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 31(7): 1414–1422. https://doi.org/10.1039/c6ja00018e |
Zhu, X. K., Wang, Z. C., Chen, H. Y., 2022. Advances in Isotope Geochronology and Isotope Geochemistry: A Preface. Journal of Earth Science, 33(1): 1–4. https://doi.org/10.1007/s12583-021-1605-x |