Anesio, A. M., Lutz, S., Chrismas, N. A. M., et al., 2017. The Microbiome of Glaciers and Ice Sheets. NPJ Biofilms and Microbiomes, 3: 10. https://doi.org/10.1038/s41522-017-0019-0 |
Baccolo, G., Di Mauro, B., Massabò, D., et al., 2017. Cryoconite as a Temporary Sink for Anthropogenic Species Stored in Glaciers. Scientific Reports, 7(1): 9623. https://doi.org/10.1038/s41598-017-10220-5 |
Baccolo, G., Nastasi, M., Massabò, D., et al., 2020. Artificial and Natural Radionuclides in Cryoconite as Tracers of Supraglacial Dynamics: Insights from the Morteratsch Glacier (Swiss Alps). CATENA, 191: 104577. https://doi.org/10.1016/j.catena.2020.104577 |
Bagshaw, E. A., 2018. Biogeochemical Cycling in Glacial Environments. In: Nuttall, M., Christensen, T. R., Siegert, M. J., eds., The Routledge Handbook of the Polar Regions. Routledge, Abingdon. 224–236. https://doi.org/10.4324/9781315730639-18 |
Beard, D. B., Clason, C. C., Rangecroft, S., et al., 2022. Anthropogenic Contaminants in Glacial Environments Ⅱ: Release and Downstream Consequences. Progress in Physical Geography: Earth and Environment, 46(5): 790–808. https://doi.org/10.1177/03091333221127342 |
Bellouin, N., Quaas, J., Gryspeerdt, E., et al., 2020. Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 58(1): e2019R–e2660R. https://doi.org/10.1029/2019rg000660 |
Bolibar, J., Rabatel, A., Gouttevin, I., et al., 2022. Nonlinear Sensitivity of Glacier Mass Balance to Future Climate Change Unveiled by Deep Learning. Nature Communications, 13: 409. https://doi.org/10.1038/s41467-022-28033-0 |
Bosson, J. B., Huss, M., Cauvy-Fraunié, S., et al., 2023. Future Emergence of New Ecosystems Caused by Glacial Retreat. Nature, 620(7974): 562–569. https://doi.org/10.1038/s41586-023-06302-2 |
Cappa, C. D., Onasch, T. B., Massoli, P., et al., 2012. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science, 337(6098): 1078–1081. https://doi.org/10.1126/science.1223447 |
Carslaw, K. S., Boucher, O., Spracklen, D. V., et al., 2010. A Review of Natural Aerosol Interactions and Feedbacks within the Earth System. Atmospheric Chemistry and Physics, 10(4): 1701–1737. https://doi.org/10.5194/acp-10-1701-2010 |
China, S., Scarnato, B., Owen, R. C., et al., 2015. Morphology and Mixing State of Aged Soot Particles at a Remote Marine Free Troposphere Site: Implications for Optical Properties. Geophysical Research Letters, 42(4): 1243–1250. https://doi.org/10.1002/2014gl062404 |
Chuvochina, M. S., Alekhina, I. A., Normand, P., et al., 2011. Three Events of Saharan Dust Deposition on the Mont Blanc Glacier Associated with Different Snow-Colonizing Bacterial Phylotypes. Microbiology, 80(1): 125–131. https://doi.org/10.1134/s0026261711010061 |
Clason, C., Rangecroft, S., Owens, P. N., et al., 2023. Contribution of Glaciers to Water, Energy and Food Security in Mountain Regions: Current Perspectives and Future Priorities. Annals of Glaciology, 63(87/88/89): 73–78. https://doi.org/10.1017/aog.2023.14 |
Cook, J., Edwards, A., Takeuchi, N., et al., 2016. Cryoconite. Progress in Physical Geography: Earth and Environment, 40(1): 66–111. https://doi.org/10.1177/0309133315616574 |
Di Mauro, B., 2020. A Darker Cryosphere in a Warming World. Nature Climate Change, 10(11): 979–980. https://doi.org/10.1038/s41558-020-00911-9 |
Di Mauro, B., Fugazza, D., 2022. Pan-Alpine Glacier Phenology Reveals Lowering Albedo and Increase in Ablation Season Length. Remote Sensing of Environment, 279: 113119. https://doi.org/10.1016/j.rse.2022.113119 |
Di Mauro, B., Garzonio, R., Baccolo, G., et al., 2020. Glacier Algae Foster Ice-Albedo Feedback in the European Alps. Scientific Reports, 10: 4739. https://doi.org/10.1038/s41598-020-61762-0 |
Di Mauro, B., Garzonio, R., Baccolo, G., et al., 2021. Light-Absorbing Particles in Snow and Ice: A Brief Journey across Latitudes. Kokhanovsky, A., ed., Springer Series in Light Scattering. Springer International Publishing, Cham. 1–29. https://doi.org/10.1007/978-3-030-87683-8_1 |
Di Mauro, B., Garzonio, R., Rossini, M., et al., 2019. Saharan Dust Events in the European Alps: Role in Snowmelt and Geochemical Characterization. The Cryosphere, 13(4): 1147–1165. https://doi.org/10.5194/tc-13-1147-2019 |
Dong, Z. W., Brahney, J., Kang, S. C., et al., 2020. Aeolian Dust Transport, Cycle and Influences in High-Elevation Cryosphere of the Tibetan Plateau Region: New Evidences from Alpine Snow and Ice. Earth-Science Reviews, 211: 103408. https://doi.org/10.1016/j.earscirev.2020.103408 |
Dong, Z. W., Kang, S. C., Qin, D. H., et al., 2016. Provenance of Cryoconite Deposited on the Glaciers of the Tibetan Plateau: New Insights from Nd-Sr Isotopic Composition and Size Distribution. Journal of Geophysical Research: Atmospheres, 121(12): 7371–7382. https://doi.org/10.1002/2016jd024944 |
Dong, Z. W., Kang, S. C., Qin, D. H., et al., 2018. Variability in Individual Particle Structure and Mixing States between the Glacier―Snowpack and Atmosphere in the Northeastern Tibetan Plateau. The Cryosphere, 12(12): 3877–3890. https://doi.org/10.5194/tc-12-3877-2018 |
Dong, Z. W., Shao, Y. P., Jiao, X. Y., et al., 2023. Iron Variability Reveals the Interface Effects of Aerosol-Pollutant Interactions on the Glacier Surface of Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 128(10): e2022JD038232. https://doi.org/10.1029/2022jd038232 |
Du, Z. H., Xiao, C. D., Liu, Y. P., et al., 2017. Natural vs. Anthropogenic Sources Supply Aeolian Dust to the Miaoergou Glacier: Evidence from Sr-Pb Isotopes in the Eastern Tienshan Ice Core. Quaternary International, 430: 60–70. https://doi.org/10.1016/j.quaint.2015.11.069 |
Erhardt, T., Bigler, M., Federer, U., et al., 2022. High-Resolution Aerosol Concentration Data from the Greenland NorthGRIP and NEEM Deep Ice Cores. Earth System Science Data, 14(3): 1215–1231. https://doi.org/10.5194/essd-14-1215-2022 |
Ferrario, C., Finizio, A., Villa, S., 2017. Legacy and Emerging Contaminants in Meltwater of Three Alpine Glaciers. Science of the Total Environment, 574: 350–357. https://doi.org/10.1016/j.scitotenv.2016.09.067 |
Franzetti, A., Navarra, F., Tagliaferri, I., et al., 2017. Potential Sources of Bacteria Colonizing the Cryoconite of an Alpine Glacier. PLoS One, 12(3): e0174786. https://doi.org/10.1371/journal.pone.0174786 |
Gabrielli, P., Vallelonga, P., 2015. Contaminant Records in Ice Cores, Environmental Contaminants: Using Natural Archives to Track Sources and Long-term Trends of Pollution. In: Blais, J. M., Rosen, M. R., Smol, J. P., eds., Developments in Paleoenvironmental Research. Springer Dordrecht. https://doi.org/10.1007/978-94-017-9541-8 |
Gabrielli, P., Wegner, A., Petit, J. R., et al., 2010. A Major Glacial-Interglacial Change in Aeolian Dust Composition Inferred from Rare Earth Elements in Antarctic Ice. Quaternary Science Reviews, 29(1/2): 265–273. https://doi.org/10.1016/j.quascirev.2009.09.002 |
Ganey, G. Q., Loso, M. G., Burgess, A. B., et al., 2017. The Role of Microbes in Snowmelt and Radiative Forcing on an Alaskan Icefield. Nature Geoscience, 10(10): 754–759. https://doi.org/10.1038/ngeo3027 |
Gevers, M., David, D. T., Thakur, R. C., et al., 2023. SESS Report 2022, Svalbard Integrated Arctic Earth Observing System, Longyearbyen. [2023-11-10]. https://sios-svalbard.org/SESS_Issue5 |
Grewling, Ł., Laniecki, R., Jastrzębski, M., et al., 2023. Dispersal of Pollen and Invertebrates by Wind in Contrasting Arctic Habitats of Svalbard. Polish Polar Research. https://doi.org/10.24425/ppr.2023.146740 |
Hadley, O. L., Kirchstetter, T. W., 2012. Black-Carbon Reduction of Snow Albedo. Nature Climate Change, 2(6): 437–440. https://doi.org/10.1038/nclimate1433 |
Hotaling, S., Hood, E., Hamilton, T. L., 2017. Microbial Ecology of Mountain Glacier Ecosystems: Biodiversity, Ecological Connections and Implications of a Warming Climate. Environmental Microbiology, 19(8): 2935–2948. https://doi.org/10.1111/1462-2920.13766 |
Hotaling, S., Lutz, S., Dial, R. J., et al., 2021. Biological Albedo Reduction on Ice Sheets, Glaciers, and Snowfields. Earth-Science Reviews, 220: 103728. https://doi.org/10.1016/j.earscirev.2021.103728 |
Intergovernmental Panel on Climate Change (IPCC), 2014: Climate Change 2013: The Physical Science Basis. In: Stocker, T. F., Qin, D. H., Plattner, G. -K., et al., eds., Contribution of Working Group Ⅰ to the Fifth Assess-ment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York. 1535 |
Kang, S. C., Zhang, Y. L., Qian, Y., et al., 2020. A Review of Black Carbon in Snow and Ice and Its Impact on the Cryosphere. Earth-Science Reviews, 210: 103346. https://doi.org/10.1016/j.earscirev.2020.103346 |
Kaspari, S., Mayewski, P. A., Handley, M., et al., 2009. A High-Resolution Record of Atmospheric Dust Composition and Variability since A. D. 1650 from a Mount Everest Ice Core. Journal of Climate, 22(14): 3910–3925. https://doi.org/10.1175/2009jcli2518.1 |
Lewandowski, M., Kusiak, M. A., Werner, T., et al., 2020. Seeking the Sources of Dust: Geochemical and Magnetic Studies on "Cryodust" in Glacial Cores from Southern Spitsbergen (Svalbard, Norway). Atmosphere, 11(12): 1325. https://doi.org/10.3390/atmos11121325 |
Łokas, E., Wachniew, P., Baccolo, G., et al., 2022. Unveiling the Extreme Environmental Radioactivity of Cryoconite from a Norwegian Glacier. Science of the Total Environment, 814: 152656. https://doi.org/10.1016/j.scitotenv.2021.152656 |
Łokas, E., Zaborska, A., Kolicka, M., et al., 2016. Accumulation of Atmospheric Radionuclides and Heavy Metals in Cryoconite Holes on an Arctic Glacier. Chemosphere, 160: 162–172. https://doi.org/10.1016/j.chemosphere.2016.06.051 |
Makowska-Zawierucha, N., Mokracka, J., Małecka, M., et al., 2022. Quantification of Class 1 Integrons and Characterization of the Associated Gene Cassettes in the High Arctic—Interplay of Humans and Glaciers in Shaping the Aquatic Resistome. Ecological Indicators, 145: 109633. https://doi.org/10.1016/j.ecolind.2022.109633 |
Martins, J. V., Artaxo, P., Liousse, C., et al., 1998. Effects of Black Carbon Content, Particle Size, and Mixing on Light Absorption by Aerosols from Biomass Burning in Brazil. Journal of Geophysical Research: Atmos-pheres, 103(D24): 32041–32050. https://doi.org/10.1029/98jd02593 |
McConnell, J. R., Wilson, A. I., Stohl, A., et al., 2018. Lead Pollution Recorded in Greenland Ice Indicates European Emissions Tracked Plagues, Wars, and Imperial Expansion during Antiquity. Proceedings of the National Academy of Sciences of the United States of America, 115(22): 5726–5731. https://doi.org/10.1073/pnas.1721818115 |
McCutcheon, J., Lutz, S., Williamson, C., et al., 2021. Mineral Phosphorus Drives Glacier Algal Blooms on the Greenland Ice Sheet. Nature Communications, 12: 570. https://doi.org/10.1038/s41467-020-20627-w |
Monteiro, A., Basart, S., Kazadzis, S., et al., 2022. Multi-Sectoral Impact Assessment of an Extreme African Dust Episode in the Eastern Mediterranean in March 2018. Science of the Total Environment, 843: 156861. https://doi.org/10.1016/j.scitotenv.2022.156861 |
Naegeli, K., Huss, M., 2017. Sensitivity of Mountain Glacier Mass Balance to Changes in Bare-Ice Albedo. Annals of Glaciology, 58(75pt2): 119–129. https://doi.org/10.1017/aog.2017.25 |
Nagatsuka, N., Goto-Azuma, K., Tsushima, A., et al., 2021. Variations in Mineralogy of Dust in an Ice Core Obtained from Northwestern Greenland over the Past 100 Years. Climate of the Past, 17(3): 1341–1362. https://doi.org/10.5194/cp-17-1341-2021 |
Ono, M., Takeuchi, N., Zawierucha, K., 2021. Snow Algae Blooms are Beneficial for Microinvertebrates Assemblages (Tardigrada and Rotifera) on Seasonal Snow Patches in Japan. Scientific Reports, 11: 5973. https://doi.org/10.1038/s41598-021-85462-5 |
Onuma, Y., Yoshimura, K., Takeuchi, N., 2022. Global Simulation of Snow Algal Blooming by Coupling a Land Surface and Newly Developed Snow Algae Models. Journal of Geophysical Research: Biogeosciences, 127(2): e2021J–e6339J. https://doi.org/10.1029/2021jg006339 |
Owens, P. N., Blake, W. H., Millward, G. E., 2019. Extreme Levels of Fallout Radionuclides and other Contaminants in Glacial Sediment (Cryoconite) and Implications for Downstream Aquatic Ecosystems. Scientific Reports, 9: 12531. https://doi.org/10.1038/s41598-019-48873-z |
Pawlak, F., Koziol, K., Polkowska, Z., 2021. Chemical Hazard in Glacial Melt? the Glacial System as a Secondary Source of POPs (in the Northern Hemisphere): A Systematic Review. Science of the Total Environment, 778: 145244. https://doi.org/10.1016/j.scitotenv.2021.145244 |
Pittino, F., Buda, J., Ambrosini, R., et al., 2023. Impact of Anthropogenic Contamination on Glacier Surface Biota. Current Opinion in Biotech-nology, 80: 102900. https://doi.org/10.1016/j.copbio.2023.102900 |
Pittino, F., Maglio, M., Gandolfi, I., et al., 2018. Bacterial Communities of Cryoconite Holes of a Temperate Alpine Glacier Show both Seasonal Trends and Year-to-Year Variability. Annals of Glaciology, 59(77): 1–9. https://doi.org/10.1017/aog.2018.16 |
Poniecka, E., Bagshaw, E. A., 2021. The Cryoconite Biome. In: Liebner, S., Ganzert, L., eds., Microbial Life in the Cryosphere and Its Feedback on Global Change. De Gruyter, Berlin, Boston. 227–238. https://doi.org/10.1515/9783110497083-011 |
Qin, D. H., 2017. An Introduction to Cryosphere Science. Science Press, Beijing (in Chinese) |
Remias, D., Procházková, L., 2023. The First Cultivation of the Glacier Ice Alga Ancylonema Alaskanum (Zygnematophyceae, Streptophyta): Differences in Morphology and Photophysiology of Field vs. Laboratory Strain Cells. Journal of Glaciology, 69(276): 1080–1084. https://doi.org/10.1017/jog.2023.22 |
Rizzi, C., Finizio, A., Maggi, V., et al., 2019. Spatial-Temporal Analysis and Risk Characterisation of Pesticides in Alpine Glacial Streams. Environ-mental Pollution, 248: 659–666. https://doi.org/10.1016/j.envpol. 2019.02.067 doi: 10.1016/j.envpol.2019.02.067 |
Rozwalak, P., Podkowa, P., Buda, J., et al., 2022. Cryoconite—From Minerals and Organic Matter to Bioengineered Sediments on Glacier's Surfaces. Science of the Total Environment, 807: 150874. https://doi.org/10.1016/j.scitotenv.2021.150874 |
Sands, C. J., Zwerschke, N., Bax, N., et al., 2023. Perspective: The Growing Potential of Antarctic Blue Carbon. In: Kappel, E. S., Cullen, V., Costello, M. J. et al., eds., Frontiers in Ocean Observing: Emerging Technologies for Understanding and Managing a Changing Ocean. Oceanography, 36(Suppl. 1): 16–17. https://doi.org/10.5670/oceanog.2023.s1.5 |
Schmidt, S. K., Johnson, B. W., Solon, A. J., et al., 2022. Microbial Biogeochemistry and Phosphorus Limitation in Cryoconite Holes on Glaciers across the Taylor Valley, McMurdo Dry Valleys, Antarctica. Biogeochemistry, 158(3): 313–326. https://doi.org/10.1007/s10533-022-00900-4 |
Sierra-Hernández, M. R., Beaudon, E., Porter, S. E., et al., 2022. Increased Fire Activity in Alaska since the 1980s: Evidence from an Ice Core-Derived Black Carbon Record. Journal of Geophysical Research: Atmospheres, 127(2): e2021J–e35668J. https://doi.org/10.1029/2021jd035668 |
Sigl, M., McConnell, J. R., Layman, L., et al., 2013. A New Bipolar Ice Core Record of Volcanism from WAIS Divide and NEEM and Implications for Climate Forcing of the Last 2000 years. Journal of Geophysical Research: Atmospheres, 118(3): 1151–1169. https://doi.org/10.1029/2012jd018603 |
Skiles, S. M., Flanner, M., Cook, J. M., et al., 2018. Radiative Forcing by Light-Absorbing Particles in Snow. Nature Climate Change, 8(11): 964–971. https://doi.org/10.1038/s41558-018-0296-5 |
Stibal, M., Šabacká, M., Žárský, J., 2012. Biological Processes on Glacier and Ice Sheet Surfaces. Nature Geoscience, 5(11): 771–774. https://doi.org/10.1038/ngeo1611 |
Szeligowska, M., Trudnowska, E., Boehnke, R., et al., 2021. The Interplay between Plankton and Particles in the Isfjorden Waters Influenced by Marine- and Land-Terminating Glaciers. Science of the Total Environ-ment, 780: 146491. https://doi.org/10.1016/j.scitotenv.2021.146491 |
Takeuchi, N., Kohshima, S., Seko, K., 2001. Structure, Formation, and Darkening Process of Albedo-Reducing Material (Cryoconite) on a Himalayan Glacier: a Granular Algal Mat Growing on the Glacier. Arctic, Antarctic, and Alpine Research, 33(2): 115–122. https://doi.org/10.1080/15230430.2001.12003413 |
Wejnerowski, L., Poniecka, E., Buda, J., et al., 2023. Empirical Testing of Cryoconite Granulation: Role of Cyanobacteria in the Formation of Key Biogenic Structure Darkening Glaciers in Polar Regions. Journal of Phycology, 59: 939–949. https://doi.org/10.1111/jpy.13372 |
Yu, G. M., Xu, J. Z., Kang, S. C., et al., 2013. Lead Isotopic Composition of Insoluble Particles from Widespread Mountain Glaciers in Western China: Natural vs. Anthropogenic Sources. Atmospheric Environment, 75: 224–232. https://doi.org/10.1016/j.atmosenv.2013.04.018 |
Zawierucha, K., Buda, J., Azzoni, R. S., et al., 2019. Water Bears Dominated Cryoconite Hole Ecosystems: Densities, Habitat Preferences and Physiological Adaptations of Tardigrada on an Alpine Glacier. Aquatic Ecology, 53(4): 543–556. https://doi.org/10.1007/s10452-019-09707-2 |
Zawierucha, K., Kašparová, E. Š., McInnes, S., et al., 2023. Cryophilic Tardigrada have Disjunct and Bipolar Distribution and Establish Long-Term Stable, Low-Density Demes. Polar Biology, 46(10): 1011–1027. https://doi.org/10.1007/s00300-023-03170-4 |
Zhang, Q. G., Kang, S. C., Kaspari, S., et al., 2009. Rare Earth Elements in an Ice Core from Mt. Everest: Seasonal Variations and Potential Sources. Atmospheric Research, 94(2): 300–312. https://doi.org/10.1016/j.atmosres.2009.06.005 |
Zhang, Y. L., Kang, S. C., 2017. Research Progress of Light-Absorbing Impurities in Glaciers of the Tibetan Plateau and Its Surroundings. Chinese Science Bulletin, 62(35): 4151–4162. https://doi.org/10.1360/n972017-00505 |