Aydan, Ö., Ulusay, R., Tokashiki, N., 2014. A New Rock Mass Quality Rating System: Rock Mass Quality Rating (RMQR) and Its Application to the Estimation of Geomechanical Characteristics of Rock Masses. Rock Mechanics and Rock Engineering, 47(4): 1255–1276. https://doi.org/10.1007/s00603-013-0462-z |
Babacan, A. E., Gelisli, K., Ersoy, H., 2014. Seismic Tomography and Surface Wave Analysis Based Methodologies on Evaluation of Geotechnical Properties of Volcanic Rocks: A Case Study. Journal of Earth Science, 25(2): 348–356. https://doi.org/10.1007/s12583-014-0417-7 |
Barton, N., Grimstad, E., 1995. Rock Mass Conditions Dictate Choice between NMT and NATM. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3): 135A. https://doi.org/10.1016/0148-9062(95)90245-z |
Battulwar, R., Zare-Naghadehi, M., Emami, E., et al., 2021. A State-of-the-Art Review of Automated Extraction of Rock Mass Discontinuity Characteristics Using Three-Dimensional Surface Models. Journal of Rock Mechanics and Geotechnical Engineering, 13(4): 920–936. https://doi.org/10.1016/j.jrmge.2021.01.008 |
Bieniawski, Z. T., 2009. The Rock Mass Rating (RMR) System (Geomechanics Classification) in Engineering Practice. In: Kirkaldie, L., ed., Rock Classification Systems for Engineering Purposes. ASTM International,, West Conshohocken, PA 19428-2959. 17. https://doi.org/10.1520/stp48461s |
Cui, Z., Sheng, Q., Zhang, G. M., et al., 2021. A Modified Rock Mass Classification Considering Seismic Effects in the Basic Quality (BQ) System. Bulletin of Engineering Geology and the Environment, 80(3): 2249–2260. https://doi.org/10.1007/s10064-020-02064-7 |
Di, K. C., Yue, Z. Y., Liu, Z. Q., et al., 2013. Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data. Journal of Earth Science, 24(1): 125–135. https://doi.org/10.1007/s12583-013-0316-3 |
Fekete, S., Diederichs, M., Lato, M., 2010. Geotechnical and Operational Applications for 3-Dimensional Laser Scanning in Drill and Blast Tunnels. Tunnelling and Underground Space Technology, 25(5): 614–628. https://doi.org/10.1016/j.tust.2010.04.008 |
Ge, Y. F., Cao, B., Chen, Q. A., et al., 2023. Rock Joint Detection from 3D Point Clouds Based on Colour Space. Quarterly Journal of Engineering Geology and Hydrogeology, 56(4): qjegh2023-012. https://doi.org/10.1144/qjegh2023-012 |
Ge, Y. F., Cao, B., Tang, H. M., 2022. Rock Discontinuities Identification from 3D Point Clouds Using Artificial Neural Network. Rock Mechanics and Rock Engineering, 55(3): 1705–1720. https://doi.org/10.1007/s00603-021-02748-w |
Ge, Y. F., Tang, H. M., Xia, D., et al., 2018. Automated Measurements of Discontinuity Geometric Properties from a 3D-Point Cloud Based on a Modified Region Growing Algorithm. Engineering Geology, 242: 44–54. https://doi.org/10.1016/j.enggeo.2018.05.007 |
Guo, H. S., Feng, X. T., Li, S. J., et al., 2017. Evaluation of the Integrity of Deep Rock Masses Using Results of Digital Borehole Televiewers. Rock Mechanics and Rock Engineering, 50(6): 1371–1382. https://doi.org/10.1007/s00603-017-1173-7 |
Hasan, M., Shang, Y. J., Yi, X. T., et al., 2023. Determination of Rock Mass Integrity Coefficient Using a Non-Invasive Geophysical Approach. Journal of Rock Mechanics and Geotechnical Engineering, 15(6): 1426–1440. https://doi.org/10.1016/j.jrmge.2022.07.008 |
Hubbard, B., Tison, J. L., Philippe, M., et al., 2013. Ice Shelf Density Reconstructed from Optical Televiewer Borehole Logging. Geophysical Research Letters, 40(22): 5882–5887. https://doi.org/10.1002/2013gl058023 |
Kulatilake, P. H. S. W., Um, J. G., Wang, M. Y., et al., 2003. Stochastic Fracture Geometry Modeling in 3-D Including Validations for a Part of Arrowhead East Tunnel, California, USA. Engineering Geology, 70(1/2): 131–155. https://doi.org/10.1016/s0013-7952(03)00087-5 |
Lato, M. J., Vöge, M., 2012. Automated Mapping of Rock Discontinuities in 3D Lidar and Photogrammetry Models. International Journal of Rock Mechanics and Mining Sciences, 54: 150–158. https://doi.org/10.1016/j.ijrmms.2012.06.003 |
Riquelme, A. J., Abellán, A., Tomás, R., et al., 2014. A New Approach for Semi-Automatic Rock Mass Joints Recognition from 3D Point Clouds. Computers & Geosciences, 68: 38–52. https://doi.org/10.1016/j.cageo.2014.03.014 |
Romana, M., Tomás, R., Serón, J. B., 2015. Slope Mass Rating (SMR) Geomechanics Classification: Thirty Years Review. In: International Symposium on Rock Mechanics, May 10–13, 2015, Quebec. 10 |
Priest, S. D., Hudson, J. A., 1981. Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(3): 183–197. https://doi.org/10.1016/0148-9062(81)90973-6 |
Singh, B., Jethwa, J. L., Dube, A. K., et al., 1992. Correlation between Observed Support Pressure and Rock Mass Quality. Tunnelling and Underground Space Technology, 7(1): 59–74. https://doi.org/10.1016/0886-7798(92)90114-w |
Zhang, H. W., Li, C. D., Xie, N., et al., 2023. Characterization of Macro- and Meso-Scale Shear Behavior of Soil-Brick Mixtures with Different Contents and Shapes of Brick by Discrete Element Method. Journal of Earth Science, 34(5): 1641–1644. https://doi.org/10.1007/s12583-023-1942-x |