| Citation: | Zhenzhong Cai, Jingshou Liu, Hui Zhang, Binxin Zhang, Ke Xu, Guoqing Yin, Peng Chen. Quantitative Prediction of in situ Stress in Ultradeep Fracture-Cave Reservoirs and Its Applications. Journal of Earth Science, 2025, 36(6): 2598-2612. doi: 10.1007/s12583-024-0001-8 |
Fracture-cave reservoirs are widely developed in carbonate formations and account for over 55% of global petroleum reserves. The productivity, formation mechanisms, and
| Abdelaziz, A., Ha, J., Li, M., et al., 2023. Understanding Hydraulic Fracture Mechanisms: From the Laboratory to Numerical Modelling. Advances in Geo-Energy Research, 7(1): 66–68. https://doi.org/10.46690/ager.2023.01.07 |
| Chang, C., Luo, G., Wang, M. W., et al., 2020. Near-Salt Perturbations of Stresses and Pore Fluid Pressures and Their Impacts on Wellbore Stability in the Kuqa Depression of the Tarim Basin, China. Interpretation, 8(2): SG33–SG49. https://doi.org/10.1190/int-2019-0168.1 |
| Deng, S., Zhao, R., Kong, Q. F., et al., 2022. Two Distinct Strike-Slip Fault Networks in the Shunbei Area and Its Surroundings, Tarim Basin: Hydrocarbon Accumulation, Distribution, and Controlling Factors. AAPG Bulletin, 106(1): 77–102. https://doi.org/10.1306/07202119113 |
| Ding, W. L., Fan, T. L., Yu, B. S., et al., 2012. Ordovician Carbonate Reservoir Fracture Characteristics and Fracture Distribution Forecasting in the Tazhong Area of Tarim Basin, Northwest China. Journal of Petroleum Science and Engineering, 86: 62–70. https://doi.org/10.1016/j.petrol.2012.03.006 |
| Faraji, M., Rezagholilou, A., Ghanavati, M., et al., 2021. Breakouts Derived from Image Logs Aid the Estimation of Maximum Horizontal Stress: A Case Study from Perth Basin, Western Australia. Advances in Geo-Energy Research, 5(1): 8–24. https://doi.org/10.46690/ager.2021.01.03 |
| Feng, J. W., Shang, L., Li, X. Z., et al., 2019. 3D Numerical Simulation of Heterogeneous in situ Stress Field in Low-Permeability Reservoirs. Petroleum Science, 16(5): 939–955. https://doi.org/10.1007/s12182-019-00360-w |
| He, T. H., Li, W. H., Lu, S. F., et al., 2022. Distribution and Isotopic Signature of 2-Alkyl-1, 3, 4-Trimethylbenzenes in the Lower Paleozoic Source Rocks and Oils of Tarim Basin: Implications for the Oil-Source Correlation. Petroleum Science, 19(6): 2572–2582. https://doi.org/10.1016/j.petsci.2022.07.014 |
| Heidari, S., Li, B., Zsaki, A. M., et al., 2021. Stability Analysis of a Super Deep Petroleum Well Drilled in Strike-Slip Fault Zones in the Tarim Basin, NW China. Arabian Journal of Geosciences, 14(8): 675. https://doi.org/10.1007/s12517-021-06709-z |
| Huang, C. J., Liu, G. Y., Ma, Y. S., et al., 2019. Hydrocarbon Migration in Fracture-Cave Systems of Carbonate Reservoirs under Tectonic Stresses: A Modeling Study. Petroleum Research, 4(4): 354–364. https://doi.org/10.1016/j.ptlrs.2019.09.001 |
| Jiu, B., Huang, W. H., Mu, N. N., et al., 2020. Effect of Hydrothermal Fluids on the Ultra-Deep Ordovician Carbonate Rocks in Tarim Basin, China. Journal of Petroleum Science and Engineering, 194(1): 107445. https://doi.org/10.1016/j.petrol.2020.107445 |
| Jiu, K., Ding, W. L., Huang, W. H., et al., 2013. Simulation of Paleotectonic Stress Fields within Paleogene Shale Reservoirs and Prediction of Favorable Zones for Fracture Development within the Zhanhua Depression, Bohai Bay Basin, East China. Journal of Petroleum Science and Engineering, 110: 119–131. https://doi.org/10.1016/j.petrol.2013.09.002 |
| Lai, J., Li, D., Ai, Y., et al., 2022. Structural Diagenesis in Ultra-Deep Tight Sandstones in the Kuqa Depression, Tarim Basin, China. Solid Earth, 13(6): 975–1002. https://doi.org/10.5194/se-13-975-2022 |
| Li, F., Lü, X. X., Zhu, G. Y., et al., 2023. Formation and Preservation of Ultra-Deep Liquid Petroleum in the Ordovician Sedimentary Succession in Tarim Basin during the Neotectonic Phase. Journal of Asian Earth Sciences, 250: 105645. https://doi.org/10.1016/j.jseaes.2023.105645 |
| Li, H. Y., 2022. Development Characteristics of Silurian Strike-Slip Faults and Fractures and Their Effects on Drilling Leakage in Shunbei Area of Tarim Basin. Frontiers in Earth Science, 10: 938765. https://doi.org/10.3389/feart.2022.938765 |
| Li, H., Yu, F. S., Wang, M., et al., 2022. Quantitative Prediction of Structural Fractures in the Paleocene Lower Wenchang Formation Reservoir of the Lufeng Depression. Advances in Geo-Energy Research, 6(5): 375–387. https://doi.org/10.46690/ager.2022.05.03 |
| Li, X. R., Zhang, C. F., Feng, Y. C., et al., 2022. An Integrated Geomechanics Approach to Evaluate and Manage Wellbore Stability in a Deep Graben Formation in Tarim Basin. Journal of Petroleum Science and Engineering, 208: 109391. https://doi.org/10.1016/j.petrol.2021.109391 |
| Liu, J. S., Ding, W. L., Dai, J. S., et al., 2018. Quantitative Multiparameter Prediction of Fault-Related Fractures: A Case Study of the Second Member of the Funing Formation in the Jinhu Sag, Subei Basin. Petroleum Science, 15(3): 468–483. https://doi.org/10.1007/s12182-018-0240-3 |
| Liu, J. S., Chen, P., Xu, K., et al., 2022. Fracture Stratigraphy and Mechanical Stratigraphy in sandstone: A Multiscale Quantitative Analysis. Marine and Petroleum Geology, 145: 105891. https://doi.org/10.1016/j.marpetgeo.2022.105891 |
| Liu, J. S., Mei, L. F., Ding, W. L., et al., 2023. Asymmetric Propagation Mechanism of Hydraulic Fracture Networks in Continental Reservoirs. GSA Bulletin, 135(3/4): 678–688. https://doi.org/10.1130/b36358.1 |
| Liu, J. S., Lu, Y. H., Xu, K., et al., 2024. Main Controlling Factors and Prediction Model of Fracture Scale in Tight Sandstone: Insights from Dynamic Reservoir Data and Geomechanical Model Analysis. Rock Mechanics and Rock Engineering, 57(10): 8343–8362. https://doi.org/10.1007/s00603-024-03979-3 |
| Liu, S., Liu, Z. Y., Zhang, Z. N., 2022. Numerical Study on Hydraulic Fracture-Cavity Interaction in Fractured-Vuggy Carbonate Reservoir. Journal of Petroleum Science and Engineering, 213: 110426. https://doi.org/10.1016/j.petrol.2022.110426 |
| Luo, J., Cao, H. Y., Chiarella, D., et al., 2023. Ultra-Deep Carbonate Basement Reservoirs Formed by Polyphase Fracture-Related Karstification in the Offshore Bohai Bay Basin, China. Petroleum Science, 20(4): 2009–2025. https://doi.org/10.1016/j.petsci.2023.03.021 |
| Ma, T. S., Chen, P., Yang, C. H., et al., 2015. Wellbore Stability Analysis and Well Path Optimization Based on the Breakout Width Model and Mogi-Coulomb Criterion. Journal of Petroleum Science and Engineering, 135: 678–701. https://doi.org/10.1016/j.petrol.2015.10.029 |
| Salah, M. K., Janjuhah, H. T., Sanjuan, J., 2023. Analysis and Characterization of Pore System and Grain Sizes of Carbonate Rocks from Southern Lebanon. Journal of Earth Science, 34(1): 101–121. https://doi.org/10.1007/s12583-020-1057-8 |
| Su, Z., Liu, Y. F., Han, J. F., et al., 2020. Application of Ultra-Deep Sandstone Reservoirs Prediction Technology under Controlled Seismic Facies in Yudong Block of Tabei Uplift, Tarim Basin, China. Journal of Natural Gas Geoscience, 5(3): 157–167. https://doi.org/10.1016/j.jnggs.2020.05.001 |
| Sun, Q., Fan, T., Gao, Z., et al., 2021. New Insights on the Geometry and Kinematics of the Shunbei 5 Strike-Slip Fault in the Central Tarim Basin, China. Journal of Structural Geology, 150(9): 104400. https://doi.org/10.1016/j.jsg.2021.104400 |
| Tan, Y. S., Li, Q., Xu, L., et al., 2022. A Critical Review of Carbon Dioxide Enhanced Oil Recovery in Carbonate Reservoirs. Fuel, 328: 125256. https://doi.org/10.1016/j.fuel.2022.125256 |
| Tariq, W., Rehman, G., Gardezi, S. A. H., et al., 2023. Impact of Fractures and Diagenesis on Reservoir Potential of Inner Ramp Paleocene Carbonates Exposed in Western Part of the Lesser Himalayas of Pakistan. Journal of Earth Science, 34(2): 536–555. https://doi.org/10.1007/s12583-021-1559-z |
| Wang, S., Wang, G. W., Li, D., et al., 2022. Comparison between Double Caliper, Imaging Logs, and Array Sonic Log for Determining the in-situ Stress direction: A Case Study from the Ultra-Deep Fractured Tight Sandstone Reservoirs, the Cretaceous Bashijiqike Formation in Keshen8 Region of Kuqa Depression, Tarim Basin, China. Petroleum Science, 19(6): 2601–2617. https://doi.org/10.1016/j.petsci.2022.08.035 |
| Xu, K., Yang, H. J., Zhang, H., et al., 2022. Fracture Effectiveness Evaluation in Ultra-Deep Reservoirs Based on Geomechanical Method, Kuqa Depression, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 215: 110604. https://doi.org/10.1016/j.petrol.2022.110604 |
| Xu, Z. X., Li, S. Y., Li, B. F., et al., 2020. A Review of Development Methods and EOR Technologiesfor Carbonate Reservoirs. Petroleum Science, 17(4): 990–1013. https://doi.org/10.1007/s12182-020-00467-5 |
| Yang, R. Q., Ding, W. L., Zhao, Z., et al., 2023. Well Trajectory Optimization of Ultradeep and High-Pressure Drilling Engineering Based on High in situ Stress as the Main Control factor: A Case Study from the Ordovician Carbonate Reservoir in the Shunbei Area of the Tarim Basin. Interpretation, 11(1): T131–T143. https://doi.org/10.1190/int-2022-0058.1 |
| Zeng, W. T., Ding, W. L., Zhang, J. C., et al., 2013. Fracture Development in Paleozoic Shale of Chongqing Area (South China). Part two: Numerical Simulation of Tectonic Stress Field and Prediction of Fractures Distribution. Journal of Asian Earth Sciences, 75: 267–279. https://doi.org/10.1016/j.jseaes.2013.07.015 |
|
Zhang, Y., Zeng, L., Zhang, R., et al., 2025. Control of Differential Tectonic Evolution on Tectonic Fractures in Different Tectonic Segments of Tight Gas Sandstone Reservoirs: Upper Triassic Xujiahe Formation, Western Sichuan Foreland Basin. Journal of Earth Science. |
| Zhou, X. X., Lü, X. X., Quan, H., et al., 2019. Influence Factors and an Evaluation Method about Breakthrough Pressure of Carbonate Rocks: An Experimental Study on the Ordovician of Carbonate Rock from the Kalpin Area, Tarim Basin, China. Marine and Petroleum Geology, 104: 313–330. https://doi.org/10.1016/j.marpetgeo.2019.03.034 |
| Zhou, X. X., Lü, X. X., Sui, F. G., et al., 2022. The Breakthrough Pressure and Sealing Property of Lower Paleozoic Carbonate Rocks in the Gucheng Area of the Tarim Basin. Journal of Petroleum Science and Engineering, 208(12): 109289. https://doi.org/10.1016/j.petrol.2021.109289 |
| Zhu, G. Y., Cao, Y. H., Yan, L., et al., 2018. Potential and Favorable Areas of Petroleum Exploration of Ultra-Deep Marine Strata More than 8 000 m Deep in the Tarim Basin, Northwest China. Journal of Natural Gas Geoscience, 3(6): 321–337. https://doi.org/10.1016/j.jnggs.2018.12.002 |