Citation: | Daniel Germán Flores, Raúl Emmanuel Ocaña, Edgardo Melián, Andrés Ortega, María Yanina Esper Angillieri, María Alejandra Pittaluga. Vegetation Response to Soil and Morphological Properties in an Arid Region Alluvial Fan Landscape, Pre-Andes of San Juan, Argentina. Journal of Earth Science, 2025, 36(2): 408-427. doi: 10.1007/s12583-024-0002-7 |
The Monte Desert is characterized by a great diversity of landforms created with fluvial, alluvial which the vegetation patterns are related to. The present work has the following objectives: (1) determine whether topographical attributes, surface characteristics, soil properties and vegetation patterns vary between alluvial landforms, and (2) define whether morphometric, soil and surface properties influence vegetation patterns along alluvial landscape. Morphometric data were obtained by processing a 5 m digital elevation model. The coverage of rock fragments, fine sediments and mulch was quantified. Observations and descriptions of the soil profiles were restricted to the uppermost 50 cm. Vegetation properties were calculated using a Point Quadrat Method. The relationship between variables was evaluated through multivariate statistical analysis. The main results show the presence of 45 plant species distributed in 19 families, where shrubs are dominant. The wind effect, topographic wetness and dissection of the landscape are limiting factors of diversity. The coverage of superficial rock fragments influence vegetation coverage through the distribution and availability of rainwater. Furthermore, the different soil textures reveal that the silt content favors an increase in vegetation coverage. The presence of V horizon could condition the installation and development of vegetation in the early stages of growth.
Abraham, E. M., 1979. Geomorfología y Biota del Valle de Sanagasta (Provincia de La Rioja, Argentina). Deserta, 5: 95–155 |
Abril, A., Villagra, P., Noe, L., 2009. Spatiotemporal Heterogeneity of Soil Fertility in the Central Monte Desert (Argentina). Journal of Arid Environments, 73(10): 901–906. https://doi.org/10.1016/j.jaridenv.2009.04.019 |
Alvarado, P., Beck, S., Zandt, G., 2007. Crustal Structure of the South-Central Andes Cordillera and Backarc Region from Regional Waveform Modelling. Geophysical Journal International, 170(2): 858–875. https://doi.org/10.1111/j.1365-246x.2007.03452.x |
Amatulli, G., McInerney, D., Sethi, T., et al., 2020. Geomorpho90m, Empirical Evaluation and Accuracy Assessment of Global High-Resolution Geomorphometric Layers. Scientific Data, 7(1): 162. https://doi.org/10.1038/s41597-020-0479-6 |
Anderson, K., Wells, S., Graham, R., 2002. Pedogenesis of Vesicular Horizons, Cima Volcanic Field, Mojave Desert, California. Soil Science Society of America Journal, 66(3): 878. https://doi.org/10.2136/sssaj2002.0878 |
Anton, A., Zuloaga, F., Al-Shehbaz, I., et al., 2012. Flora Argentina: Flora Vascular de la República Argentina. Instituto de Botánica Darwinion, San Isidro |
Ares, J. O., Beeskow, A. M., Bertiller, M. B., et al., 1990. "Structural and Dynamic Characteristics of Overgrazed Lands of Northern Patagonia, Argentina. " In: Breymeyer, A., ed., Managed Grasslands, 149–175. Elsevier Sci Amsterdam, The Netherlands |
Ares, J., del Valle, H., Bisigato, A., 2003. Detection of Process-Related Changes in Plant Patterns at Extended Spatial Scales during Early Dryland Desertification. Global Change Biology, 9(11): 1643–1659. https://doi.org/10.1046/j.1365-2486.2003.00690.x |
Asaeda, T., Sanjaya, K., 2017. The Effect of the Shortage of Gravel Sediment in Midstream River Channels on Riparian Vegetation Cover. River Research and Applications, 33(7): 1107–1118. https://doi.org/10.1002/rra.3166 |
Baldis, B., Chebli, G., 1969. Estructura Profunda del área Central de la Precordillera Sanjuanina: IV, Jomadas Geológicas Argentinas, v. 1 |
Barbeito, V., Bono, A., 2006. Determinación de Fracciones Texturales Para Suelos de la Región Semiárida Pampeana Usando Variaciones al Método de Bouyoucos. |
Beven, K. J., Kirkby, M. J., 1979. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull., 24: 43–69 doi: 10.1080/02626667909491834 |
Bisigato, A. J., Villagra, P. E., Ares, J. O., et al., 2009. Vegetation Heterogeneity in Monte Desert Ecosystems: A Multi-Scale Approach Linking Patterns and Processes. Journal of Arid Environments, 73(2): 182–191. https://doi.org/10.1016/j.jaridenv.2008.09.001 |
Blair, T. C., McPherson, J. G., 1994. Alluvial Fans and Their Natural Distinction from Rivers Based on Morphology, Hydraulic Processes, Sedimentary Processes, and Facies Assemblages. SEPM Journal of Sedimentary Research, 64(3a): 450–489. https://doi.org/10.1306/d4267dde-2b26-11d7-8648000102c1865d |
Blanc, P. A., Perucca, L. P., 2017. Tectonic and Climatic Controls on the Late Pleistocene to Holocene Evolution of Paleolake Ullum-Zonda in the Precordillera of the Central Andes, Argentina. Quaternary Research, 88(2): 248–264. https://doi.org/10.1017/qua.2017.50 |
Bochet, E., García-Fayos, P., 2004. Factors Controlling Vegetation Establishment and Water Erosion on Motorway Slopes in Valencia, Spain. Restoration Ecology, 12(2): 166–174. https://doi.org/10.1111/j.1061-2971.2004.0325.x |
Böhner, J., Antonić, O., 2009. Land-Surface Parameters Specific to Topo-Climatology. Developments in Soil Science, 33: 195–226. https://doi.org/10.1016/s0166-2481(08)00008-1 |
Bouyoucos, G. J., 1962. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54(5): 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x |
Bouza, P., del Valle, H. F., Imbellone, P. A., 1993. Micromorphological, Physical, and Chemical Characteristics of Soil Crust Types of the Central Patagonia Region, Argentina. Arid Soil Research and Rehabilitation, 7(4): 355–368. https://doi.org/10.1080/15324989309381368 |
Bouza, P., del Valle, H., 1997. Génesis de Pavimentos de Desierto en el Ambiente Pedemontano del Bajo de la Suerte, Noreste del Chubut Extra-Andino. Revista de la Asociación Geológica Argentina, 52(2): 157–168 |
Brakensiek, D. L., Rawls, W. J., 1994. Soil Containing Rock Fragments: Effects on Infiltration. CATENA, 23(1/2): 99–110. https://doi.org/10.1016/0341-8162(94)90056-6 |
Bull, W. B., 1977. The Alluvial-Fan Environment. Progress in Physical Geography, 1(2): 222–270 |
Cabibel, B., Horoyan, J., 1985. Deficit of Water Balance in Trees in Relation to Water Circulation in Soil Preferential Pathways. In: Conrad, O., Bechtel, B., Bock, M., eds., Colloque sur les Recherches Fruitieres System for Automated Geoscientific Analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 8, 1991–2007. |
Constantz, J., Herkelrath, W. N., Murphy, F., 1988. Air Encapsulation during Infiltration. Soil Science Society of America Journal, 52(1): 10–16. https://doi.org/10.2136/sssaj1988.03615995005200010002x |
Coque, R., Jauzein, A., 1967. The Geomorphology and Quaternary Geology of Tunisia. Guidebook to the Geology and History of Tunisia, 3: 227–257 |
Crawley, M., 2013. The R Book. John Wiley & Sons Ltd., Chichester |
Crosta, G. B., Frattini, P., 2004. Controls on Modern Alluvial Fan Processes in the Central Alps, Northern Italy. Earth Surface Processes and Landforms, 29(3): 267–293. https://doi.org/10.1002/esp.1009 |
Dalmasso, A., Masuelli, R., Salgado, O., 1994. Relación VáStago-RaíZ Durante el Crecimiento en Vivero de Tres Especies Nativas del Monte Prosopis Chilensis. Prosopis Flexuosa y Bulnesia Retama. Multequina, 3: 35–43 |
D'Arcy, M., Mason, P. J., Roda-Boluda, D. C., et al., 2018. Alluvial Fan Surface Ages Recorded by Landsat-8 Imagery in Owens Valley, California. Remote Sensing of Environment, 216: 401–414. https://doi.org/10.1016/j.rse.2018.07.013 |
Dalmasso, A. D., Márquez, J., Abarca, A., et al., 2011. Flórula del Paraje de Pedernal y Alrededores: Departamento Sarmiento, San Juan. INCA, 84 |
Dobrowski, S. Z., Safford, H. D., Cheng, Y. B., et al., 2008. Mapping Mountain Vegetation Using Species Distribution Modeling, Image-Based Texture Analysis, and Object-Based Classification. Applied Vegetation Science, 11(4): 499–508. https://doi.org/10.3170/2008-7-18560 |
El-Keblawy, A., Abdelfattah, M. A., Khedr, A. H. A., 2015. Relationships between Landforms, Soil Characteristics and Dominant Xerophytes in the Hyper-Arid Northern United Arab Emirates. Journal of Arid Environments, 117: 28–36. https://doi.org/10.1016/j.jaridenv.2015.02.008 |
Evans, I. S., 1972. General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. Spatial Analysis in Geomorphology, Routledge, London |
Evans, I. S., 2019. General Geomorphometry, Derivatives of Altitude, and Descriptive Statistics. Spatial Analysis in Geomorphology. Routledge, 17–90. https://doi.org/10.4324/9780429273346-2. |
Evenari, M., Noy-Meir, I. y Goodall, D., 1985. Hot Deserts and Arid Shrublands, Part A. Elsevier, New York |
Flores, D. G., Suvires, G., 2012. Distribución y Diversidad de Hábitats en el Humedal de la Reserva Natural Presidente Sarmiento, San Juan, Argentina. Revista Mexicana de Biodiversidad, 83(1): 194–200 |
Flores, D. G., Suvires, G., Dalmasso, A., 2015. Distribución de La Vegetación Nativa En Ambientes Geomorfológicos Cuaternarios del Monte Árido Central de Argentina. Revista Mexicana de Biodiversidad, 86(1): 72–79. https://doi.org/10.7550/rmb.40248 |
Flores, D., Ocaña, E., Rodríguez, A. I., 2019. Relationships between Landform Properties and Vegetation Patterns in the Cerro Zonda MT., Central Precordillera of San Juan. Argentina. Journal of South American Earth Sciences, 96: 102359. https://doi.org/10.1016/j.jsames.2019.102359 |
Flores, D., Ocaña, R. E., Rodríguez, A. I., 2021. Contribution of Landform Analysis to the Study of Vegetation in Arid Zones (Cerro Zonda, San Juan, Argentina). In: Bouza, P., Rabassa, J., Bilmes, A., eds., Springer Earth System Sciences, Springer International Publishing, Cham. 120–153. |
Frankel, K. L., Dolan, J. F., 2007. Characterizing Arid Region Alluvial Fan Surface Roughness with Airborne Laser Swath Mapping Digital Topographic Data. Journal of Geophysical Research: Earth Surface, 112: F02025. https://doi.org/10.1029/2006jf000644 |
Flores, G. D., Suvires, G. M. S., 2012. Distribución y Diversidad de Hábitats en el Humedal de La Reserva Natural Presidente Sarmiento, San Juan, Argentina. Revista Mexicana de Biodiversidad, 83(1): 194–200. https://doi.org/10.22201/ib.20078706e.2012.1.791 |
Giweta, M., 2020. Role of Litter Production and Its Decomposition, and Factors Affecting the Processes in a Tropical Forest Ecosystem: A Review. Journal of Ecology and Environment, 44(1): 11. https://doi.org/10.1186/s41610-020-0151-2 |
Goodson, J. M., Gurnell, A. M., Angold, P. G., et al., 2002. Riparian Seed Banks along the Lower River Dove, UK: Their Structure and Ecological Implications. Geomorphology, 47(1): 45–60. https://doi.org/10.1016/S0169-555x(02)00140-x |
Gutiérrez Elorza, M., 2005. Climatic Geomorphology. Elsevier Science & Technology, Amsterdam |
Harvey, A. M., 1997. Coupling between Hillslope Gully Systems and Stream Channels in the Howgill Fells, Northwest England: Temporal Implications/le Couplage des Systèmes de Ravins et des Lits Fluviaux Dans les Howgill Fells, Nord-Ouest de l'Angleterre: Signification Temporelle. Géomorphologie Relief Processus Environnement, 3(1): 3–19. https://doi.org/10.3406/morfo.1997.897 |
Harvey, A. M., 2011. Dryland Alluvial Fans. In: Thomas, D. S. G., ed., Arid Zone Geomorphology: Process, Form and Change in Drylands. John Wiley & Sons, Chichester, 333–371 |
Harvey, A. M., Silva, P. G., Mather, A. E., et al., 1999. The Impact of Quaternary Sea-Level and Climatic Change on Coastal Alluvial Fans in the Cabo de Gata Ranges, Southeast Spain. Geomorphology, 28(1/2): 1–22. https://doi.org/10.1016/S0169-555x(98)00100-7 |
Hedrick, K., Owen, L. A., Rockwell, T. K., et al., 2013. Timing and Nature of Alluvial Fan and Strath Terrace Formation in the Eastern Precordillera of Argentina. Quaternary Science Reviews, 80: 143–168. https://doi.org/10.1016/j.quascirev.2013.05.004 |
Heim, A., 1952. Estudios Tectónicos en la Precordillera de San Juan. Los ríos San Juan, Jáchal y Huaco. Revista de la Asociación Geológica Argentina, 7(1): 11–70 |
Hengl, T., Reuter, H. I., 2008. Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam |
Hernández Santana, J. R., Ortiz Pérez, M. A., Mah Eng, M. F., 2009. Análisis Morfoestructural del Estado de Oaxaca, México: Un Enfoque de Clasificación Tipológica del Relieve. Investigaciones Geográficas, 68: 7–24 |
Istanbulluoglu, E., Bras, R. L., 2005. Vegetation-Modulated Landscape Evolution: Effects of Vegetation on Landscape Processes, Drainage Density, and Topography. Journal of Geophysical Research: Earth Surface, 110: F02012. https://doi.org/10.1029/2004jf000249 |
Kirkby, M. J., Atkinson, K., Lockwood, J., 1990. Aspect, Vegetation Cover and Erosion on Semi-Arid Hillslopes, John Wiley and Sons Ltd., Leeds |
Kopecký, M., Čížková, Š., 2010. Using Topographic Wetness Index in Vegetation Ecology: Does the Algorithm Matter? Applied Vegetation Science, 13(4): 450–459. https://doi.org/10.1111/j.1654-109x.2010.01083.x |
Köppen, W., 1923. Die Klimate der Erde: Grundriss der Klimakunde. de Gruyter, Berlin. https://doi.org/10.1515/9783111491530 |
Kuldeep, P., Upasana, P., 2011. Quantitative Morphometric Analysis of a Watershed of Yamuna Basin, India Using ASTER (DEM) Data and GIS. International Journal of Geomatics and Geosciences, 2(1): 248–269 |
Lamb, J. Jr, Chapman, J. E., 1943. Effect of Surface Stones on Erosion, Evaporation, Soil Temperature, and Soil Moisture. Agronomy Journal, 35(7): 567–578. https://doi.org/10.2134/agronj1943.00021962003500070003x |
Lara, G., Perucca, L., Rothis, M., 2018. Morphometric, Geomorphologic and Flood Hazard Analysis of an Arid Mountain River Basin, Central Pre-Andes of Argentina. Southwestern South America. Geografia Fisica e Dinamica Quaternaria, GFDQ, 41: 83–97 |
Liang, J. M., Gong, J. H., Li, W. H., 2018. Applications and Impacts of Google Earth: A Decadal Review (2006–2016). ISPRS Journal of Photogrammetry and Remote Sensing, 146: 91–107. https://doi.org/10.1016/j.isprsjprs.2018.08.019 |
Lloret, G., Suvires, G. M., 2006. Groundwater Basin of the Tulum Valley, San Juan, Argentina: A Morphohydrogeologic Analysis of Its Central Sector. Journal of South American Earth Sciences, 21(3): 267–275. https://doi.org/10.1016/j.jsames.2006.04.002 |
Mabbutt, J. A., 1966. Mantle-Controlled Planation of Pediments. American Journal of Science, 264(1): 78–91. https://doi.org/10.2475/ajs.264.1.78 |
Maleki, S., Karimi, A., Zeraatpisheh, M., et al., 2021. Long-Term Cultivation Effects on Soil Properties Variations in Different Landforms in an Arid Region of Eastern Iran. CATENA, 206: 105465. https://doi.org/10.1016/j.catena.2021.105465 |
Marone, L., Horno, M. E., 1997. Seed Reserves in the Central Monte Desert, Argentina: Implications for Granivory. Journal of Arid Environments, 36(4): 661–670. https://doi.org/10.1006/jare.1996.0187 |
Mather, A. E., Stokes, M., Whitfield, E., 2017. River Terraces and Alluvial Fans: The Case for an Integrated Quaternary Fluvial Archive. Quaternary Science Reviews, 166: 74–90. https://doi.org/10.1016/j.quascirev.2016.09.022 |
McDonald, E. V., Pierson, F. B., Flerchinger, G. N., et al., 1996. Application of a Soil-Water Balance Model to Evaluate the Influence of Holocene Climate Change on Calcic Soils, Mojave Desert, California, U. S. A. Geoderma, 74(3/4): 167–192. https://doi.org/10.1016/s0016-7061(96)00070-5 |
McFadden, L. D., Ritter, J. B., Wells, S. G., 1989. Use of Multiparameter Relative-Age Methods for Age Estimation and Correlation of Alluvial Fan Surfaces on a Desert Piedmont, Eastern Mojave Desert, California. Quaternary Research, 32(3): 276–290. https://doi.org/10.1016/0033-5894(89)90094-x |
McFadden, L. D., Wells, S. G., Jercinovich, M. J., 1987. Influences of Eolian and Pedogenic Processes on the Origin and Evolution of Desert Pavements. Geology, 15(6): 504–508. https://doi.org/10.1130/0091-7613(1987)15504:ioeapp>2.0.co;2 doi: 10.1130/0091-7613(1987)15504:ioeapp>2.0.co;2 |
Meng, X., Kooijman, A. M., Temme, A. J. A. M., et al., 2022. The Current and Future Role of Biota in Soil-Landscape Evolution Models. Earth-Science Reviews, 226: 103945. https://doi.org/10.1016/j.earscirev.2022.103945 |
Morello, J. H., 1958. Opera Lilloana: La Provincia Fitogeográfica del Monte. Fundación Miguel Lillo, Tucumán Argentina |
Münsell Color Company, 2000. Munsell Soil Colour Charts, Munsell Color Company, New York |
Navas Romero, A. L., Herrera Moratta, M. A., Martinez Carretero, E., et al., 2019. Caracterización Microtopográfica E Influencia de las Costras Biológicas en la Rugosidad del Suelo en el Centro-Oeste de la Argentina. Boletín de la Sociedad Argentina de Botánica, 54(4): 533–551. https://doi.org/10.31055/1851.2372.v54.n4.24163 |
Nir, D., 1957. The Ratio of Relative and Absolute Altitudes of Mt. Carmel: A Contribution to the Problem of Relief Analysis and Relief Classification. Geographical Review, 47(4): 564–569. https://doi.org/10.2307/211866 |
Ocaña, R. E., Flores, D. G., Alcayaga, G. D., et al., 2017. Geomorphology of Talacasto Alluvial Fan, Precordillera of San Juan, Argentina. Journal of Maps, 13(2): 929–935. https://doi.org/10.1080/17445647.2017.1409138 |
Ocaña, R. E., Flores, D. G., Fernández, A. Y. R., et al., 2023. Geomorfología y Parámetros Superficiales: La Interacción Para el Desarrollo de Suelos en la Precordillera Oriental de San Juan, Argentina. Revista de la Asociación Geológica Argentina, 80(4): 710–720 |
Ocaña, R. E., Flores, D. G., Pittaluga, M. A., et al., 2020. Aplicación de Índices Geomorfométricos, Para el Análisis del Sistema Erosivo Fluvial de la Cuenca Matagusanos. Precordillera de San Juan. Revista de la Asociación Geológica Argentina, 77(1): 174–191 |
Ocaña, R. E., Flores, D. G., Ribas Fernández, Y. A., et al., 2022. V Horizon Development and Factors Associated in Different Geomorphological Units of an Arid-Region Alluvial Fan. Pre-Andes of San Juan, Argentina. Journal of South American Earth Sciences, 118: 103980. https://doi.org/10.1016/j.jsames.2022.103980 |
Ocaña, R. E., Rodríguez, A. I., Flores, D. G., et al., 2019. Caracterización del Sistema Pavimentos del Desierto y Horizontes de Suelos, en el Sector Central de la Provincia de San Juan. Revista de la Asociación Geológica Argentina, 76(2): 115–128 |
Ocaña, R. E., Suvires, G. M., Flores, D. G., 2016. Evolución del Relieve de un Frente Montañoso y Respuesta del Sistema Erosivo Fluvial Ante el Forzamiento Causado por la Actividad Tectónica (Andes Centrales, Provincia de San Juan, Argentina). Revista Mexicana de Ciencias Geológicas, 33(3): 329–341 |
Ortega-Ramírez, J., Maillol, J. M., Bandy, W., et al., 2004. Late Quaternary Evolution of Alluvial Fans in the Playa, el Fresnal Region, Northern Chihuahua Desert, Mexico: Palaeoclimatic Implications. Geofísica Internacional, 43(3): 445–466. https://doi.org/10.22201/igeof.00167169p.2004.43.3.971 |
Pake, C. E., Venable, D. L., 1996. Seed Banks in Desert Annuals: Implications for Persistence and Coexistence in Variable Environments. Ecology, 77(5): 1427–1435. https://doi.org/10.2307/2265540. |
Parker, K. C., 1991. Topography, Substrate, and Vegetation Patterns in the Northern Sonoran Desert. Journal of Biogeography, 18(2): 151–163. https://doi.org/10.2307/2845289 |
Parker, K. C., 1995. Effects of Complex Geomorphic History on Soil and Vegetation Patterns on Arid Alluvial Fans. Journal of Arid Environments, 30(1): 19–39. https://doi.org/10.1016/s0140-1963(95)80036-0 |
Pareta, K., Pareta, U., 2011. Quantitative Morphometric Analysis of a Watershed of Yamuna Basin, India Using ASTER (DEM) Data and GIS. International Journal of Geomatics and Geosciences, 2(1): 248 |
Parolo, G., Rossi, G., Ferrarini, A., 2008. Toward Improved Species Niche Modelling: Arnica Montana in the Alps as a Case Study. Journal of Applied Ecology, 45(5): 1410–1418. https://doi.org/10.1111/j.1365-2664.2008.01516.x |
Passera, C. B., Dalmasso, A. D., Borsetto, O., 1983. Método de"Point Quadrat Modificado". In: Roberto, J. C., ed., Taller Arbusto Forrajeros Para Zonas Áridas y Semiáridas, Subtropical Argentino |
Pelletier, J. D., Cline, M., DeLong, S. B., 2007. Desert Pavement Dynamics: Numerical Modeling and Field-Based Calibration. Earth Surface Processes and Landforms, 32(13): 1913–1927. https://doi.org/10.1002/esp.1500 |
Phillips, D. L., MacMahon, J. A., 1978. Gradient Analysis of a Sonoran Desert Bajada. The Southwestern Naturalist, 23(4): 669–679. https://doi.org/10.2307/3671189 |
Planchon, O., Darboux, F., 2002. A Fast, Simple and Versatile Algorithm to Fill the Depressions of Digital Elevation Models. CATENA, 46(2/3): 159–176. https://doi.org/10.1016/s0341-8162(01)00164-3 |
Poblete, A., Minetti, J., 1989. Los Mesoclimas de San Juan. Primera y Segunda Parte. Informe Técnico 11 del Centro de Investigaciones de San Juan. UNSJ Boletín, 4: 31–32 |
Pucheta, E., Llanos, M., Meglioli, C., et al., 2006. Litter Decomposition in a Sandy Monte Desert of Western Argentina: Influences of Vegetation Patches and Summer Rainfall. Austral Ecology, 31(7): 808–816. https://doi.org/10.1111/j.1442-9993.2006.01635.x |
Quevedo-Robledo, L., Pucheta, E., Ribas-Fernández, Y., 2010. Influences of Interyear Rainfall Variability and Microhabitat on the Germinable Seed Bank of Annual Plants in a Sandy Monte Desert. Journal of Arid Environments, 74(2): 167–172. https://doi.org/10.1016/j.jaridenv.2009.08.002 |
R Development Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. |
Ramos, V. A., Jordan, T. E., Allmendinger, R. W., et al., 1986. Paleozoic Terranes of the Central Argentine-Chilean Andes. Tectonics, 5(6): 855–880. https://doi.org/10.1029/tc005i006p00855 |
Rietkerk, M., Boerlijst, M. C., van Langevelde, F., et al., 2002. Self-Organization of Vegetation in Arid Ecosystems. The American Naturalist, 160(4): 524–530. https://doi.org/10.1086/342078 |
Riley, S. J., de Gloria, S. D., Elliot, R., 1999. Index that Quantifies Topographic Heterogeneity. Intermt. J. Sci. , 5(1–4): 23–27 |
Rocca, J., 1968. Geología de los Valles de Tulum, Ullum y Zonda, Prov. de San Juan, Argentina. Plan Agua Subterránea. CRAS-INA, sede San Juan |
Rodríguez, A. I., 2018. Water Resource Distribution and Tectonics in the Tulum Valley, Western Central Argentina. International Journal of Hydrology, 2(1): 00051. https://doi.org/10.15406/ijh.2018.02.00051 |
Rodríguez, A. I., Ocaña, R. E., Flores, D., et al., 2021. Environment Diagnosis for Land-Use Planning Based on a Tectonic and Multidimensional Methodology. Science of the Total Environment, 800: 149514. https://doi.org/10.1016/j.scitotenv.2021.149514 |
Rodríguez-Moreno, V. M., Bullock, S. H., 2014. Vegetation Response to Hydrologic and Geomorphic Factors in an Arid Region of the Baja California Peninsula. Environmental Monitoring and Assessment, 186(2): 1009–1021. https://doi.org/10.1007/s10661-013-3435-5 |
Rogers, P. G., Zuber, M. T., 1997. Topographic Effects on Flowing Lava-Analysis of Small and Intermediate Scale Perturbations. Lunar and Planetary Science Conference, 28: 193 |
Rossi, B. E., Villagra, P. E., 2003. Effects of Prosopis Flexuosa on Soil Properties and the Spatial Pattern of Understorey Species in Arid Argentina. Journal of Vegetation Science, 14(4): 543–550. https://doi.org/10.1658/1100-9233(2003)014[0543:eopfos]2.0.co;2 |
Satterlund, D. R., Adams, P. W., 1992. Wildland Watershed Management, Wiley, New York |
Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., 2012. Field Book for Describing and Sampling Soils. U. S. Department of Agriculture Natural Resources Conservation Service |
Singh, S., Dubey, A., 1994. Geoenvironmental Planning of Watersheds in India. Chugh Publications, Allahabad |
Smalley, Jr. R., Pujol, J., Regnier, M., et al., 1993. Basement Seismicity beneath the Andean Precordillera Thin-Skinned Thrust Belt and Implications for Crustal and Lithospheric Behavior. Tectonics, 12(1): 63–76. https://doi.org/10.1029/92tc01108 |
Smith, G. A., 2000. Recognition and Significance of Streamflow-Dominated Piedmont Facies in Extensional Basins. Basin Research, 12(3/4): 399–411. https://doi.org/10.1111/j.1365-2117.2000.00125.x |
Soil Survey Staff, 1999. Soil Taxonomy—A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Geoderma, 99(3/4): 336–337. https://doi.org/10.1016/s0016-7061(00)00097-5 |
Solbrig, O. T., Barbour, M. A., Cross, J., et al., 1977. The Strategies and Community Patterns of Desert Plants. Convergent Evolution in Warm Deserts. US/IBP Synthesis, 3: 67–106 |
Springer, M. E., 1958. Desert Pavement and Vesicular Layer of Some Soils of the Desert of the Lahontan Basin, Nevada. Soil Science Society of America Journal, 22(1): 63–66. https://doi.org/10.2136/sssaj1958.03615995002200010017 |
Suriano, J., Limarino, C. O., 2009. Sedimentación Pedemontana en las Nacientes del Río Jáchal y Pampa de Gualilán, Precordillera de San Juan. Revista de la Asociación Geológica Argentina, 65(3): 516–532 |
Suvires, G. M., 2013. Geomorfología Tectónica y Evolución del Relieve en un Sector del Piedemonte Occidental de la Sierra Chica de Zonda, Precordillera Oriental, Argentina. Revista Mexicana de Ciencias Geológicas, 30(2): 324–335 |
Suvires, G. M., 2014. The Paradigm of Paraglacial Megafans of the San Juan River Basin, Central Andes, Argentina. Journal of South American Earth Sciences, 55: 166–172. https://doi.org/10.1016/j.jsames.2014.07.008 |
Swanson, F. J., Kratz, T. K., Caine, N., et al., 1988. Landform Effects on Ecosystem Patterns and Processes. BioScience, 38(2): 92–98. https://doi.org/10.2307/1310614 |
Thomas, D. S. G., 2011. Arid Zone Geomorphology: Process, Form, and Change in Drylands. John Wiley & Sons, Chichester |
Tromble, J. M., Renard, K. G., Thatcher, A. P., 1974. Infiltration for Three Rangeland Soil-Vegetation Complexes. Journal of Range Management, 27(4): 318–321. https://doi.org/10.2307/3896834 |
Turk, J. K., Graham, R. C., 2011. Distribution and Properties of Vesicular Horizons in the Western United States. Soil Science Society of America Journal, 75(4): 1449–1461. https://doi.org/10.2136/sssaj2010.0445 |
Turk, J. K., Graham, R. C., 2022. Microbial Activity and Temperature Change Affect Growth of Vesicular Pores. Geoderma, 423: 115957. https://doi.org/10.1016/j.geoderma.2022.115957 |
Val, P., Venerdini, A. L., Ouimet, W., et al., 2018. Tectonic Control of Erosion in the Southern Central Andes. Earth and Planetary Science Letters, 482: 160–170. https://doi.org/10.1016/j.epsl.2017.11.004 |
Valiente-Banuet, A., Ezcurra, E., 1991. Shade as a Cause of the Association between the Cactus Neobuxbaumia Tetetzo and the Nurse Plant Mimosa Luisana in the Tehuacan Valley, Mexico. The Journal of Ecology, 79(4): 961–971. https://doi.org/10.2307/2261091. |
van der Meij, W. M., Temme, A. J. A. M., Lin, H. S., et al., 2018. On the Role of Hydrologic Processes in Soil and Landscape Evolution Modeling: Concepts, Complications and Partial Solutions. Earth-Science Reviews, 185: 1088–1106. https://doi.org/10.1016/j.earscirev.2018.09.001 |
Venerdini, A., Sánchez, G., Alvarado, P., et al., 2016. Nuevas Determinaciones de Velocidades de Ondas P y Ondas S Para la Corteza Sísmica del Terreno Cuyania en el Retroarco Andino. Revista Mexicana de Ciencias Geológicas, 33(1): 59–71 |
Ventra, D., Clarke, L. E., 2018. Geology and Geomorphology of Alluvial and Fluvial Fans: Current Progress and Research Perspectives. In: Ventra, D., Clarke, L. E., eds., Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives. Geological Society, London, Special Publications, 440: 1–22. |
Villagra, P. E., Cony, M. A., Mantován, N. G., et al., 2004. Ecología y Manejo de los Algarrobales de la Provincia Fitogeográfica del Monte. Ecología y Manejo de Bosques Nativos de Argentina, 2–32 |
Villagra, P. E., Defossé, G. E., del Valle, H. F., et al., 2009. Land Use and Disturbance Effects on the Dynamics of Natural Ecosystems of the Monte Desert: Implications for Their Management. Journal of Arid Environments, 73(2): 202–211. https://doi.org/10.1016/j.jaridenv.2008.08.002 |
Villar, A. G., 1996. Abanicos Aluviales: Aportación Teórica a sus Aspectos más Significativos. Cuatern. Geomorfol. , 10(3–4): 77–124 |
Walk, J., Stauch, G., Bartz, M., et al., 2019. Geomorphology of the Coastal Alluvial Fan Complex Guanillos, Northern Chile. Journal of Maps, 15(2): 436–447. https://doi.org/10.1080/17445647.2019.1611499 |
Walsh, R. P. D., Voigt, P. J., 1977. Vegetation Litter: An Underestimated Variable in Hydrology and Geomorphology. Journal of Biogeography, 4(3): 253–274. https://doi.org/10.2307/3038060 |
Walsh, S. J., Butler, D. R., 1989. Spatial Pattern of Snow Avalanche Path Location and Morphometry, Glacier National Park, Montana. Proceedings of the GIS/LIS 89 Annual Conference and Exposition, 1: 286–294 |
Wells, S. G., Harvey, A. M., 1987. Sedimentologic and Geomorphic Variations in Storm-Generated Alluvial Fans, Howgill Fells, Northwest England. Geological Society of America Bulletin, 98(2): 182–198. https://doi.org/10.1130/0016-7606(1987)98182:sagvis>2.0.co;2 doi: 10.1130/0016-7606(1987)98182:sagvis>2.0.co;2 |
Wondzell, S. M., Cunningham, G. L., Bachelet, D., 1996. Relationships between Landforms, Geomorphic Processes, and Plant Communities on a Watershed in the Northern Chihuahuan Desert. Landscape Ecology, 11(6): 351–362. https://doi.org/10.1007/bf02447522 |
Xin, Y., Xie, Y., Liu, Y. X., et al., 2016. Residue Cover Effects on Soil Erosion and the Infiltration in Black Soil under Simulated Rainfall Experiments. Journal of Hydrology, 543: 651–658. https://doi.org/10.1016/j.jhydrol.2016.10.036 |
Zapata, T. R., Allmendinger, R. W., 1996. Thrust-Front Zone of the Precordillera, Argentina: A Thick-Skinned Triangle Zone. AAPG Bulletin, 80(3): 359–381. https://doi.org/10.1306/64ed87e6-1724-11d7-8645000102c1865d |
Zhang, F. F., Zhang, H. Y., Evans, M. R., et al., 2017. Vegetation Patterns Generated by a Wind Driven Sand-Vegetation System in Arid and Semi-Arid Areas. Ecological Complexity, 31: 21–33. https://doi.org/10.1016/j.ecocom.2017.02.005 |
Zhang, Y. D., Li, Z. K., Ge, W., et al., 2021. Impact of Extreme Floods on Plants Considering Various Influencing Factors Downstream of Luhun Reservoir, China. Science of the Total Environment, 768: 145312. https://doi.org/10.1016/j.scitotenv.2021.145312 |
Zhang, Y. H., Zhang, M. X., Niu, J. Z., et al., 2016. Rock Fragments and Soil Hydrological Processes: Significance and Progress. CATENA, 147: 153–166. https://doi.org/10.1016/j.catena.2016.07.012 |
Zhou, Q., Liu, X., 2004. Analysis of Errors of Derived Slope and Aspect Related to DEM Data Properties. Computers & Geosciences, 30(4): 369–378 (in Chinese with English Abstract) |