Citation: | Qian Chen, Weichen Sun, Suping Wu, Zongjun Yin. Structural and Chemical Characterization of the Ediacaran Embryo-Like Fossils via the Combination of 3D-XRM and FIB-SEM Approaches. Journal of Earth Science, 2024, 35(4): 1204-1214. doi: 10.1007/s12583-024-0008-1 |
The three-dimensional (3D) morphology, anatomy, and
Chen, J. Y., Bottjer, D. J., Davidson, E. H., et al., 2006. Phosphatized Polar Lobe-Forming Embryos from the Precambrian of Southwest China. Science, 312(5780): 1644–1646. https://doi.org/10.1126/science.1125964 |
Chen, J. Y., Bottjer, D. J., Davidson, E. H., et al., 2009. Phase Contrast Synchrotron X-Ray Microtomography of Ediacaran (Doushantuo) Metazoan Microfossils: Phylogenetic Diversity and Evolutionary Implications. Precambrian Research, 173(1/2/3/4): 191–200. https://doi.org/10.1016/j.precamres.2009.04.004 |
Chen, L., Xiao, S. H., Pang, K., et al., 2014. Cell Differentiation and Germ–Soma Separation in Ediacaran Animal Embryo-Like Fossils. Nature, 516(7530): 238–241. https://doi.org/10.1038/nature13766 |
Chen, S., Paunesku, T., Yuan, Y., et al., 2015. The Bionanoprobe: Synchrotron-Based Hard X-Ray Fluorescence Microscopy for 2D/3D Trace Element Mapping. Microscopy Today, 23(3): 26–29. https://doi.org/10.1017/S1551929515000401 |
de Jonge, M. D., Holzner, C., Baines, S. B., et al., 2010. Quantitative 3D Elemental Microtomography of Cyclotella Meneghiniana at 400-nm Resolution. Proceedings of the National Academy of Sciences of the United States of America, 107(36): 15676–15680. https://doi.org/10.1073/pnas.1001469107 |
Donoghue, P. C. J., 2007. Palaeontology: Embryonic Identity Crisis. Nature, 445(7124): 155–156. https://doi.org/10.1038/nature05520 |
Donoghue, P. C. J., Bengtson, S., Dong, X. P., et al., 2006. Synchrotron X-Ray Tomographic Microscopy of Fossil Embryos. Nature, 442(7103): 680–683. https://doi.org/10.1038/nature04890 |
Dunlop, J. A., Wirth, S., Penney, D., et al., 2012. A Minute Fossil Phoretic Mite Recovered by Phase-Contrast X-Ray Computed Tomography. Biology Letters, 8(3): 457–460. https://doi.org/10.1098/rsbl.2011.0923 |
Groso, A., Abela, R., Stampanoni, M., 2006. Implementation of a Fast Method for High Resolution Phase Contrast Tomography. Optics Express, 14(18): 8103–8110. https://doi.org/10.1364/oe.14.008103 |
Gu, L. X., Li, J. H., 2020. The Focused Ion Beam (FIB) Technology and Its Applications for Earth and Planetary Sciences. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1119–1140 (in Chinese with English Abstract) |
Hagadorn, J. W., Xiao, S. H., Donoghue, P. C. J., et al., 2006. Cellular and Subcellular Structure of Neoproterozoic Animal Embryos. Science, 314(5797): 291–294. https://doi.org/10.1126/science.1133129 |
Huldtgren, T., Cunningham, J. A., Yin, C. Y., et al., 2011. Fossilized Nuclei and Germination Structures Identify Ediacaran "Animal Embryos" as Encysting Protists. Science, 334(6063): 1696–1699. https://doi.org/10.1126/science.1209537 |
Li, J. H., Li, Q. L., Zhao, L., et al., 2022. Rapid Screening of Zr-Containing Particles from Chang'e-5 Lunar Soil Samples for Isotope Geochronology: Technical Roadmap for Future Study. Geoscience Frontiers, 13(3): 101367. https://doi.org/10.1016/j.gsf.2022.101367 |
Li, J. H., Pan, Y. X., 2015. Applications of Transmission Electron Microscopy in the Earth Sciences. Scientia Sinica Terrae, 45: 1359–1382. https://doi.org/10.1360/zd2015-45-9-1359 (in Chinese with English Abstract) |
Li, J. H., Pei, R., Teng, F. F., et al., 2021. Micro-XRF Study of the Troodontid Dinosaur Jianianhualong Tengi Reveals New Biological and Taphonomical Signals. Atomic Spectroscopy, 42(1): 1–11. https://doi.org/10.46770/as.2021.01.001 |
Luo, Y. Q., Paunesku, T., Antipova, O., et al., 2022. A Reliable Workflow for Improving Nanoscale X-Ray Fluorescence Tomographic Analysis on Nanoparticle-Treated HeLa Cells. Metallomics, 14(9): mfac025. https://doi.org/10.1093/mtomcs/mfac025 |
Mader, K., Marone, F., Hintermüller, C., et al., 2011. High-Throughput Full-Automatic Synchrotron-Based Tomographic Microscopy. Journal of Synchrotron Radiation, 18(Pt 2): 117–124. https://doi.org/10.1107/S0909049510047370 |
Miller, M. K., Forbes, R. G., 2009. Atom Probe Tomography. Materials Characterization, 60(6): 461–469. https://doi.org/10.1016/j.matchar.2009.02.007 |
Pan, Y. H., Hu, L., Zhao, T., 2019. Applications of Chemical Imaging Techniques in Paleontology. National Science Review, 6(5): 1040–1053. https://doi.org/10.1093/nsr/nwy107 |
Reymond, C. E., Hallock, P., Westphal, H., 2022. Preface for "Tropical Large Benthic Foraminifera: Adaption, Extinction, and Radiation". Journal of Earth Science, 33(6): 1339–1347. https://doi.org/10.1007/s12583-021-1590-0 |
Rigo, M., Golding, M. L., Jiang, H. S., 2021. Preface. Journal of Earth Science, 32(3): 471–473. https://doi.org/10.1007/s12583-021-1309-2 |
Stampanoni, M., Borchert, G., Wyss, P., et al., 2002. High Resolution X-Ray Detector for Synchrotron-Based Microtomography. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 491(1/2): 291–301. https://doi.org/10.1016/s0168-9002(02)01167-1 |
Sun, W. C., Yin, Z. J., Cunningham, J. A., et al., 2020. Nucleus Preservation in Early Ediacaran Weng'an Embryo-Like Fossils, Experimental Taphonomy of Nuclei and Implications for Reading the Eukaryote Fossil Record. Interface Focus, 10(4): 20200015. https://doi.org/10.1098/rsfs.2020.0015 |
Sun, W. C., Yin, Z. J., Liu, P. J., et al., 2021. Ultrastructure and in-situ Chemical Characterization of Intracellular Granules of Embryo-Like Fossils from the Early Ediacaran Weng'an Biota. PalZ, 95(4): 611–621. https://doi.org/10.1007/s12542-021-00597-0 |
Tafforeau, P., Boistel, R., Boller, E., et al., 2006. Applications of X-Ray Synchrotron Microtomography for Non-Destructive 3D Studies of Paleontological Specimens. Applied Physics A, 83(2): 195–202. https://doi.org/10.1007/s00339-006-3507-2 |
Wirth, R., 2009. Focused Ion Beam (FIB) Combined with SEM and TEM: Advanced Analytical Tools for Studies of Chemical Composition, Microstructure and Crystal Structure in Geomaterials on a Nanometre Scale. Chemical Geology, 261(3/4): 217–229. https://doi.org/10.1016/j.chemgeo.2008.05.019 |
Wu, S. P., Yin, Z. J., Sun, W. C., et al., 2018. High-Resolution Tomography of Millimeter- to Centimeter-Sized Fossils Using Three-Dimensional X-Ray Microscopy. Acta Palaeontologica Sinica, 57(2): 157–167. https://doi.org/10.19800/j.cnki.aps.2018.02.002 (in Chinese with English Abstract) |
Xiao, S. H., Zhang, Y., Knoll, A. H., 1998. Three-Dimensional Preservation of Algae and Animal Embryos in a Neoproterozoic Phosphorite. Nature, 391(6667): 553–558. https://doi.org/10.1038/35318 |
Yang, C., Rooney, A. D., Condon, D. J., et al., 2021. The Tempo of Ediacaran Evolution. Science Advances, 7(45): eabi9643. https://doi.org/10.1126/sciadv.abi9643 |
Yin, Z. J., Cunningham, J. A., Vargas, K., et al., 2017. Nuclei and Nucleoli in Embryo-Like Fossils from the Ediacaran Weng'an Biota. Precambrian Research, 301: 145–151. https://doi.org/10.1016/j.precamres.2017.08.009 |
Yin, Z. J., Li, G., Zhu, M. Y., 2014. Three Dimensional Nondestructive Imaging Techniques for the Microfossils: A Comparison. Acta Micropalaeontologica Sinica, 31(4): 440–452 (in Chinese with English Abstract) |
Yin, Z. J., Lu, J., 2019. Virtual Palaeontology: When Fossils Illuminated by X-Ray. Palaeoworld, 28(4): 425–428. https://doi.org/10.1016/j.palwor.2019.10.001 |
Yin, Z. J., Sun, W. C., Liu, P. J., et al., 2020. Developmental Biology of Helicoforamina Reveals Holozoan Affinity, Cryptic Diversity, and Adaptation to Heterogeneous Environments in the Early Ediacaran Weng'an Biota (Doushantuo Formation, South China). Science Advances, 6(24): eabb0083. https://doi.org/10.1126/sciadv.abb0083 |
Yin, Z. J., Sun, W. C., Liu, P. J., et al., 2022. Diverse and Complex Developmental Mechanisms of Early Ediacaran Embryo-Like Fossils from the Weng'an Biota, Southwest China. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1847): 20210032. https://doi.org/10.1098/rstb.2021.0032 |
Yin, Z. J., Vargas, K., Cunningham, J., et al., 2019. The Early Ediacaran Caveasphaera Foreshadows the Evolutionary Origin of Animal-Like Embryology. Current Biology, 29(24): 4307–4314.e2. https://doi.org/10.1016/j.cub.2019.10.057 |
Yin, Z. J., Zhu, M. Y., Bottjer, D. J., et al., 2016. Meroblastic Cleavage Identifies some Ediacaran Doushantuo (China) Embryo-Like Fossils as Metazoans. Geology, 44(9): 735–738. https://doi.org/10.1130/g38262.1 |
Yin, Z. J., Zhu, M. Y., Tafforeau, P., et al., 2013. Early Embryogenesis of Potential Bilaterian Animals with Polar Lobe Formation from the Ediacaran Weng'an Biota, South China. Precambrian Research, 225: 44–57. https://doi.org/10.1016/j.precamres.2011.08.011 |
Yin, Z. J., Zhu, M. Y., Xiao, T. Q., 2009. Application of Synchrotron X-Ray Microtomography in Paleontology for Nondestructive 3-D Imaging of Fossil Specimens. Physics, 38(7): 504–510. https://doi.org/10.3321/j.issn:0379-4148.2009.07.007 (in Chinese with English Abstract) |
Zhang, Y., Chang, S., Feng, Q. L., et al., 2023. A Diverse Microfossil Assemblage from the Ediacaran–Cambrian Deep-Water Chert of the Liuchapo Formation in Guizhou Province, South China. Journal of Earth Science, 34(2): 398–408. https://doi.org/10.1007/s12583-021-1485-0 |
Zhou, C. M., Li, X. H., Xiao, S. H., et al., 2017. A New SIMS Zircon U-Pb Date from the Ediacaran Doushantuo Formation: Age Constraint on the Weng'an Biota. Geological Magazine, 154(6): 1193–1201. https://doi.org/10.1017/s0016756816001175 |