Alcamán-Arias, M. E., Pedrós-Alió, C., Tamames, J., et al., 2018. Diurnal changes in active carbon and nitrogen pathways along the temperature gradient in Porcelana hot spring microbial mat. Frontiers in Microbiology, 9: 2353. https://doi.org/10.3389/fmicb.2018.02353 |
Alcamán, M. E., Alcorta, J., Bergman, B., et al., 2017. Physiological and gene expression responses to nitrogen regimes and temperatures in Mastigocladus sp. strain CHP1, a predominant thermotolerant cyanobacterium of hot springs. Systematic and Applied Microbiology, 40(2): 102-113. https://doi.org/10.1016/j.syapm.2016.11.007 |
Aoshima, M., Ishii, M. ,Igarashi, Y., 2004. A novel enzyme, citryl‐CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK‐6. Molecular Microbiology, 52(3): 763-770. https://doi.org/10.1111/j.1365-2958.2004.04010.x |
Badhai, J., Ghosh, T. S. ,Das, S. K., 2015. Taxonomic and functional characteristics of microbial communities and their correlation with physicochemical properties of four geothermal springs in Odisha, India. Frontiers in Microbiology, 6: 1166. https://doi.org/10.3389/fmicb.2015.01166 |
Bayer, K., Moitinho-Silva, L., Brümmer, F., et al., 2014. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiology Ecology, 90(3): 832-843. https://doi.org/10.1111/1574-6941.12441 |
Bennett, A. C., Murugapiran, S. K., Kees, E. D., et al., 2022. Temperature and geographic location impact the distribution and diversity of photoautotrophic gene variants in alkaline Yellowstone hot springs. Microbiology Spectrum, 10(3): e01465-01421. https://doi.org/10.1128/spectrum.01465-21 |
Chen, S., Peng, X., Xu, H., et al., 2016. Nitrification of archaeal ammonia oxidizers in a high-temperature hot spring. Biogeosciences, 13(7): 2051-2060. https://doi.org/10.5194/bg-13-2051-2016 |
De Anda, V., Chen, L.-X., Dombrowski, N., et al., 2021. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nature Communications, 12(1): 2404. https://doi.org/10.1038/s41467-021-22736-6 |
De Hoon, M. J., Imoto, S., Nolan, J., et al., 2004. Open source clustering software. Bioinformatics, 20(9): 1453-1454. https://doi.org/10.1093/bioinformatics/bth078 |
De León, K. B., Gerlach, R., Peyton, B. M., et al., 2013. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park. Frontiers in Microbiology, 4: 330. https://doi.org/10.3389/fmicb.2013.00330 |
Francheteau, J., Needham, H. D., Choukroune, P., et al., 1979. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature, 277(5697): 523-528. https://doi.org/10.1038/277523a0 |
Hügler, M. ,Sievert, S. M., 2011. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Science, 3: 261-289. https://doi.org/10.1146/annurev-marine-120709-142712 |
Hamilton, T. L., Koonce, E., Howells, A., et al., 2014. Competition for ammonia influences the structure of chemotrophic communities in geothermal springs. Applied and Environmental Microbiology, 80(2): 653-661. https://doi.org/10.1128/AEM.02577-13 |
Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., et al., 2010. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001): 204-208. https://doi.org/10.1126/science.1195979 |
He, Z., Deng, Y., Van Nostrand, J. D., et al., 2010. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. The ISME Journal, 4(9): 1167-1179. https://doi.org/10.1038/ismej.2010.46 |
He, Z., Xiong, J., Kent, A. D., et al., 2014. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. The ISME Journal, 8(3): 714-726. https://doi.org/10.1038/ismej.2013.177 |
Hou, W., Wang, S., Dong, H., et al., 2013. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PloS One, 8(1): e53350. https://doi.org/10.1371/journal.pone.0053350 |
Hua, Z.-S., Qu, Y.-N., Zhu, Q., et al., 2018. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nature Communications, 9(1): 2832. https://doi.org/10.1038/s41467-018-05284-4 |
Hua, Z.-S., Wang, Y.-L., Evans, P. N., et al., 2019. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nature Communications, 10(1): 1-11. https://doi.org/10.1038/s41467-019-12574-y |
Jiang, H., Huang, Q., Dong, H., et al., 2010. RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Applied and Environmental Microbiology, 76(13): 4538-4541. https://doi.org/10.1128/AEM.00143-10 |
Jiang, H., Huang, L., Yang, J., et al., 2018. A microbial analysis primer for biogeochemists. Environmental Geochemistry, Elsevier. 599-609 |
Larimer, F. W., Chain, P., Hauser, L., et al., 2004. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22(1): 55-61. https://doi.org/10.1038/nbt923 |
Li, H., Yang, Q., Li, J., et al., 2015. The impact of temperature on microbial diversity and AOA activity in the Tengchong Geothermal Field, China. Scientific Reports, 5(1): 17056. https://doi.org/10.1038/srep17056 |
Li, J.,Kusky, T. M., 2007. World's largest known Precambrian fossil black smoker chimneys and associated microbial vent communities, North China: Implications for early life. Gondwana Research, 12(1-2): 84-100. https://doi.org/10.1016/j.gr.2006.10.024 |
Li, J., Zhang, Z., Liu, T., et al., 2022. Bacterial and archaeal water and sediment communities of two hot spring streams in Tengchong, Yunnan Province, China. Diversity, 14(5): 381. https://doi.org/10.3390/d14050381 |
Li, Z., Tang, Z., Song, Z., et al., 2022. Variations and controlling factors of soil denitrification rate. Global change biology, 28(6): 2133-2145. https://doi.org/10.1111/gcb.16066 |
Lin, K.-H., Liao, B.-Y., Chang, H.-W., et al., 2015. Metabolic characteristics of dominant microbes and key rare species from an acidic hot spring in Taiwan revealed by metagenomics. BMC Genomics, 16: 1-16. https://doi.org/10.1186/s12864-015-2230-9 |
Lu, Z., He, Z., Parisi, V. A., et al., 2012. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer. Environmental Science & Technology, 46(11): 5824-5833. https://doi.org/10.1021/es300478j |
Luvizotto, D. M., Araujo, J. E., Silva, M. D. C. P., et al., 2018. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. Anais da Academia Brasileira de Ciências, 91 https://doi.org/10.1590/0001-3765201820180373 |
Ma, L., She, W., Wu, G., et al., 2021. Influence of temperature and sulfate concentration on the sulfate/sulfite reduction prokaryotic communities in the tibetan hot springs. Microorganisms, 9(3): 583. https://doi.org/10.3390/microorganisms9030583 |
Meng, S., Peng, T., Liu, X., et al., 2022. Ecological role of bacteria involved in the biogeochemical cycles of mangroves based on functional genes detected through GeoChip 5.0. Msphere, 7(1): e00936-00921. https://doi.org/10.1128/msphere.00936-21 |
Nakagawa, S.,Takai, K., 2008. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiology Ecology, 65(1): 1-14. https://doi.org/10.1111/j.1574-6941.2008.00502.x |
Nishiyama, E., Higashi, K., Mori, H., et al., 2018. The relationship between microbial community structures and environmental parameters revealed by metagenomic analysis of hot spring water in the Kirishima Area, Japan. Frontiers in Bioengineering and Biotechnology, 6: 202. https://doi.org/10.3389/fbioe.2018.00202 |
Panda, A. K., Bisht, S. S., Rana, M., et al., 2018. Biotechnological potential of thermophilic actinobacteria associated With Hot Springs. New and future developments in microbial biotechnology and bioengineering, Elsevier. 155-164 |
Paul, S., Cortez, Y., Vera, N., et al., 2016. Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru. Genomics Data, 9: 63-66. https://doi.org/10.1016/j.gdata.2016.06.013 |
Power, J. F., Carere, C. R., Lee, C. K., et al., 2018. Microbial biogeography of 925 geothermal springs in New Zealand. Nature communications, 9(1): 1-12. https://doi.org/10.1038/s41467-018-05020-y |
Preston, L. J.,Genge, M. J., 2010. The Rhynie Chert, Scotland, and the search for life on Mars. Astrobiology, 10(5): 549-560. https://doi.org/10.1089/ast.2008.0321 |
Qi, Y.-L., Evans, P. N., Li, Y.-X., et al., 2021. Comparative genomics reveals thermal adaptation and a high metabolic diversity in “Candidatus Bathyarchaeia”. Msystems, 6(4): 10.1128/msystems. 00252-00221. https://doi.org/10.1128/msystems.00252-21 |
Reuther, J.,Wohlleben, W., 2006. Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. Microbial Physiology, 12(1-2): 139-146. https://doi.org/10.1159/000096469 |
Rhee, S.-K., Liu, X., Wu, L., et al., 2004. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Applied and Environmental Microbiology, 70(7): 4303-4317. https://doi.org/10.1128/AEM.70.7.4303-4317.2004 |
Sadeepa, D., Sirisena, K.,Manage, P. M., 2022. Diversity of microbial communities in hot springs of Sri Lanka as revealed by 16S rRNA gene high-throughput sequencing analysis. Gene, 812: 146103. https://doi.org/10.1016/j.gene.2021.146103 |
Sharma, N., Kumar, J., Abedin, M., et al., 2020. Metagenomics revealing molecular profiling of community structure and metabolic pathways in natural hot springs of the Sikkim Himalaya. BMC Microbiology, 20(1): 1-17. https://doi.org/10.1186/s12866-020-01923-3 |
Sharp, J., Beauregard, A., Burdige, D., et al., 2004. A direct instrument comparison for measurement of total dissolved nitrogen in seawater. Marine Chemistry, 84(3-4): 181-193. https://doi.org/10.1016/j.marchem.2003.07.003 |
Sharp, J. H., Benner, R., Bennett, L., et al., 1993. Re‐evaluation of high temperature combustion and chemical oxidation measurements of dissolved organic carbon in seawater. Limnology and Oceanography, 38(8): 1774-1782. https://doi.org/10.4319/lo.1993.38.8.1774 |
Silver, D. M., Kötting, O.,Moorhead, G. B., 2014. Phosphoglucan phosphatase function sheds light on starch degradation. Trends in Plant Science, 19(7): 471-478. https://doi.org/10.1016/j.tplants.2014.01.008 |
Song, Z.-Q., Wang, L., Liang, F., et al., 2022. nifH gene expression and diversity in geothermal springs of Tengchong, China. Frontiers in Microbiology, 13: 980924. https://doi.org/10.3389/fmicb.2022.980924 |
Song, Z.-Q., Wang, L.,Ma, Y., 2024. Hydrochemistry predominantly shapes the unique nitrogen-fixing bacterial communities in Tibetan hot springs. Journal of Earth Science, in press |
Song, Z. Q., Wang, F. P., Zhi, X. Y., et al., 2013. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, C hina. Environmental Microbiology, 15(4): 1160-1175. https://doi.org/10.1111/1462-2920.12025 |
Thiel, V., Wood, J. M., Olsen, M. T., et al., 2016. The dark side of the mushroom spring microbial mat: life in the shadow of chlorophototrophs. I. Microbial diversity based on 16S rRNA gene amplicons and metagenomic sequencing. Frontiers in Microbiology, 7: 919. https://doi.org/10.3389/fmicb.2016.00919 |
Tiquia, S. M., Wu, L., Chong, S. C., et al., 2004. Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques, 36(4): 664-675. https://doi.org/10.2144/04364RR02 |
Van Nostrand, J. D., Wu, W. M., Wu, L., et al., 2009. GeoChip‐based analysis of functional microbial communities during the reoxidation of a bioreduced uranium‐contaminated aquifer. Environmental Microbiology, 11(10): 2611-2626. https://doi.org/10.1111/j.1462-2920.2009.01986.x |
Waldron, P. J., Wu, L., Nostrand, J. D. V., et al., 2009. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. Environmental Science & Technology, 43(10): 3529-3534. https://doi.org/10.1021/es803423p |
Wang, S., Hou, W., Dong, H., et al., 2013. Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS One, 8(5): e62901. https://doi.org/10.1371/journal.pone.0099751 |
Wu, G., Huang, L., Jiang, H., et al., 2017. Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring. Frontiers in Microbiology, 8: 1336. https://doi.org/10.3389/fmicb.2017.01336 |
Wu, L., Liu, X., Schadt, C. W., et al., 2006. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology, 72(7): 4931-4941. https://doi.org/10.1128/AEM.02738-05 |
Wu, L., Kellogg, L., Devol, A. H., et al., 2008. Microarray-based characterization of microbial community functional structure and heterogeneity in marine sediments from the Gulf of Mexico. Applied and Environmental Microbiology, 74(14): 4516-4529. https://doi.org/10.1128/AEM.02751-07 |
Xie, W., Wang, F., Guo, L., et al., 2011. Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries. The ISME Journal, 5(3): 414-426. https://doi.org/10.1038/ismej.2010.144 |
Xu, M., Wu, W.-M., Wu, L., et al., 2010. Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. The ISME Journal, 4(8): 1060-1070. https://doi.org/10.1038/ismej.2010.31 |
Zhang, Y., Lu, Z., Liu, S., et al., 2013. Geochip-based analysis of microbial communities in alpine meadow soils in the Qinghai-Tibetan plateau. BMC Microbiology, 13: 1-9. https://doi.org/10.1186/1471-2180-13-72 |
Zhang, Y., Wu, G., Jiang, H., et al., 2018. Abundant and rare microbial biospheres respond differently to environmental and spatial factors in Tibetan hot springs. Frontiers in Microbiology, 9: 2096. https://doi.org/10.3389/fmicb.2018.02096 |
Zhang, Y., Liu, T., Li, M.-M., et al., 2023. Hot spring distribution and survival mechanisms of thermophilic comammox Nitrospira. The ISME Journal: 1-11. https://doi.org/10.1038/s41396-023-01409-w |
Zhou, J., Bruns, M. A.,Tiedje, J. M., 1996. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2): 316-322. https://doi.org/10.1128/aem.62.2.316-322.1996 |
Zierenberg, R. A., Adams, M. W.,Arp, A. J., 2000. Life in extreme environments: Hydrothermal vents. Proceedings of the National Academy of Sciences of the United States of America, 97(24): 12961-12962. https://doi.org/10.1073/pnas.210395997 |