Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 5
Oct 2024
Turn off MathJax
Article Contents
Bingchen Li, Changdong Li, Yong Liu, Jie Tan, Pengfei Feng, Wenmin Yao. Harnessing Distributed Deep Learning for Landslide Displacement Prediction: A Multi-Model Collaborative Approach Amidst Data Silos. Journal of Earth Science, 2024, 35(5): 1770-1775. doi: 10.1007/s12583-024-0029-9
Citation: Bingchen Li, Changdong Li, Yong Liu, Jie Tan, Pengfei Feng, Wenmin Yao. Harnessing Distributed Deep Learning for Landslide Displacement Prediction: A Multi-Model Collaborative Approach Amidst Data Silos. Journal of Earth Science, 2024, 35(5): 1770-1775. doi: 10.1007/s12583-024-0029-9

Harnessing Distributed Deep Learning for Landslide Displacement Prediction: A Multi-Model Collaborative Approach Amidst Data Silos

doi: 10.1007/s12583-024-0029-9
More Information
  • Corresponding author: Jie Tan, tanjie@cug.edu.cn
  • Received Date: 05 May 2024
  • Accepted Date: 05 Jun 2024
  • Issue Publish Date: 30 Oct 2024
  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S4; Tables S1–S2) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0029-9.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ben-Nun, T., Hoefler, T., 2019. Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis. ACM Computing Surveys, 52(4): 65. https://doi.org/10.1145/3320060
    Chen, M. Z., Gunduz, D., Huang, K. B., et al., 2021. Distributed Learning in Wireless Networks: Recent Progress and Future Challenges. IEEE Journal on Selected Areas in Communications, 39(12): 3579–3605. https://doi.org/10.1109/jsac.2021.3118346
    Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657–1674 (in Chinese with English Abstract)
    Fang, K., Tang, H. M., Su, X. X., et al., 2020. Geometry and Maximum Width of a Stable Slope Considering the Arching Effect. Journal of Earth Science, 31(6): 1087–1096. https://doi.org/10.1007/s12583-020-1052-0
    Feng, P. F., Li, C. D., Zhang, S., et al., 2024. Integrating Shipborne Images with Multichannel Deep Learning for Landslide Detection. Journal of Earth Science, 35(1): 296–300. https://doi.org/10.1007/s12583-023-1957-5
    Gaonkar, B., Hovda, D., Martin, N., et al., 2016. Deep Learning in the Small Sample Size Setting: Cascaded Feed Forward Neural Networks for Medical Image Segmentation Medical Imaging 2016: Computer-Aided Diagnosis, SPIE Proceedings. San Diego, California, USA. SPIE. https://doi.org/10.1117/12.2216555
    Guo, Z. Z., Chen, L. X., Gui, L., et al., 2020. Landslide Displacement Prediction Based on Variational Mode Decomposition and WA-GWO-BP Model. Landslides, 17(3): 567–583. https://doi.org/10.1007/s10346-019-01314-4
    Gupta, O., Raskar, R., 2018. Distributed Learning of Deep Neural Network over Multiple Agents. Journal of Network and Computer Applications, 116: 1–8. https://doi.org/10.1016/j.jnca.2018.05.003
    Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696–1710 (in Chinese with English Abstract)
    Huang, F. M., Huang, J. S., Jiang, S. H., et al., 2017. Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine. Engineering Geology, 218: 173–186. https://doi.org/10.1016/j.enggeo.2017.01.016
    Kamran, M., Hu, X. W., Hussain, M. A., et al., 2023. Dynamic Response and Deformation Behavior of Kadui-2 Landslide Influenced by Reservoir Impoundment and Rainfall, Baoxing, China. Journal of Earth Science, 34(3): 911–923. https://doi.org/10.1007/s12583-022-1649-6
    Li, C. D., Criss, R. E., Fu, Z. Y., et al., 2021. Evolution Characteristics and Displacement Forecasting Model of Landslides with Stair-Step Sliding Surface along the Xiangxi River, Three Gorges Reservoir Region, China. Engineering Geology, 283: 105961. https://doi.org/10.1016/j.enggeo.2020.105961
    Li, J. Y., Zhang, C. B., Zhao, Y., et al., 2022. Federated Learning-Based Short-Term Building Energy Consumption Prediction Method for Solving the Data Silos Problem. Building Simulation, 15(6): 1145–1159. https://doi.org/10.1007/s12273-021-0871-y
    Long, J. J., Li, C. D., Liu, Y., et al., 2022. A Multi-Feature Fusion Transfer Learning Method for Displacement Prediction of Rainfall Reservoir-Induced Landslide with Step-Like Deformation Characteristics. Engineering Geology, 297: 106494. https://doi.org/10.1016/j.enggeo.2021.106494
    Long, Y. J., Li, W. L., Huang, R. Q., et al., 2023. A Comparative Study of Supervised Classification Methods for Investigating Landslide Evolution in the Mianyuan River Basin, China. Journal of Earth Science, 34(2): 316–329. https://doi.org/10.1007/s12583-021-1525-9
    Ma, S., Shao, X., Xu, C., 2023. Landslide Susceptibility Mapping in Terms of the Slope-Unit or Raster-Unit, Which is Better?. Journal of Earth Science, 34(2): 386–397. https://doi.org/10.1007/s12583-021-1407-1
    Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China–Lessons Learned from Decades of Research. Engineering Geology, 261: 105267. https://doi.org/10.1016/j.enggeo.2019.105267
    Tang, Z., Shi, S., Wang, W., et al., 2020. Communication-Efficient Distributed Deep Learning: A Comprehensive Survey. arXiv Preprint arXiv: 2003.06307. https://doi.org/10.48550/arXiv.2003.06307
    Umeda, K., Nishitsuji, T., Asaka, T., et al., 2021. Distributed Processing Method for Deep Learning in Wireless Sensor Networks. IEICE Communications Express, 10(8): 505–510. https://doi.org/10.1587/comex.2021etl0029
    Wadkar, D. V., Karale, R. S., Wagh, M. P., 2022. Application of Cascade Feed Forward Neural Network to Predict Coagulant Dose. Journal of Applied Water Engineering and Research, 10(2): 87–100. https://doi.org/10.1080/23249676.2021.1927210
    Wang, T. H., Zheng, L., Lü, H. R., et al., 2023. A Distributed Joint Extraction Framework for Sedimentological Entities and Relations with Federated Learning. Expert Systems with Applications, 213: 119216. https://doi.org/10.1016/j.eswa.2022.119216
    Wang, X. M., Yin, J., Luo, M. H., et al., 2023. Active High-Locality Landslides in Mao County: Early Identification and Deformational Rules. Journal of Earth Science, 34(5): 1596–1615. https://doi.org/10.1007/s12583-021-1505-0
    Wang, Y. K., Tang, H. M., Huang, J. S., et al., 2022. A Comparative Study of Different Machine Learning Methods for Reservoir Landslide Displacement Prediction. Engineering Geology, 298: 106544. https://doi.org/10.1016/j.enggeo.2022.106544
    Yang, B. B., Yin, K. L., Lacasse, S., et al., 2019. Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement. Landslides, 16(4): 677–694. https://doi.org/10.1007/s10346-018-01127-x
    Zhao, H. J., Ma, F. S., Li, Z. Q., et al., 2022. Optimization of Parameters and Application of Probabilistic Seismic Landslide Hazard Analysis Model Based on Newmark Displacement Model: A Case Study in Ludian Earthquake Area. Earth Science, 47(12): 4401–4416 (in Chinese with English Abstract)
    Zhou, C., Yin, K. L., Cao, Y., et al., 2018. Displacement Prediction of Step-Like Landslide by Applying a Novel Kernel Extreme Learning Machine Method. Landslides, 15(11): 2211–2225. https://doi.org/10.1007/s10346-018-1022-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(15) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return