Ao, H., Liu, C. R., Roberts, A. P., et al., 2017. An Updated Age for the Xujiayao Hominin from the Nihewan Basin, North China: Implications for Middle Pleistocene Human Evolution in East Asia. Journal of Human Evolution, 106: 54–65. https://doi.org/10.1016/j.jhevol.2017.01.014 |
Fuhrman, M., Lindsley, D., 1988. Ternary-Feldspar Modeling and Thermometry. American Mineralogist, 73(3–4): 201–215 |
Guo, J. H., O'Brien, P. J., Zhai, M., 2002. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 20(8): 741–756. https://doi.org/10.1046/j.1525-1314.2002.00401.x |
Halder, M., Paul, D., Sensarma, S., 2021. Rhyolites in Continental Mafic Large Igneous Provinces: Petrology, Geochemistry and Petrogenesis. Geoscience Frontiers, 12(1): 53–80. https://doi.org/10.1016/j.gsf.2020.06.011 |
He, H. Y., Li, Y. L., Xiao, S. Q., et al., 2022. Triassic Paleo-Tethyan Slab Break-off Constrained by a Newly Discovered 211Ma Dacite-Rhyolite Suite in the Qiangtang Terrane, Central Tibet. Journal of Asian Earth Sciences, 240: 105444. https://doi.org/10.1016/j.jseaes.2022.105444 |
Li, X. Y., Li, S. Z., Suo, Y. H., et al., 2022. High-Silica Rhyolites in the Terminal Stage of Massive Cretaceous Volcanism, SE China: Modified Crustal Sources and Low-Pressure Magma Chamber. Gondwana Research, 102: 133–150. https://doi.org/10.1016/j.gr.2020.10.007 |
Lund, J. W., Huttrer, G. W., Toth, A. N., 2022. Characteristics and Trends in Geothermal Development and Use, 1995 to 2020. Geothermics, 105: 102522. https://doi.org/10.1016/j.geothermics.2022.102522 |
Mao, X. P., Li, K. W., Wang, X. W., 2019. Causes of Geothermal Fields and Characteristics of Ground Temperature Fields in China. Journal of Groundwater Science and Engineering, 7(1): 15–28. https://doi.org/10.19637/j.cnki.2305-7068.2019.01.002 |
Wen, S. X., Nekvasil, H., 1994. SOLVCALC: An Interactive Graphics Program Package for Calculating the Ternary Feldspar Solvus and for Two-Feldspar Geothermometry. Computers & Geosciences, 20(6): 1025–1040. https://doi.org/10.1016/0098-3004(94)90039-6 |
Wu, C. G., Zhang, L. F., Zhang, G. B., et al., 2023. Genesis of Graphic Leucosomes in the UHT-Overprinted Eclogites from Yadong Area, Southern Tibet and Its Constraints on the Asthenospheric Upwelling. Acta Petrologica Sinica, 39(8): 2238–2256 (in Chinese with English Abstract) doi: 10.18654/1000-0569/2023.08.02 |
Xu, Y. G., Ma, J. L., Frey, F. A., et al., 2005. Role of Lithosphere–Asthenosphere Interaction in the Genesis of Quaternary Alkali and Tholeiitic Basalts from Datong, Western North China Craton. Chemical Geology, 224(4): 247–271. https://doi.org/10.1016/j.chemgeo.2005.08.004 |
Zhang, J. C., Chen, L., Sun, Y. H., et al., 2024. Geothermal Resource Distribution and Prospects for Development and Utilization in China. Natural Gas Industry B, 11(1): 6–18. https://doi.org/10.1016/j.ngib.2024.01.001 |
Zhang, J. H., Wang, D., Guo, J. H., et al., 2023. Petrogenesis of the Ca. 2.5 Ga Dioritic-TTG and Granitic Gneisses from the Huai'an Complex and Its Implications for Crustal Evolution and Tectonic Settings of the North China Craton. Lithos, 444/445: 107104. https://doi.org/10.1016/j.lithos.2023.107104 |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177–202. https://doi.org/10.1016/j.precamres.2004.10.002 |
Zhou, L., Su, Y. P., Zheng, J. P., et al., 2024. Geochemical and Thermodynamic Constraints on the Genesis of Coexisting Alkaline and Tholeiitic Basalts from Datong, North China: Implication for Compositional Diversity of Continental Intraplate Basalts. Chemical Geology, 659: 122143. https://doi.org/10.1016/j.chemgeo.2024.122143 |
Zhou, W. L., Hu, X. Y., Yan, S. L., et al., 2020. Genetic Analysis of Geothermal Resources and Geothermal Geological Characteristics in Datong Basin, Northern China. Energies, 13(7): 1792. https://doi.org/10.3390/en13071792 |