Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Shan-Ke Liu, Ben-Xun Su. Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry. Journal of Earth Science, 2024, 35(6): 1895-1901. doi: 10.1007/s12583-024-0037-9
Citation: Shan-Ke Liu, Ben-Xun Su. Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry. Journal of Earth Science, 2024, 35(6): 1895-1901. doi: 10.1007/s12583-024-0037-9

Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry

doi: 10.1007/s12583-024-0037-9
More Information
  • Corresponding author: Shan-Ke Liu, liushanke@mail.iggcas.ac.cn
  • Received Date: 15 Nov 2023
  • Accepted Date: 16 Jun 2024
  • Available Online: 26 Dec 2024
  • Issue Publish Date: 30 Dec 2024
  • Lack of information regarding lithium (Li) crystal chemistry in numerous minerals, especially those containing trace amounts of Li (ranging from a few to tens of ppm), limits our understanding of Li isotopic fractionation in pegmatites. In this study, we examined the Li isotopic composition and Li content in various Li-poor (e.g., quartz or feldspar) together with Li-rich (sopdumene or lepidolite) mineral phases within granitic pegmatites. We compiled a comprehensive dataset, encompassing a broad spectrum of Li contents (ranging from a few to tens of thousands of ppm) and Li isotopic values (-8‰ to 41‰). The minerals exhibit distinct Li isotopic signatures. Specifically, elbaite and beryl show the highest values, while biotite displays a negative average. Compared to individual minerals, whole rocks demonstrate lower Li isotopic values, with pegmatites exhibiting the highest and non-granitic pegmatite wall rocks showing the lowest. Our study also uncovers a clear "Vˮ shape relationship between Li isotopic values and logarithm of Li contents, with different mineral groups occupying specific regions within this shape. Furthermore, a significant correlation was observed between average Li isotopic values and Li-O (OH, F) bond lengths in various minerals. These discoveries underscore the crucial role of crystal chemistry in shaping the Li isotopic behavior in pegmatites from a statistical perspective.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM Tables S1–S6) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0037-9.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Allan, D. R., Angel, R. J., 1997. A High-Pressure Structural Study of Microcline (KAlSi3O8) to 7 GPa. European Journal of Mineralogy, 9(2): 263–276. https://doi.org/10.1127/ejm/9/2/0263
    Banhatti, R. D., Heuer, A., 2001. Structure and Dynamics of Lithium Silicate Melts: Molecular Dynamics Simulations. Physical Chemistry Chemical Physics, 3(23): 5104–5108. https://doi.org/10.1039/b106013a
    Barnes, E. M., Weis, D., Groat, L. A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132/133: 21–36. https://doi.org/10.1016/j.lithos.2011.11.014
    Baur, W. H., Joswig, W., Müller, G., 1996. Mechanics of the Feldspar Framework: Crystal Structure of Li-Feldspar. Journal of Solid State Chemistry France, 121(1): 12–23.https://doi.org/10.1006/jssc.1996. 0003 doi: 10.1006/jssc.1996.0003
    Brigatti, M. F., Kile, D. E., Poppi, M., 2001. Crystal Structure and Crystal Chemistry of Lithium-Bearing Muscovite-2M1. The Canadian Minera-logist, 39(4): 1171–1180. https://doi.org/10.2113/gscanmin.39.4.1171
    Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551: 119769. https://doi.org/10.1016/j.chemgeo.2020.119769
    Cormier, L., Majérus, O., Neuville, D. R., et al., 2006. Temperature-Induced Structural Modifications between Alkali Borate Glasses and Melts. Journal of the American Ceramic Society, 89(1): 13–19. https://doi.org/10.1111/j.1551-2916.2005.00657.x
    Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97–111.https://doi.org/10.1016/j.chemgeo. 2015.06.029 doi: 10.1016/j.chemgeo.2015.06.029
    Ding, Z. Y., Liu, S. K., Su, B. X., et al., 2023. Potassium Isotope Fractionation during Granite Differentiation and Implications for Crustal K Isotope Heterogeneity. Lithos, 448/449: 107176. https://doi.org/10.1016/j.lithos.2023.107176
    Fan, J. J., Tang, G. J., Wei, G. J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352: 105236. https://doi.org/10.1016/j.lithos.2019.105236
    Gagné, O. C., Hawthorne, F. C., 2016. Bond-Length Distributions for Ions Bonded to Oxygen: Alkali and Alkaline-Earth Metals. Acta Crystallo-graphica Section B, Structural Science, Crystal Engineering and Materials, 72: 602–625. https://doi.org/10.1107/s2052520616008507
    Howell, I., Neilson, G. W., 1996. Hydration in Concentrated Aqueous Solution. Journal of Physics: Condensed Matter, 8(25): 4455–4463. https://doi.org/10.1088/0953-8984/8/25/004
    Ikeda, T., Boero, M., Terakura, K., 2007. Hydration of Alkali Ions from First Principles Molecular Dynamics Revisited. Journal of Chemical Physics, 126(3): 034501. https://doi.org/10.1063/1.2424710
    Jahn, S., Wunder, B., 2009. Lithium Speciation in Aqueous Fluids at High P and T Studied by ab initio Molecular Dynamics and Consequences for Li-Isotope Fractionation between Minerals and Fluids. Geochimica et Cosmochimica Acta, 73(18): 5428–5434. https://doi.org/10.1016/j.gca.2009.06.017
    Kameda, Y., Uemura, O., 1993. Neutron Diffraction Study on the Structure of Highly Concentrated Aqueous LiBr Solutions. Bulletin of the Chemical Society of Japan, 66(2): 384–389. https://doi.org/10.1246/bcsj.66.384
    Kowalski, P. M., Jahn, S., 2011. Prediction of Equilibrium Li Isotope Fractionation between Minerals and Aqueous Solutions at High P and T: An Efficient ab initio Approach. Geochimica et Cosmochimica Acta, 75(20): 6112–6123. https://doi.org/10.1016/j.gca.2011.07.039
    Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64–79. https://doi.org/10.1016/j.gca.2018.08.021
    Liu, S. Q., Li, Y. B., Liu, J., et al., 2018. Equilibrium Lithium Isotope Fractionation in Li-Bearing Minerals. Geochimica et Cosmochimica Acta, 235: 360–375. https://doi.org/10.1016/j.gca.2018.05.029
    Liu, X. M., Rudnick, R. L., Hier-Majumder, S., et al., 2010. Processes Controlling Lithium Isotopic Distribution in Contact Aureoles: A Case Study of the Florence County Pegmatites, Wisconsin. Geochemistry, Geophysics, Geosystems, 11(8): Q08014. https://doi.org/10.1029/2010gc003063
    Lynton, S. J., Walker, R. J., Candela, P. A., 2005. Lithium Isotopes in the System Qz-Ms-Fluid: An Experimental Study. Geochimica et Cosmochimica Acta, 69(13): 3337–3347. https://doi.org/10.1016/j.gca.2005.02.009
    Lyubartsev, A. P., Laasonen, K., Laaksonen, A., 2001. Hydration of Li+ Ion: An ab initio Molecular Dynamics Simulation. Journal of Chemical Physics, 114(7): 3120–3126. https://doi.org/10.1063/1.1342815
    Magna, T., Novák, M., Cempírek, J., et al., 2016. Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-Cesium-Tantalum Pegmatites. Geology, 44(8): 655–658. https://doi.org/10.1130/g37712.1
    Mähler, J., Persson, I., 2012. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorganic Chemistry, 51(1): 425–438. https://doi.org/10.1021/ic2018693
    Majérus, O., Cormier, L., Calas, G., et al., 2003. Structural Modifications between Lithium-Diborate Glasses and Melts: Implications for Transport Properties and Melt Fragility. Journal of Physical Chemistry B, 107(47): 13044–13050. https://doi.org/10.1021/jp0359945
    Maloney, J. S., Nabelek, P. I., Sirbescu, M. L C. H., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905–916. https://doi.org/10.1127/0935-1221/2008/0020-1823
    Nespolo, M., Guillot, B., 2016. CHARDI2015: Charge Distribution Analysis of Non-Molecular Structures. Journal of Applied Crystallography, 49(1): 317–321. https://doi.org/10.1107/s1600576715024814
    Parkinson, I., Hammond, S., James, R., et al., 2007. High-Temperature Lithium Isotope Fractionation: Insights from Lithium Isotope Diffusion in Magmatic Systems. Earth and Planetary Science Letters, 257(3/4): 609–621. https://doi.org/10.1016/j.epsl.2007.03.023
    Penniston-Dorland, S., Liu, X. M., Rudnick, R. L., 2017. Lithium Isotope Geochemistry. In: Teng, F. Z., Watkins, J., Dauphas, N., eds., Non-Traditional Stable Isotopes. De Gruyter. 165–218. https://doi.org/10.1515/9783110545630-007
    Persson, I., 2010. Hydrated Metal Ions in Aqueous Solution: How Regular are Their Structures? Pure and Applied Chemistry, 82(10): 1901–1917. https://doi.org/10.1351/pac-con-09-10-22
    Phelps, P. R., Lee, C. T. A., Morton, D. M., 2020. Episodes of Fast Crystal Growth in Pegmatites. Nature Communications, 11: 4986. https://doi.org/10.1038/s41467-020-18806-w
    Richter, F., Chaussidon, M., Bruce Watson, E., et al., 2017. Lithium Isotope Fractionation by Diffusion in Minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219: 124–142. https://doi.org/10.1016/j.gca. 2017.09.001 doi: 10.1016/j.gca.2017.09.001
    Richter, F., Watson, B., Chaussidon, M., et al., 2014. Lithium Isotope Fractionation by Diffusion in Minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126: 352–370. https://doi.org/10.1016/j.gca. 2013.11.008 doi: 10.1016/j.gca.2013.11.008
    Richter, F. M., Davis, A. M., DePaolo, D. J., et al., 2003. Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905–3923. https://doi.org/10.1016/s0016-7037(03)00174-1
    Richter, F. M., Liang, Y., Davis, A. M., 1999. Isotope Fractionation by Diffusion in Molten Oxides. Geochimica et Cosmochimica Acta, 63(18): 2853–2861. https://doi.org/10.1016/s0016-7037(99)00164-7
    Roda-Robles, E., Pesquera-Pérez, A., Simmons, W. B., et al., 2019. Evidence for Internal Fractionation from Li Isotopes in Tourmaline and Mica in the Berry-Havey Rare-Element Pegmatite (Maine, USA). The Canadian Mineralogist, 57(5): 779–782. https://doi.org/10.3749/canmin.ab00020
    Rudolph, W., Brooker, M. H., Pye, C. C., 1995. Hydration of Lithium Ion in Aqueous Solutions. The Journal of Physical Chemistry, 99(11): 3793–3797. https://doi.org/10.1021/j100011a055
    Sossi, P. A., O'Neill, H. St. C., 2017. The Effect of Bonding Environment on Iron Isotope Fractionation between Minerals at High Temperature. Geochimica et Cosmochimica Acta, 196: 121–143. https://doi.org/10.1016/j.gca.2016.09.017
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3/4): 701–710. https://doi.org/10.1016/j.epsl.2006.01.036
    Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488–1498. https://doi.org/10.2138/am.2006.2083
    Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153–195. https://doi.org/10.2138/gsrmg.55.1.153
    Tomascak, P. B., Magna, T., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. In: Hoefs, J., Magna, T., Dohmen, R., eds., Advances in Isotope Geochemistry. Springer-Göttingen
    Watson, E. B., Müller, T., 2009. Non-Equilibrium Isotopic and Elemental Fractionation during Diffusion-Controlled Crystal Growth under Static and Dynamic Conditions. Chemical Geology, 267(3): 111–124. https://doi.org/10.1016/j.chemgeo.2008.10.036
    Wenk, H. R., Kroll, H., 1984. Analysis of P-1, I-1 and C-1 Plagioclase Structures. Bulletin de Minéralogie, 107(3): 467–487. https://doi.org/10.3406/bulmi.1984.7776
    Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3/4): 277–290. https://doi.org/10.1016/j.chemgeo.2006.12.001
    Wunder, B., Meixner, A., Romer, R. L., et al., 2006. Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 151(1): 112–120. https://doi.org/10.1007/s00410-005-0049-0
    Wunder, B., Meixner, A., Romer, R. L., et al., 2011. Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 23(3): 333–342. https://doi.org/10.1127/0935-1221/2011/0023-2095
    Yamaguchi, T., Ohzono, H., Yamagami, M., et al., 2010. Ion Hydration in Aqueous Solutions of Lithium Chloride, Nickel Chloride, and Caesium Chloride in Ambient to Supercritical Water. Journal of Molecular Liquids, 153(1): 2–8. https://doi.org/10.1016/j.molliq.2009.10.012
    Yang, D., Hou, Z. Q., Zhao, Y., et al., 2015. Lithium Isotope Traces Magmatic Fluid in a Seafloor Hydrothermal System. Scientific Reports, 5: 13812. https://doi.org/10.1038/srep13812
    Young, E. D., Manning, C. E., Schauble, E. A., et al., 2015. High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications. Chemical Geology, 395: 176–195. https://doi.org/10.1016/j.chemgeo.2014.12.013
    Ye, X. Y., Li, B., Chen, X. D., et al., 2023. Lithium Isotopic Systematics and Numerical Simulation for Highly-Fractionated Granite-Pegmatite System: Implications for the Pegmatite-Type Rare-Metal Mineralization. Ore Geology Reviews, 163: 105722. https://doi.org/10.1016/j.oregeorev.2023.105722
    Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139
    Zhao, H., Chen, B., Huang, C., et al., 2022. Geochemical and Sr-Nd-Li Isotopic Constraints on the Genesis of the Jiajika Li-Rich Pegmatites, Eastern Tibetan Plateau: Implications for Li Mineralization. Contributions to Mineralogy and Petrology, 177(1): 4. https://doi.org/10.1007/s00410-021-01869-3
    Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(57) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return