Citation: | Shan-Ke Liu, Ben-Xun Su. Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry. Journal of Earth Science, 2024, 35(6): 1895-1901. doi: 10.1007/s12583-024-0037-9 |
Lack of information regarding lithium (Li) crystal chemistry in numerous minerals, especially those containing trace amounts of Li (ranging from a few to tens of ppm), limits our understanding of Li isotopic fractionation in pegmatites. In this study, we examined the Li isotopic composition and Li content in various Li-poor (e.g., quartz or feldspar) together with Li-rich (sopdumene or lepidolite) mineral phases within granitic pegmatites. We compiled a comprehensive dataset, encompassing a broad spectrum of Li contents (ranging from a few to tens of thousands of ppm) and Li isotopic values (-8‰ to 41‰). The minerals exhibit distinct Li isotopic signatures. Specifically, elbaite and beryl show the highest values, while biotite displays a negative average. Compared to individual minerals, whole rocks demonstrate lower Li isotopic values, with pegmatites exhibiting the highest and non-granitic pegmatite wall rocks showing the lowest. Our study also uncovers a clear "Vˮ shape relationship between Li isotopic values and logarithm of Li contents, with different mineral groups occupying specific regions within this shape. Furthermore, a significant correlation was observed between average Li isotopic values and Li-O (OH, F) bond lengths in various minerals. These discoveries underscore the crucial role of crystal chemistry in shaping the Li isotopic behavior in pegmatites from a statistical perspective.
Allan, D. R., Angel, R. J., 1997. A High-Pressure Structural Study of Microcline (KAlSi3O8) to 7 GPa. European Journal of Mineralogy, 9(2): 263–276. https://doi.org/10.1127/ejm/9/2/0263 |
Banhatti, R. D., Heuer, A., 2001. Structure and Dynamics of Lithium Silicate Melts: Molecular Dynamics Simulations. Physical Chemistry Chemical Physics, 3(23): 5104–5108. https://doi.org/10.1039/b106013a |
Barnes, E. M., Weis, D., Groat, L. A., 2012. Significant Li Isotope Fractionation in Geochemically Evolved Rare Element-Bearing Pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos, 132/133: 21–36. https://doi.org/10.1016/j.lithos.2011.11.014 |
Baur, W. H., Joswig, W., Müller, G., 1996. Mechanics of the Feldspar Framework: Crystal Structure of Li-Feldspar. Journal of Solid State Chemistry France, 121(1): 12–23.https://doi.org/10.1006/jssc.1996. 0003 doi: 10.1006/jssc.1996.0003 |
Brigatti, M. F., Kile, D. E., Poppi, M., 2001. Crystal Structure and Crystal Chemistry of Lithium-Bearing Muscovite-2M1. The Canadian Minera-logist, 39(4): 1171–1180. https://doi.org/10.2113/gscanmin.39.4.1171 |
Chen, B., Huang, C., Zhao, H., 2020. Lithium and Nd Isotopic Constraints on the Origin of Li-Poor Pegmatite with Implications for Li Mineralization. Chemical Geology, 551: 119769. https://doi.org/10.1016/j.chemgeo.2020.119769 |
Cormier, L., Majérus, O., Neuville, D. R., et al., 2006. Temperature-Induced Structural Modifications between Alkali Borate Glasses and Melts. Journal of the American Ceramic Society, 89(1): 13–19. https://doi.org/10.1111/j.1551-2916.2005.00657.x |
Deveaud, S., Millot, R., Villaros, A., 2015. The Genesis of LCT-Type Granitic Pegmatites, as Illustrated by Lithium Isotopes in Micas. Chemical Geology, 411: 97–111.https://doi.org/10.1016/j.chemgeo. 2015.06.029 doi: 10.1016/j.chemgeo.2015.06.029 |
Ding, Z. Y., Liu, S. K., Su, B. X., et al., 2023. Potassium Isotope Fractionation during Granite Differentiation and Implications for Crustal K Isotope Heterogeneity. Lithos, 448/449: 107176. https://doi.org/10.1016/j.lithos.2023.107176 |
Fan, J. J., Tang, G. J., Wei, G. J., et al., 2020. Lithium Isotope Fractionation during Fluid Exsolution: Implications for Li Mineralization of the Bailongshan Pegmatites in the West Kunlun, NW Tibet. Lithos, 352: 105236. https://doi.org/10.1016/j.lithos.2019.105236 |
Gagné, O. C., Hawthorne, F. C., 2016. Bond-Length Distributions for Ions Bonded to Oxygen: Alkali and Alkaline-Earth Metals. Acta Crystallo-graphica Section B, Structural Science, Crystal Engineering and Materials, 72: 602–625. https://doi.org/10.1107/s2052520616008507 |
Howell, I., Neilson, G. W., 1996. Hydration in Concentrated Aqueous Solution. Journal of Physics: Condensed Matter, 8(25): 4455–4463. https://doi.org/10.1088/0953-8984/8/25/004 |
Ikeda, T., Boero, M., Terakura, K., 2007. Hydration of Alkali Ions from First Principles Molecular Dynamics Revisited. Journal of Chemical Physics, 126(3): 034501. https://doi.org/10.1063/1.2424710 |
Jahn, S., Wunder, B., 2009. Lithium Speciation in Aqueous Fluids at High P and T Studied by ab initio Molecular Dynamics and Consequences for Li-Isotope Fractionation between Minerals and Fluids. Geochimica et Cosmochimica Acta, 73(18): 5428–5434. https://doi.org/10.1016/j.gca.2009.06.017 |
Kameda, Y., Uemura, O., 1993. Neutron Diffraction Study on the Structure of Highly Concentrated Aqueous LiBr Solutions. Bulletin of the Chemical Society of Japan, 66(2): 384–389. https://doi.org/10.1246/bcsj.66.384 |
Kowalski, P. M., Jahn, S., 2011. Prediction of Equilibrium Li Isotope Fractionation between Minerals and Aqueous Solutions at High P and T: An Efficient ab initio Approach. Geochimica et Cosmochimica Acta, 75(20): 6112–6123. https://doi.org/10.1016/j.gca.2011.07.039 |
Li, J., Huang, X. L., Wei, G. J., et al., 2018. Lithium Isotope Fractionation during Magmatic Differentiation and Hydrothermal Processes in Rare-Metal Granites. Geochimica et Cosmochimica Acta, 240: 64–79. https://doi.org/10.1016/j.gca.2018.08.021 |
Liu, S. Q., Li, Y. B., Liu, J., et al., 2018. Equilibrium Lithium Isotope Fractionation in Li-Bearing Minerals. Geochimica et Cosmochimica Acta, 235: 360–375. https://doi.org/10.1016/j.gca.2018.05.029 |
Liu, X. M., Rudnick, R. L., Hier-Majumder, S., et al., 2010. Processes Controlling Lithium Isotopic Distribution in Contact Aureoles: A Case Study of the Florence County Pegmatites, Wisconsin. Geochemistry, Geophysics, Geosystems, 11(8): Q08014. https://doi.org/10.1029/2010gc003063 |
Lynton, S. J., Walker, R. J., Candela, P. A., 2005. Lithium Isotopes in the System Qz-Ms-Fluid: An Experimental Study. Geochimica et Cosmochimica Acta, 69(13): 3337–3347. https://doi.org/10.1016/j.gca.2005.02.009 |
Lyubartsev, A. P., Laasonen, K., Laaksonen, A., 2001. Hydration of Li+ Ion: An ab initio Molecular Dynamics Simulation. Journal of Chemical Physics, 114(7): 3120–3126. https://doi.org/10.1063/1.1342815 |
Magna, T., Novák, M., Cempírek, J., et al., 2016. Crystallographic Control on Lithium Isotope Fractionation in Archean to Cenozoic Lithium-Cesium-Tantalum Pegmatites. Geology, 44(8): 655–658. https://doi.org/10.1130/g37712.1 |
Mähler, J., Persson, I., 2012. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorganic Chemistry, 51(1): 425–438. https://doi.org/10.1021/ic2018693 |
Majérus, O., Cormier, L., Calas, G., et al., 2003. Structural Modifications between Lithium-Diborate Glasses and Melts: Implications for Transport Properties and Melt Fragility. Journal of Physical Chemistry B, 107(47): 13044–13050. https://doi.org/10.1021/jp0359945 |
Maloney, J. S., Nabelek, P. I., Sirbescu, M. L C. H., 2008. Lithium and Its Isotopes in Tourmaline as Indicators of the Crystallization Process in the San Diego County Pegmatites, California, USA. European Journal of Mineralogy, 20(5): 905–916. https://doi.org/10.1127/0935-1221/2008/0020-1823 |
Nespolo, M., Guillot, B., 2016. CHARDI2015: Charge Distribution Analysis of Non-Molecular Structures. Journal of Applied Crystallography, 49(1): 317–321. https://doi.org/10.1107/s1600576715024814 |
Parkinson, I., Hammond, S., James, R., et al., 2007. High-Temperature Lithium Isotope Fractionation: Insights from Lithium Isotope Diffusion in Magmatic Systems. Earth and Planetary Science Letters, 257(3/4): 609–621. https://doi.org/10.1016/j.epsl.2007.03.023 |
Penniston-Dorland, S., Liu, X. M., Rudnick, R. L., 2017. Lithium Isotope Geochemistry. In: Teng, F. Z., Watkins, J., Dauphas, N., eds., Non-Traditional Stable Isotopes. De Gruyter. 165–218. |
Persson, I., 2010. Hydrated Metal Ions in Aqueous Solution: How Regular are Their Structures? Pure and Applied Chemistry, 82(10): 1901–1917. https://doi.org/10.1351/pac-con-09-10-22 |
Phelps, P. R., Lee, C. T. A., Morton, D. M., 2020. Episodes of Fast Crystal Growth in Pegmatites. Nature Communications, 11: 4986. https://doi.org/10.1038/s41467-020-18806-w |
Richter, F., Chaussidon, M., Bruce Watson, E., et al., 2017. Lithium Isotope Fractionation by Diffusion in Minerals Part 2: Olivine. Geochimica et Cosmochimica Acta, 219: 124–142. https://doi.org/10.1016/j.gca. 2017.09.001 doi: 10.1016/j.gca.2017.09.001 |
Richter, F., Watson, B., Chaussidon, M., et al., 2014. Lithium Isotope Fractionation by Diffusion in Minerals. Part 1: Pyroxenes. Geochimica et Cosmochimica Acta, 126: 352–370. https://doi.org/10.1016/j.gca. 2013.11.008 doi: 10.1016/j.gca.2013.11.008 |
Richter, F. M., Davis, A. M., DePaolo, D. J., et al., 2003. Isotope Fractionation by Chemical Diffusion between Molten Basalt and Rhyolite. Geochimica et Cosmochimica Acta, 67(20): 3905–3923. https://doi.org/10.1016/s0016-7037(03)00174-1 |
Richter, F. M., Liang, Y., Davis, A. M., 1999. Isotope Fractionation by Diffusion in Molten Oxides. Geochimica et Cosmochimica Acta, 63(18): 2853–2861. https://doi.org/10.1016/s0016-7037(99)00164-7 |
Roda-Robles, E., Pesquera-Pérez, A., Simmons, W. B., et al., 2019. Evidence for Internal Fractionation from Li Isotopes in Tourmaline and Mica in the Berry-Havey Rare-Element Pegmatite (Maine, USA). The Canadian Mineralogist, 57(5): 779–782. https://doi.org/10.3749/canmin.ab00020 |
Rudolph, W., Brooker, M. H., Pye, C. C., 1995. Hydration of Lithium Ion in Aqueous Solutions. The Journal of Physical Chemistry, 99(11): 3793–3797. https://doi.org/10.1021/j100011a055 |
Sossi, P. A., O'Neill, H. St. C., 2017. The Effect of Bonding Environment on Iron Isotope Fractionation between Minerals at High Temperature. Geochimica et Cosmochimica Acta, 196: 121–143. https://doi.org/10.1016/j.gca.2016.09.017 |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006a. Diffusion-Driven Extreme Lithium Isotopic Fractionation in Country Rocks of the Tin Mountain Pegmatite. Earth and Planetary Science Letters, 243(3/4): 701–710. https://doi.org/10.1016/j.epsl.2006.01.036 |
Teng, F. Z., McDonough, W. F., Rudnick, R. L., et al., 2006b. Lithium Isotopic Systematics of Granites and Pegmatites from the Black Hills, South Dakota. American Mineralogist, 91(10): 1488–1498. https://doi.org/10.2138/am.2006.2083 |
Tomascak, P. B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153–195. https://doi.org/10.2138/gsrmg.55.1.153 |
Tomascak, P. B., Magna, T., Dohmen, R., 2016. Advances in Lithium Isotope Geochemistry. In: Hoefs, J., Magna, T., Dohmen, R., eds., Advances in Isotope Geochemistry. Springer-Göttingen |
Watson, E. B., Müller, T., 2009. Non-Equilibrium Isotopic and Elemental Fractionation during Diffusion-Controlled Crystal Growth under Static and Dynamic Conditions. Chemical Geology, 267(3): 111–124. https://doi.org/10.1016/j.chemgeo.2008.10.036 |
Wenk, H. R., Kroll, H., 1984. Analysis of P-1, I-1 and C-1 Plagioclase Structures. Bulletin de Minéralogie, 107(3): 467–487. https://doi.org/10.3406/bulmi.1984.7776 |
Wunder, B., Meixner, A., Romer, R. L., et al., 2007. Lithium Isotope Fractionation between Li-Bearing Staurolite, Li-Mica and Aqueous Fluids: An Experimental Study. Chemical Geology, 238(3/4): 277–290. https://doi.org/10.1016/j.chemgeo.2006.12.001 |
Wunder, B., Meixner, A., Romer, R. L., et al., 2006. Temperature-Dependent Isotopic Fractionation of Lithium between Clinopyroxene and High-Pressure Hydrous Fluids. Contributions to Mineralogy and Petrology, 151(1): 112–120. https://doi.org/10.1007/s00410-005-0049-0 |
Wunder, B., Meixner, A., Romer, R. L., et al., 2011. Li-Isotope Fractionation between Silicates and Fluids: Pressure Dependence and Influence of the Bonding Environment. European Journal of Mineralogy, 23(3): 333–342. https://doi.org/10.1127/0935-1221/2011/0023-2095 |
Yamaguchi, T., Ohzono, H., Yamagami, M., et al., 2010. Ion Hydration in Aqueous Solutions of Lithium Chloride, Nickel Chloride, and Caesium Chloride in Ambient to Supercritical Water. Journal of Molecular Liquids, 153(1): 2–8. https://doi.org/10.1016/j.molliq.2009.10.012 |
Yang, D., Hou, Z. Q., Zhao, Y., et al., 2015. Lithium Isotope Traces Magmatic Fluid in a Seafloor Hydrothermal System. Scientific Reports, 5: 13812. https://doi.org/10.1038/srep13812 |
Young, E. D., Manning, C. E., Schauble, E. A., et al., 2015. High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications. Chemical Geology, 395: 176–195. https://doi.org/10.1016/j.chemgeo.2014.12.013 |
Ye, X. Y., Li, B., Chen, X. D., et al., 2023. Lithium Isotopic Systematics and Numerical Simulation for Highly-Fractionated Granite-Pegmatite System: Implications for the Pegmatite-Type Rare-Metal Mineralization. Ore Geology Reviews, 163: 105722. https://doi.org/10.1016/j.oregeorev.2023.105722 |
Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139 |
Zhao, H., Chen, B., Huang, C., et al., 2022. Geochemical and Sr-Nd-Li Isotopic Constraints on the Genesis of the Jiajika Li-Rich Pegmatites, Eastern Tibetan Plateau: Implications for Li Mineralization. Contributions to Mineralogy and Petrology, 177(1): 4. https://doi.org/10.1007/s00410-021-01869-3 |
Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484 |