Bao, P. S., Wang, X. B., Peng, G. S., et al., 1999. Chromite Deposits in China. Science Press, Beijing. 1–226 (in Chinese) |
Campbell, I. H., Murck, B. W., 1993. Petrology of the G and H Chromitite Zones in the Mountain View Area of the Stillwater Complex, Montana. Journal of Petrology, 34(2): 291–316. https://doi.org/10.1093/petrology/34.2.291 |
Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231–261. https://doi.org/10.1016/j.earscirev.2017.12.006 |
Guo, X. Z., Jia, Q. Z., Lü, X. B., et al., 2020. The Permian Sn Metallogenic Event and Its Geodynamic Setting in East Kunlun, NW China: Evidence from Zircon and Cassiterite Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of the Xiaowolong Skarn Sn Deposit. Ore Geology Reviews, 118: 103370. https://doi.org/10.1016/j.oregeorev.2020.103370 |
Jiang, S. -Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295–1298. https://doi.org/10.1007/s12583-023-2001-5 |
Jiang, S. -Y., Wen, H. J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112–118. https://doi.org/10.16262/j.cnki.1000-8217.2019.02.003 (in Chinese with English Abstract) |
Latypov, R., Chistyakova, S., Mukherjee, R., 2017. A Novel Hypothesis for Origin of Massive Chromitites in the Bushveld Igneous Complex. Journal of Petrology, 58(10): 1899–1940. https://doi.org/10.1093/petrology/egx077 |
Li, L. X., Zhu, M. Y., Fang, T. M., et al., 2015. Origin of the Fangmayu Chromite Deposit, Miyun, Beijing: Constraints from Electron Microprobe Analyses of Cr-Spinel. Rock and Mineral Analysis, 34(5): 600–608. https://doi.org/10.15898/j.cnki.11-2131/td.2015.05.017 (in Chinese with English Abstract) |
Maier, W. D., Määttää, S., Yang, S., et al., 2015. Composition of the Ultramafic-Mafic Contact Interval of the Great Dyke of Zimbabwe at Ngezi Mine: Comparisons to the Bushveld Complex and Implications for the Origin of the PGE Reefs. Lithos, 238: 207–222. https://doi.org/10.1016/j.lithos.2015.09.007 |
Melcher, F., Grum, W., Simon, G., et al., 1997. Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: A Study of Solid and Fluid Inclusions in Chromite. Journal of Petrology, 38(10): 1419–1458. https://doi.org/10.1093/petroj/38.10.1419 |
Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403–414. https://doi.org/10.3969/j.issn.1006-7493.2007.03.010 (in Chinese with English Abstract) |
Paktunc, A. D., 1990. Origin of Podiform Chromite Deposits by Multistage Melting, Melt Segregation and Magma Mixing in the Upper Mantle. Ore Geology Reviews, 5(3): 211–222. https://doi.org/10.1016/0169-1368(90)90011-B |
Santosh, M., He, X. F., Waterton, P., et al., 2020. Chromitites from an Archean Layered Intrusion in the Western Dharwar Craton, Southern India. Lithos, 376: 105772. https://doi.org/10.1016/j.lithos.2020.105772 |
Sideridis, A., Zaccarini, F., Koutsovitis, P., et al., 2021. Chromitites from the Vavdos Ophiolite (Chalkidiki, Greece): Petrogenesis and Geotectonic Settings; Constrains from Spinel, Olivine Composition, PGE Mineralogy and Geochemistry. Ore Geology Reviews, 137: 104289. https://doi.org/10.1016/j.oregeorev.2021.104289 |
Spandler, C., Mavrogenes, J., Arculus, R., 2005. Origin of Chromitites in Layered Intrusions: Evidence from Chromite-Hosted Melt Inclusions from the Stillwater Complex. Geology, 33(11): 893–896. https://doi.org/10.1130/g21912.1 |
Stowe, C. W., 1994. Compositions and Tectonic Settings of Chromite Deposits through Time. Economic Geology, 89(3): 528–546. https://doi.org/10.2113/gsecongeo.89.3.528 |
Su, B. X., Pan, Q. Q., Xiao, Y., et al., 2023. Mantle Peridotites of Ophiolites Rarely Preserve Reliable Records of Paleo-Oceanic Lithospheric Mantle. Earth-Science Reviews, 244: 104544. https://doi.org/10.1016/j.earscirev.2023.104544 |
Uysal, İ., Tarkian, M., Sadiklar, M. B., et al., 2009. Petrology of Al- and Cr-Rich Ophiolitic Chromitites from the Muğla, SW Turkey: Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry. Contributions to Mineralogy and Petrology, 158(5): 659–674. https://doi.org/10.1007/s00410-009-0402-9 |
Wang, Y., Zhong, H., Cao, Y. H et al., 2020. Genetic Classification, Distribution and Ore Genesis of Major PGE, Co and Cr Deposits in China: A Critical Review. Science Bulletin, 65(33): 3825–3838 (in Chinese with English Abstract) |
Xiong, F. H., Zoheir, B., Li, C., et al., 2023. A Typical Chromitite Deposit in the Gaositai Mafic-Ultramafic Complex, North China Craton: Geochemical, Geochronological, and Isotopic Systematics. Lithos, 460: 107388. https://doi.org/10.1016/j.lithos.2023.107388 |
Xu, Y. G., Wang, Y., Wei, X., et al., 2013. Mantle Plume-Related Mineralization and Their Principal Controlling Factors. Acta Petrologica Sinica, 29(10): 3307–3322 (in Chinese with English Abstract) |
Yang J. S., Lian, D. Y., Wu, W. W., et al., 2022. Chromitites in Ophiolites: Questions and Thoughts. Acta Geologica Sinica, 96(5): 1608–1634 (in Chinese with English Abstract) |
Yang, J. S., Ba, D. Z., Xu, X. Z., et al., 2010. A Restudy of Podiform Chromite Deposits and Their Ore-Prospecting Vista in China. Geology in China, 37(4): 1141–1150 (in Chinese with English Abstract) |
Yang, J. S., Bai, W. J., Fang, Q. S., et al., 2008. Ultrahigh-Pressure Minerals and New Minerals from the Luobusha Ophiolitic Chromitites in Tibet: A Review. Acta Geoscientica Sinica, (3): 263–274 (in Chinese with English Abstract) |
Yang, J. S., Meng, F. C., Xu, X. Z., et al., 2015. Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals. Gondwana Research, 27(2): 459–485. https://doi.org/10.1016/j.gr.2014.07.004 |
Yang, Y. H., Zeng, L., Deng, F., et al., 2018. Geological Characteristics and Mineralization Potential of Chromite resources. Earth Science Frontiers, 25(3): 138–147 (in Chinese with English Abstract) |
Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106–111 (in Chinese with English Abstract) |
Zhang, X. M., Zhao, X., Fu, L. B., et al., 2023. Crustal Architecture and Metallogeny Associated with the Paleo-Tethys Evolution in the Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau. Geoscience Frontiers, 14(6): 101654. https://doi.org/10.1016/j.gsf.2023.101654 |
Zhou, M. F., Robinson, P. T., Su, B. X., et al., 2014. Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits: The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments. Gondwana Research, 26(1): 262–283. https://doi.org/10.1016/j.gr.2013.12.011 |
Zhu, M. Y., 2014. Metallogenic Regularity of Chromium Deposits in China. Science Press, Beijing. 1–172 (in Chinese) |