Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Konstantin Danilov, Galina Antonovskaya, Irina Basakina, Eugenia Shakhova, Natalia Kapustian. Passive Seismic Investigation of Intraplate Earthquakes Epicentral Zones in the North of Russia as One of the Ways to Understand Their Source Mechanics. Journal of Earth Science, 2025, 36(2): 764-780. doi: 10.1007/s12583-024-0053-9
Citation: Konstantin Danilov, Galina Antonovskaya, Irina Basakina, Eugenia Shakhova, Natalia Kapustian. Passive Seismic Investigation of Intraplate Earthquakes Epicentral Zones in the North of Russia as One of the Ways to Understand Their Source Mechanics. Journal of Earth Science, 2025, 36(2): 764-780. doi: 10.1007/s12583-024-0053-9

Passive Seismic Investigation of Intraplate Earthquakes Epicentral Zones in the North of Russia as One of the Ways to Understand Their Source Mechanics

doi: 10.1007/s12583-024-0053-9
More Information
  • Corresponding author: Galina Antonovskaya, essm.ras@gmail.com
  • Received Date: 04 Apr 2024
  • Accepted Date: 13 Jul 2024
  • Issue Publish Date: 30 Apr 2025
  • Studying the inner structure of intraplate earthquakes originating in aseismic areas, which are poorly covered by seismic networks or as historical earthquakes is usually the only way to get knowledge about their source mechanisms, which is partially essential for a deeper understanding of intraplate geodynamics. The epicentral zones of earthquakes are situated in hard-to-reach areas, so, using active seismic methods for such purposes is unreasonable or even impossible because of high cost and logistical difficulties. We propose a novel approach that combines diverse passive seismic methods, which allows us to get sufficient information about geological environment structure for such task solutions. As an example, we investigated the inner structure of platform earthquake epicentral zone originated up north of Russia. We used four passive seismic methods: microseismic sounding method, passive seismic interferometry, HVSR method, and microseismic activity method. We show that passive seismic data, recoded in the same installation and processed by these different methods, can provide sufficient information about structure of studied environment, needed to explain source mechanism. In sum, the hypocenter zone is presented by intersection of vertical faults and a lateral fractured zone in the middle crust. Results were confirmed by comparison with results by active seismic methods.

     

  • Data Availability
    Seismic data are available upon official request from N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences (FECIAR UrB RAS), https://fciarctic.ru/Kontakti.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Afonin, N., Kozlovskaya, E., Kukkonen, I., et al., 2017. Structure of the Suasselkä Postglacial Fault in Northern Finland Obtained by Analysis of Local Events and Ambient Seismic Noise. Solid Earth, 8(2): 531–544. https://doi.org/10.5194/se-8-531-2017
    Afonin, N., Kozlovskaya, E., Moisio, K., et al., 2024. Frost Quakes in Wetlands in Northern Finland during Extreme Winter Weather Conditions and Related Hazard to Urban Infrastructure. The Cryosphere, 18(5): 2223–2238. https://doi.org/10.5194/tc-18-2223-2024
    Afonin, N., Kozlovskaya, E., Nevalainen, J., et al., 2019. Improving the Quality of Empirical Green's Functions, Obtained by Cross-Correlation of High-Frequency Ambient Seismic Noise. Solid Earth, 10(5): 1621–1634. https://doi.org/10.5194/se-10-1621-2019
    Anbazhagan, P., Srilakshmi, K. N., Bajaj, K., et al., 2019. Determination of Seismic Site Classification of Seismic Recording Stations in the Himalayan Region Using HVSR Method. Soil Dynamics and Earthquake Engineering, 116: 304–316. https://doi.org/10.1016/j.soildyn.2018.10.023
    Anderson, J. G., Wesnousky, S. G., Stirling, M. W., 1996. Earthquake Size as a Function of Fault Slip Rate. Bulletin of the Seismological Society of America, 86(3): 683–690. https://doi.org/10.1785/bssa0860030683
    Antonovskaya, G. N., Basakina, I. M., Vaganova, N. V., et al., 2021. Spatiotemporal Relationship between Arctic Mid-Ocean Ridge System and Intraplate Seismicity of the European Arctic. Seismological Research Letters, 92(5): 2876–2890. https://doi.org/10.1785/0220210024
    Aplonov, S. V., Burzin, M. B., Weiss, A. F., et al., 2006. Geodynamics and Possible Oil and Gas Bearing of the Mezen Sedimentary Basin. Science, St. Petersburg, Russia. 116–145 (in Russian)
    Artyushkov, E. V., Kol'ka, V. V., Chekhovich, P. A., 2020. The Occurrence of a Lower Viscosity Layer in the Crust of Old Cratons as a Cause of the Strongly Differentiated Character of Postglacial Uplift. Doklady Earth Sciences, 492(1): 351–355. https://doi.org/10.1134/s1028334x20050037
    Baluev, A. S., Brusilovsky, Y. V., Ivanenko, A. N., 2018. The Crustal Structure of Onega-Kandalaksha Paleorift Identified by Complex Analysis of the Anomalous Magnetic Field of the White Sea. Geodynamics & Tectonophysics, 9(4): 1293–1312. https://doi.org/10.5800/gt-2018-9-4-0396
    Baluev, A. S., Zhuravlev, V. A., Przhiyalgovskii, E. S., 2009. New Data on the Structure of the Central Part of the White Sea Paleorift System. Doklady Earth Sciences, 427(2): 891–896. https://doi.org10.1134/s1028334x09060014
    Bao, F., Li, Z. W., Yuen, D. A., et al., 2018. Shallow Structure of the Tangshan Fault Zone Unveiled by Dense Seismic Array and Horizontal-to-Vertical Spectral Ratio Method. Physics of the Earth and Planetary Interiors, 281: 46–54. https://doi.org/10.1016/j.pepi.2018.05.004
    Bath, M., 1974. Spectral Studies in Meteorology, Oceanography and Microseismology. Spectral Analysis in Geophysics. Elsevier, Amsterdam, Netherlands. 409–462. https://doi.org/10.1016/b978-0-444-41222-5.50014-0
    Bendat, J. S., Piersol, A. G., 2010. Random Data: Analysis and Measurement Procedures. John Wiley, New York. 134–135. http://dx.doi.org/10.1002/9781118032428
    Bignardi, S., 2017. The Uncertainty of Estimating the Thickness of Soft Sediments with the HVSR Method: A Computational Point of View on Weak Lateral Variations. Journal of Applied Geophysics, 145: 28–38. https://doi.org/10.1016/j.jappgeo.2017.07.017
    Chebotareva, I. Y., Volodin, I. A., 2012. Control of Oil and Gas Development Based on the Use of Complex Passive Geophysical Methods of a New Generation. Georesources. Geoenergy. Geopolitics, 2(6): 550.8+553.9. http://oilgasjournal.ru/vol_6/chebotareva-volodin.html http://oilgasjournal.ru/vol_6/chebotareva-volodin.html
    Chester, F. M., Logan, J. M., 1987. Composite Planar Fabric of Gouge from the Punchbowl Fault, California. Journal of Structural Geology, 9(5/6): 621–IN6. https://doi.org/10.1016/0191-8141(87)90147-7
    Danilov, K. B., 2017. The Structure of the Onega Downthrown Block and Adjacent Geological Objects According to the Microseismic Sounding Method. Pure and Applied Geophysics, 174(7): 2663–2676. https://doi.org/10.1007/s00024-017-1542-x
    Danilov, K., Yakovlev, E., Afonin, N., 2021. Study of Deep Structure of the Kimberlite Pipe Named after M. Lomonosov of the Arkhangelsk Diamondiferous Province Obtained by Joint Using of Passive Seismic and Radiometric Methods. Pure and Applied Geophysics, 178(10): 3933–3952. https://doi.org/10.1007/s00024-021-02864-2
    Davis, G. H., Reynolds, S. J., Kluth, C. F., 2011. Structural Geology of Rocks and Regions. Wiley, New York. https://www.geokniga.org/books/23018 https://www.geokniga.org/books/23018
    de Santis, A., Cianchini, G., Favali, P., et al., 2011. The Gutenberg-Richter Law and Entropy of Earthquakes: Two Case Studies in Central Italy. Bulletin of the Seismological Society of America, 101(3): 1386–1395. https://doi.org/10.1785/0120090390
    Delgado, J., López Casado, C., Giner, J., et al., 2000. Microtremors as a Geophysical Exploration Tool: Applications and Limitations. Pure and Applied Geophysics, 157(9): 1445–1462. https://doi.org/10.1007/pl00001128
    Draganov, D., Campman, X., Thorbecke, J., et al., 2009. Reflection Images from Ambient Seismic Noise. Geophysics, 74(5): A63–A67. https://doi.org/10.1190/1.3193529
    Eaton, D. W., 2018. Passive Seismic Monitoring of Induced Seismicity. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316535547
    Egorkin, A. V., 1987. The structure of the Earth's Crust and Upper Mantle along the profiles of the Czech Lip – Pai-Hoi, the White Sea – Vorkuta, the Dvinskaya Lip – the Mezen River, the Onega River – the Czech Lip, the Vaga River – the White Sea. Report of the SRGE Cameral Party on the Results of Regional Seismic Surveys of the DSS and Earthquake Converted-Wave Method Conducted in 1985–1987 in the North of the European Part of the USSR: Sheets R-39, 40, 41, 42; Q-37, 38, 39, 40, 41; P-37, 38, Moscow, Rosgeolfond, Central Storage Facility (in Russian)
    Ermolaeva, G. M., 2002. Information Report on the Results of Work on the Topic: Seismic Surveys. Mezensyneclise (Profile I-I). Assigned Person. Arkhangelsk, Arkhangelsk TGF, inv. No 8996 (in Russian)
    Ganchin, Y. V., Smithson, S. B., Morozov, I. B., et al., 1998. Seismic Studies around the Kola Superdeep Borehole, Russia. Tectonophysics, 288(1/2/3/4): 1–16. https://doi.org/10.1016/s0040-1951(97)00280-1
    Godano, C., Lippiello, E., de Arcangelis, L., 2014. Variability of the b Value in the Gutenberg-Richter Distribution. Geophysical Journal International, 199(3): 1765–1771. https://doi.org/10.1093/gji/ggu359
    Gorbatikov, A. V., Montesinos, F. G., Arnoso, J., et al., 2013. New Features in the Subsurface Structure Model of El Hierro Island (Canaries) from Low-Frequency Microseismic Sounding: An Insight into the 2011 Seismo-Volcanic Crisis. Surveys in Geophysics, 34(4): 463–489. https://doi.org/10.1007/s10712-013-9240-4
    Gorbatikov, A. V., Stepanova, M. Y., Korablev, G. E., 2008. Microseismic Field Affected by Local Geological Heterogeneities and Microseismic Sounding of the Medium. Izvestiya, Physics of the Solid Earth, 44(7): 577–592. https://doi.org/10.1134/s1069351308070082
    Gorbatikov, A. V., Tsukanov, A. A., 2011. Simulation of the Rayleigh Waves in the Proximity of the Scattering Velocity Heterogeneities. Exploring the Capabilities of the Microseismic Sounding Method. Izvestiya, Physics of the Solid Earth, 47(4): 354–369. https://doi.org/10.1134/s1069351311030013
    Gosar, A., 2017. Study on the Applicability of the Microtremor HVSR Method to Support Seismic Microzonation in the Town of Idrija (W Slovenia). Natural Hazards and Earth System Sciences, 17(6): 925–937. https://doi.org/10.5194/nhess-17-925-2017
    Hatzfeld, D., Caillot, V., Cherkaoui, T. E., et al., 1993. Microearthquake Seismicity and Fault Plane Solutions around the Nékor Strike-Slip Fault, Morocco. Earth and Planetary Science Letters, 120(1/2): 31–41. https://doi.org/10.1016/0012-821x(93)90021-z
    Hellel, M., Oubaiche, E. H., Chatelain, J. L., et al., 2019. Efficiency of Ambient Vibration HVSR Investigations in Soil Engineering Studies: Backfill Study in the Algiers (Algeria) Harbor Container Terminal. Bulletin of Engineering Geology and the Environment, 78(7): 4989–5000. https://doi.org/10.1007/s10064-018-01458-y
    Ibs-von Seht, M., Wohlenberg, J., 1999. Microtremor Measurements Used to Map Thickness of Soft Sediments. The Bulletin of the Seismological Society of America, 89(1): 250–259. https://doi.org/10.1785/bssa0890010250
    Kadyrova, E. R., 2007. Report "Support of Field Work, Processing and Interpretation of the Results of Seismic Surveys MOGT-2D for the Arkhangelsk License Area". Assigned Person. Arkhangelsk Region, Engineering Geology-Arkhangelsk: Arkhangelsk TGF, inv. No. 9887 (in Russian)
    Kanamori, K., F'yuz, G., Nevskii, M. V., 1979. Temporal vVariations of Residuals in Travel Time of R-wave on Stations of Southern California by the Data of Quarry Explosions. Collection of Soviet-American Works on Prediction of Earthquakes, 2(1): 81–94
    Kangarli, T., Mammadli, T., Aliyev, F., et al., 2022. Revelation of Potentially Seismic Dangerous Tectonic Structures in a View of Modern Geodynamics of the Eastern Caucasus (Azerbaijan). In: Cengiz, M., Karabulut, S., eds., Earth's Crust and Its Evolution - From Pangea to the Present Continents, IntechOpen https://doi.org/10.5772/intechopen.101274
    Kasahara, K., 1979. Migration of Crustal Deformation. Development in Geotectonics, 13: 329–341. https://doi.org/10.1016/b978-0-444-41783-1.50052-0
    Kim, Y. -S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26: 503–517. https://doi.org/10.1016/j.jsg.2003.08.002
    Kocharyan, G. G., Spivak, A. A., 2003. The Dynamics of Deformation of Block Massifs of Rocks. Akademkniga, Moscow (in Russian)
    Köhler, A., Weidle, C., 2019. Potentials and Pitfalls of Permafrost Active Layer Monitoring Using the HVSR Method: A Case Study in Svalbard. Earth Surface Dynamics, 7(1): 1–16. https://doi.org/10.5194/esurf-7-1-2019
    Kostyuchenko, S. L., Zolotov, E. E., Rakitov, V. A., 2004. Sites of Profiles Quartz and Ruby, in Deep Structure and Seismicity of the Karelian Region and Its Margins. In: Sharov, N. V., ed., Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia. 76–85 (in Russian)
    Kutinov, Y. G., Chistova, Z. B., Polyakova, E. V., et al., 2019. Numerical Simulation of Topography to Predict Areas Prospective for Oil and Diamonds. Actual Problems of Oil and Gas, 1(24): UDC 550.8. 01. https://doi.org/10.29222/ipng.2078-5712.2019-24.art8
    Kutinov, Y. G., Chistova, Z. B., Polyakova, E. V., et al., 2020. Application of Digital Relief Models (DRM) to Identify Tectonic Structures of Ancient Platforms (on Example of the North-West of the Russian Plate). 229. ISBN: 978-5-91990-126-6 (in Russian)
    Lane, J. W. Jr, White, E. A., Steele, G. V., et al., 2008. Estimation of Bedrock Depth Using the Horizontal-to-Vertical (H/V) Ambient-Noise Seismic Method Symposium on the Application of Geophysics to Engineering and Environmental Problems 2008. Environment and Engineering Geophysical Society, 490–502. https://doi.org/10.4133/1.2963289
    Mazzotti, S., 2007. Geodynamic Models for Earthquake Studies in Intraplate North America. In: Stein, S., Mazzotti, S., eds., Spec. Pap. Geol. Soc. Am., 425: 17–33. https://doi.org/10.1130/2007.2425(02)
    Morozov, A. N., Vaganova, N. V., Asming, V. E., et al., 2018. Seismicity of the North of the Russian Plate: Relocation of Recent Earthquakese. Izvestiya, Physics of the Solid Earth, 54(2): 292–309. https://doi.org/10.1134/s1069351318020143
    Morozov, A. N., Vaganova, N. V., Konechnaya, Y. V., et al., 2020. Recent Seismicity in Northern European Russia. Journal of Seismology, 24(1): 37–53. https://doi.org/10.1007/s10950-019-09883-6
    Mukhamediev, S. A., Grachev, A. F., Yunga, S. L., 2008. Nonstationary Dynamic Control of Seismic Activity of Platform Regions by Mid-Ocean Ridges. Izvestiya, Physics of the Solid Earth, 44(1): 9–17. https://doi.org/10.1134/S1069351308010023
    Nakamura, Y. A., 1989. Method for Dynamic Characteristic Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research Institute, 30(1): 25–33. https://www.sdr.co.jp/papers/hv_1989.pdf https://www.sdr.co.jp/papers/hv_1989.pdf
    Oren, C., Nowack, R. L., 2017. Seismic Body-Wave Interferometry Using Noise Autocorrelations for Crustal Structure. Geophysical Journal International, 208(1): 321–332. https://doi.org/10.1093/gji/ggw394
    Parolai, S., 2002. New Relationships between Vs Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany). Bulletin of the Seismological Society of America, 92(6): 2521–2527. https://doi.org/10.1785/0120010248
    Poli, P., Campillo, M., Pedersen, H., 2012. Body-Wave Imaging of Earth's Mantle Discontinuities from Ambient Seismic Noise. Science, 338(6110): 1063–1065. https://doi.org/10.1126/science.1228194
    Romero, P., Schimmel, M., 2018. Mapping the Basement of the Ebro Basin in Spain with Seismic Ambient Noise Autocorrelations. Journal of Geophysical Research: Solid Earth, 123(6): 5052–5067. https://doi.org/10.1029/2018jb015498
    Rost, S., Thomas, C., 2002. Array Seismology: Methods and Applications. Reviews of Geophysics, 40(3): e2000rg000100. https://doi.org/10.1029/2000rg000100
    Rotstein, Y., Arieh, E., 1986. Tectonic Implications of Recent Microearthquake Data from Israel and Adjacent Areas. Earth and Planetary Science Letters, 78(2/3): 237–244. https://doi.org/10.1016/0012-821x(86)90064-6
    Roux, P., Sabra, K. G., Gerstoft, P., et al., 2005. P-Waves from Cross-Correlation of Seismic Noise. Geophysical Research Letters, 32(19): L19303. https://doi.org/10.1029/2005gl023803
    Ruigrok, E., Campman, X., Wapenaar, K., 2011. Extraction of P-Wave Reflections from Microseisms. Comptes Rendus Geoscience, 343(8/9): 512–525. https://doi.org/10.1016/j.crte.2011.02.006
    Rykunov, L. N., Khavroshkin, O. B., Tsyplakov, V. V., 1980. Lunar–Solar Tidal Periodicity in the Line Spectra of Time Variations of High Frequency Microseisms. Dokl. AN SSSR, 252(3): 577–580
    Schweitzer, J., Fyen, J., Mykkeltveit, S., et al., 2012. Seismic arrays. In: Bormann, P., ed., New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungs Zentrum GFZ, Potsdam. https://doi.org/10.2312/gfz.nmsop-2_ch9
    Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 307(5715): 1615–1618. https://doi.org/10.1126/science.1108339
    Sharov, N. V., 2017. Lithosphere of Northern Europe According to Seismic Data, Karelian Research Centre, Petrozavodsk. https://core.ac.uk/download/pdf/226291678.pdf
    Shipton, Z. K., Cowie, P. A., 2003. A Conceptual Model for the Origin of Fault Damage Zone Structures in High-Porosity Sandstone. Journal of Structural Geology, 25(3): 333–344. https://doi.org/10.1016/s0191-8141(02)00037-8
    Skordas, E., Meyer, K., Olsson, R., et al., 1991. Causality between Interplate (North Atlantic) and Intraplate (Fennoscandia) Seismicities. Tectonophysics, 185(3/4): 295–307. https://doi.org/10.1016/0040-1951(91)90450-7
    Smithson, S. B., Wenzel, F., Ganchin, Y. V., et al., 2000. Seismic Results at Kola and KTB Deep Scientific Boreholes: Velocities, Reflections, Fluids, and Crustal Composition. Tectonophysics, 329(1/2/3/4): 301–317. https://doi.org/10.1016/s0040-1951(00)00200-6
    Sobissevitch, A. L., Gorbatikov, A. V., Ovsuchenko, A. N., 2008. Deep Structure of the Mt. Karabetov Mud Volcano. Doklady Earth Sciences, 422(1): 1181–1185. https://doi.org/10.1134/s1028334x08070428
    Sornette, D., Knopoff, L., Kagan, Y. Y., et al., 1996. Rank-Ordering Statistics of Extreme Events: Application to the Distribution of Large Earthquakes. Journal of Geophysical Research: Solid Earth, 101(B6): 13883–13893. https://doi.org/10.1029/96jb00177
    Tary, J. B., Hobbs, R. W., Peirce, C., et al., 2021. Local Rift and Intraplate Seismicity Reveal Shallow Crustal Fluid-Related Activity and Sub-Crustal Faulting. Earth and Planetary Science Letters, 562: 116857. https://doi.org/10.1016/j.epsl.2021.116857
    Taylor, G., Rost, S., Houseman, G., 2016. Crustal Imaging across the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise. Geophysical Research Letters, 43(6): 2502–2509. https://doi.org/10.1002/2016gl067715
    Thingbaijam, K. K. S., Martin Mai, P., Goda, K., 2017. New Empirical Earthquake Source-Scaling Laws. Bulletin of the Seismological Society of America, 107(5): 2225–2246. https://doi.org/10.1785/0120170017
    Tibuleac, I. M., von Seggern, D., 2012. Crust-Mantle Boundary Reflectors in Nevada from Ambient Seismic Noise Autocorrelations. Geophysical Journal International, 189(1): 493–500. https://doi.org/10.1111/j.1365-246x.2011.05336.x
    Wapenaar, K., Slob, E., Snieder, R., et al., 2010. Tutorial on Seismic Interferometry: Part 2—Underlying Theory and New Advances. Geophysics, 75(5): 75A211–75A227. https://doi.org/10.1190/1.3463440
    Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974–1002. https://doi.org/10.1785/bssa0840040974
    Xia, S. H., Zhou, P. X., Zhao, D. P., et al., 2020. Seismogenic Structure in the Source Zone of the 1918 M7.5 NanAo Earthquake in the Northern South China Sea. Physics of the Earth and Planetary Interiors, 302: 106472. https://doi.org/10.1016/j.pepi.2020.106472
    Yudakhin, F. N., Kapustyan, N. K., Antonovskaya, G. N., et al., 2010. Study of the Transformation Processes of External Impacts by Block Media on Field Models. Doklady Earth Sciences, 431(2): 474–478. https://doi.org/10.1134/s1028334x10040148
    Yukutake, Y., Honda, R., Harada, M., et al., 2017. Analyzing the Continuous Volcanic Tremors Detected during the 2015 Phreatic Eruption of the Hakone Volcano. Earth, Planets and Space, 69(1): 164. https://doi.org/10.1186/s40623-017-0751-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(10) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return