Citation: | Konstantin Danilov, Galina Antonovskaya, Irina Basakina, Eugenia Shakhova, Natalia Kapustian. Passive Seismic Investigation of Intraplate Earthquakes Epicentral Zones in the North of Russia as One of the Ways to Understand Their Source Mechanics. Journal of Earth Science, 2025, 36(2): 764-780. doi: 10.1007/s12583-024-0053-9 |
Studying the inner structure of intraplate earthquakes originating in aseismic areas, which are poorly covered by seismic networks or as historical earthquakes is usually the only way to get knowledge about their source mechanisms, which is partially essential for a deeper understanding of intraplate geodynamics. The epicentral zones of earthquakes are situated in hard-to-reach areas, so, using active seismic methods for such purposes is unreasonable or even impossible because of high cost and logistical difficulties. We propose a novel approach that combines diverse passive seismic methods, which allows us to get sufficient information about geological environment structure for such task solutions. As an example, we investigated the inner structure of platform earthquake epicentral zone originated up north of Russia. We used four passive seismic methods: microseismic sounding method, passive seismic interferometry, HVSR method, and microseismic activity method. We show that passive seismic data, recoded in the same installation and processed by these different methods, can provide sufficient information about structure of studied environment, needed to explain source mechanism. In sum, the hypocenter zone is presented by intersection of vertical faults and a lateral fractured zone in the middle crust. Results were confirmed by comparison with results by active seismic methods.
Afonin, N., Kozlovskaya, E., Kukkonen, I., et al., 2017. Structure of the Suasselkä Postglacial Fault in Northern Finland Obtained by Analysis of Local Events and Ambient Seismic Noise. Solid Earth, 8(2): 531–544. https://doi.org/10.5194/se-8-531-2017 |
Afonin, N., Kozlovskaya, E., Moisio, K., et al., 2024. Frost Quakes in Wetlands in Northern Finland during Extreme Winter Weather Conditions and Related Hazard to Urban Infrastructure. The Cryosphere, 18(5): 2223–2238. https://doi.org/10.5194/tc-18-2223-2024 |
Afonin, N., Kozlovskaya, E., Nevalainen, J., et al., 2019. Improving the Quality of Empirical Green's Functions, Obtained by Cross-Correlation of High-Frequency Ambient Seismic Noise. Solid Earth, 10(5): 1621–1634. https://doi.org/10.5194/se-10-1621-2019 |
Anbazhagan, P., Srilakshmi, K. N., Bajaj, K., et al., 2019. Determination of Seismic Site Classification of Seismic Recording Stations in the Himalayan Region Using HVSR Method. Soil Dynamics and Earthquake Engineering, 116: 304–316. https://doi.org/10.1016/j.soildyn.2018.10.023 |
Anderson, J. G., Wesnousky, S. G., Stirling, M. W., 1996. Earthquake Size as a Function of Fault Slip Rate. Bulletin of the Seismological Society of America, 86(3): 683–690. https://doi.org/10.1785/bssa0860030683 |
Antonovskaya, G. N., Basakina, I. M., Vaganova, N. V., et al., 2021. Spatiotemporal Relationship between Arctic Mid-Ocean Ridge System and Intraplate Seismicity of the European Arctic. Seismological Research Letters, 92(5): 2876–2890. https://doi.org/10.1785/0220210024 |
Aplonov, S. V., Burzin, M. B., Weiss, A. F., et al., 2006. Geodynamics and Possible Oil and Gas Bearing of the Mezen Sedimentary Basin. Science, St. Petersburg, Russia. 116–145 (in Russian) |
Artyushkov, E. V., Kol'ka, V. V., Chekhovich, P. A., 2020. The Occurrence of a Lower Viscosity Layer in the Crust of Old Cratons as a Cause of the Strongly Differentiated Character of Postglacial Uplift. Doklady Earth Sciences, 492(1): 351–355. https://doi.org/10.1134/s1028334x20050037 |
Baluev, A. S., Brusilovsky, Y. V., Ivanenko, A. N., 2018. The Crustal Structure of Onega-Kandalaksha Paleorift Identified by Complex Analysis of the Anomalous Magnetic Field of the White Sea. Geodynamics & Tectonophysics, 9(4): 1293–1312. https://doi.org/10.5800/gt-2018-9-4-0396 |
Baluev, A. S., Zhuravlev, V. A., Przhiyalgovskii, E. S., 2009. New Data on the Structure of the Central Part of the White Sea Paleorift System. Doklady Earth Sciences, 427(2): 891–896. https://doi.org10.1134/s1028334x09060014 |
Bao, F., Li, Z. W., Yuen, D. A., et al., 2018. Shallow Structure of the Tangshan Fault Zone Unveiled by Dense Seismic Array and Horizontal-to-Vertical Spectral Ratio Method. Physics of the Earth and Planetary Interiors, 281: 46–54. https://doi.org/10.1016/j.pepi.2018.05.004 |
Bath, M., 1974. Spectral Studies in Meteorology, Oceanography and Microseismology. Spectral Analysis in Geophysics. Elsevier, Amsterdam, Netherlands. 409–462. https://doi.org/10.1016/b978-0-444-41222-5.50014-0 |
Bendat, J. S., Piersol, A. G., 2010. Random Data: Analysis and Measurement Procedures. John Wiley, New York. 134–135. http://dx.doi.org/10.1002/9781118032428 |
Bignardi, S., 2017. The Uncertainty of Estimating the Thickness of Soft Sediments with the HVSR Method: A Computational Point of View on Weak Lateral Variations. Journal of Applied Geophysics, 145: 28–38. https://doi.org/10.1016/j.jappgeo.2017.07.017 |
Chebotareva, I. Y., Volodin, I. A., 2012. Control of Oil and Gas Development Based on the Use of Complex Passive Geophysical Methods of a New Generation. Georesources. Geoenergy. Geopolitics, 2(6): 550.8+553.9. http://oilgasjournal.ru/vol_6/chebotareva-volodin.html http://oilgasjournal.ru/vol_6/chebotareva-volodin.html |
Chester, F. M., Logan, J. M., 1987. Composite Planar Fabric of Gouge from the Punchbowl Fault, California. Journal of Structural Geology, 9(5/6): 621–IN6. https://doi.org/10.1016/0191-8141(87)90147-7 |
Danilov, K. B., 2017. The Structure of the Onega Downthrown Block and Adjacent Geological Objects According to the Microseismic Sounding Method. Pure and Applied Geophysics, 174(7): 2663–2676. https://doi.org/10.1007/s00024-017-1542-x |
Danilov, K., Yakovlev, E., Afonin, N., 2021. Study of Deep Structure of the Kimberlite Pipe Named after M. Lomonosov of the Arkhangelsk Diamondiferous Province Obtained by Joint Using of Passive Seismic and Radiometric Methods. Pure and Applied Geophysics, 178(10): 3933–3952. https://doi.org/10.1007/s00024-021-02864-2 |
Davis, G. H., Reynolds, S. J., Kluth, C. F., 2011. Structural Geology of Rocks and Regions. Wiley, New York. https://www.geokniga.org/books/23018 https://www.geokniga.org/books/23018 |
de Santis, A., Cianchini, G., Favali, P., et al., 2011. The Gutenberg-Richter Law and Entropy of Earthquakes: Two Case Studies in Central Italy. Bulletin of the Seismological Society of America, 101(3): 1386–1395. https://doi.org/10.1785/0120090390 |
Delgado, J., López Casado, C., Giner, J., et al., 2000. Microtremors as a Geophysical Exploration Tool: Applications and Limitations. Pure and Applied Geophysics, 157(9): 1445–1462. https://doi.org/10.1007/pl00001128 |
Draganov, D., Campman, X., Thorbecke, J., et al., 2009. Reflection Images from Ambient Seismic Noise. Geophysics, 74(5): A63–A67. https://doi.org/10.1190/1.3193529 |
Eaton, D. W., 2018. Passive Seismic Monitoring of Induced Seismicity. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316535547 |
Egorkin, A. V., 1987. The structure of the Earth's Crust and Upper Mantle along the profiles of the Czech Lip – Pai-Hoi, the White Sea – Vorkuta, the Dvinskaya Lip – the Mezen River, the Onega River – the Czech Lip, the Vaga River – the White Sea. Report of the SRGE Cameral Party on the Results of Regional Seismic Surveys of the DSS and Earthquake Converted-Wave Method Conducted in 1985–1987 in the North of the European Part of the USSR: Sheets R-39, 40, 41, 42; Q-37, 38, 39, 40, 41; P-37, 38, Moscow, Rosgeolfond, Central Storage Facility (in Russian) |
Ermolaeva, G. M., 2002. Information Report on the Results of Work on the Topic: Seismic Surveys. Mezensyneclise (Profile I-I). Assigned Person. Arkhangelsk, Arkhangelsk TGF, inv. No 8996 (in Russian) |
Ganchin, Y. V., Smithson, S. B., Morozov, I. B., et al., 1998. Seismic Studies around the Kola Superdeep Borehole, Russia. Tectonophysics, 288(1/2/3/4): 1–16. https://doi.org/10.1016/s0040-1951(97)00280-1 |
Godano, C., Lippiello, E., de Arcangelis, L., 2014. Variability of the b Value in the Gutenberg-Richter Distribution. Geophysical Journal International, 199(3): 1765–1771. https://doi.org/10.1093/gji/ggu359 |
Gorbatikov, A. V., Montesinos, F. G., Arnoso, J., et al., 2013. New Features in the Subsurface Structure Model of El Hierro Island (Canaries) from Low-Frequency Microseismic Sounding: An Insight into the 2011 Seismo-Volcanic Crisis. Surveys in Geophysics, 34(4): 463–489. https://doi.org/10.1007/s10712-013-9240-4 |
Gorbatikov, A. V., Stepanova, M. Y., Korablev, G. E., 2008. Microseismic Field Affected by Local Geological Heterogeneities and Microseismic Sounding of the Medium. Izvestiya, Physics of the Solid Earth, 44(7): 577–592. https://doi.org/10.1134/s1069351308070082 |
Gorbatikov, A. V., Tsukanov, A. A., 2011. Simulation of the Rayleigh Waves in the Proximity of the Scattering Velocity Heterogeneities. Exploring the Capabilities of the Microseismic Sounding Method. Izvestiya, Physics of the Solid Earth, 47(4): 354–369. https://doi.org/10.1134/s1069351311030013 |
Gosar, A., 2017. Study on the Applicability of the Microtremor HVSR Method to Support Seismic Microzonation in the Town of Idrija (W Slovenia). Natural Hazards and Earth System Sciences, 17(6): 925–937. https://doi.org/10.5194/nhess-17-925-2017 |
Hatzfeld, D., Caillot, V., Cherkaoui, T. E., et al., 1993. Microearthquake Seismicity and Fault Plane Solutions around the Nékor Strike-Slip Fault, Morocco. Earth and Planetary Science Letters, 120(1/2): 31–41. https://doi.org/10.1016/0012-821x(93)90021-z |
Hellel, M., Oubaiche, E. H., Chatelain, J. L., et al., 2019. Efficiency of Ambient Vibration HVSR Investigations in Soil Engineering Studies: Backfill Study in the Algiers (Algeria) Harbor Container Terminal. Bulletin of Engineering Geology and the Environment, 78(7): 4989–5000. https://doi.org/10.1007/s10064-018-01458-y |
Ibs-von Seht, M., Wohlenberg, J., 1999. Microtremor Measurements Used to Map Thickness of Soft Sediments. The Bulletin of the Seismological Society of America, 89(1): 250–259. https://doi.org/10.1785/bssa0890010250 |
Kadyrova, E. R., 2007. Report "Support of Field Work, Processing and Interpretation of the Results of Seismic Surveys MOGT-2D for the Arkhangelsk License Area". Assigned Person. Arkhangelsk Region, Engineering Geology-Arkhangelsk: Arkhangelsk TGF, inv. No. 9887 (in Russian) |
Kanamori, K., F'yuz, G., Nevskii, M. V., 1979. Temporal vVariations of Residuals in Travel Time of R-wave on Stations of Southern California by the Data of Quarry Explosions. Collection of Soviet-American Works on Prediction of Earthquakes, 2(1): 81–94 |
Kangarli, T., Mammadli, T., Aliyev, F., et al., 2022. Revelation of Potentially Seismic Dangerous Tectonic Structures in a View of Modern Geodynamics of the Eastern Caucasus (Azerbaijan). In: Cengiz, M., Karabulut, S., eds., Earth's Crust and Its Evolution - From Pangea to the Present Continents, IntechOpen |
Kasahara, K., 1979. Migration of Crustal Deformation. Development in Geotectonics, 13: 329–341. https://doi.org/10.1016/b978-0-444-41783-1.50052-0 |
Kim, Y. -S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26: 503–517. https://doi.org/10.1016/j.jsg.2003.08.002 |
Kocharyan, G. G., Spivak, A. A., 2003. The Dynamics of Deformation of Block Massifs of Rocks. Akademkniga, Moscow (in Russian) |
Köhler, A., Weidle, C., 2019. Potentials and Pitfalls of Permafrost Active Layer Monitoring Using the HVSR Method: A Case Study in Svalbard. Earth Surface Dynamics, 7(1): 1–16. https://doi.org/10.5194/esurf-7-1-2019 |
Kostyuchenko, S. L., Zolotov, E. E., Rakitov, V. A., 2004. Sites of Profiles Quartz and Ruby, in Deep Structure and Seismicity of the Karelian Region and Its Margins. In: Sharov, N. V., ed., Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia. 76–85 (in Russian) |
Kutinov, Y. G., Chistova, Z. B., Polyakova, E. V., et al., 2019. Numerical Simulation of Topography to Predict Areas Prospective for Oil and Diamonds. Actual Problems of Oil and Gas, 1(24): UDC 550.8. 01. https://doi.org/10.29222/ipng.2078-5712.2019-24.art8 |
Kutinov, Y. G., Chistova, Z. B., Polyakova, E. V., et al., 2020. Application of Digital Relief Models (DRM) to Identify Tectonic Structures of Ancient Platforms (on Example of the North-West of the Russian Plate). 229. ISBN: 978-5-91990-126-6 (in Russian) |
Lane, J. W. Jr, White, E. A., Steele, G. V., et al., 2008. Estimation of Bedrock Depth Using the Horizontal-to-Vertical (H/V) Ambient-Noise Seismic Method Symposium on the Application of Geophysics to Engineering and Environmental Problems 2008. Environment and Engineering Geophysical Society, 490–502. https://doi.org/10.4133/1.2963289 |
Mazzotti, S., 2007. Geodynamic Models for Earthquake Studies in Intraplate North America. In: Stein, S., Mazzotti, S., eds., Spec. Pap. Geol. Soc. Am., 425: 17–33. |
Morozov, A. N., Vaganova, N. V., Asming, V. E., et al., 2018. Seismicity of the North of the Russian Plate: Relocation of Recent Earthquakese. Izvestiya, Physics of the Solid Earth, 54(2): 292–309. https://doi.org/10.1134/s1069351318020143 |
Morozov, A. N., Vaganova, N. V., Konechnaya, Y. V., et al., 2020. Recent Seismicity in Northern European Russia. Journal of Seismology, 24(1): 37–53. https://doi.org/10.1007/s10950-019-09883-6 |
Mukhamediev, S. A., Grachev, A. F., Yunga, S. L., 2008. Nonstationary Dynamic Control of Seismic Activity of Platform Regions by Mid-Ocean Ridges. Izvestiya, Physics of the Solid Earth, 44(1): 9–17. https://doi.org/10.1134/S1069351308010023 |
Nakamura, Y. A., 1989. Method for Dynamic Characteristic Estimation of Subsurface Using Microtremor on the Ground Surface. Quarterly Report of Railway Technical Research Institute, 30(1): 25–33. https://www.sdr.co.jp/papers/hv_1989.pdf https://www.sdr.co.jp/papers/hv_1989.pdf |
Oren, C., Nowack, R. L., 2017. Seismic Body-Wave Interferometry Using Noise Autocorrelations for Crustal Structure. Geophysical Journal International, 208(1): 321–332. https://doi.org/10.1093/gji/ggw394 |
Parolai, S., 2002. New Relationships between Vs Thickness of Sediments, and Resonance Frequency Calculated by the H/V Ratio of Seismic Noise for the Cologne Area (Germany). Bulletin of the Seismological Society of America, 92(6): 2521–2527. https://doi.org/10.1785/0120010248 |
Poli, P., Campillo, M., Pedersen, H., 2012. Body-Wave Imaging of Earth's Mantle Discontinuities from Ambient Seismic Noise. Science, 338(6110): 1063–1065. https://doi.org/10.1126/science.1228194 |
Romero, P., Schimmel, M., 2018. Mapping the Basement of the Ebro Basin in Spain with Seismic Ambient Noise Autocorrelations. Journal of Geophysical Research: Solid Earth, 123(6): 5052–5067. https://doi.org/10.1029/2018jb015498 |
Rost, S., Thomas, C., 2002. Array Seismology: Methods and Applications. Reviews of Geophysics, 40(3): e2000rg000100. https://doi.org/10.1029/2000rg000100 |
Rotstein, Y., Arieh, E., 1986. Tectonic Implications of Recent Microearthquake Data from Israel and Adjacent Areas. Earth and Planetary Science Letters, 78(2/3): 237–244. https://doi.org/10.1016/0012-821x(86)90064-6 |
Roux, P., Sabra, K. G., Gerstoft, P., et al., 2005. P-Waves from Cross-Correlation of Seismic Noise. Geophysical Research Letters, 32(19): L19303. https://doi.org/10.1029/2005gl023803 |
Ruigrok, E., Campman, X., Wapenaar, K., 2011. Extraction of P-Wave Reflections from Microseisms. Comptes Rendus Geoscience, 343(8/9): 512–525. https://doi.org/10.1016/j.crte.2011.02.006 |
Rykunov, L. N., Khavroshkin, O. B., Tsyplakov, V. V., 1980. Lunar–Solar Tidal Periodicity in the Line Spectra of Time Variations of High Frequency Microseisms. Dokl. AN SSSR, 252(3): 577–580 |
Schweitzer, J., Fyen, J., Mykkeltveit, S., et al., 2012. Seismic arrays. In: Bormann, P., ed., New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungs Zentrum GFZ, Potsdam. |
Shapiro, N. M., Campillo, M., Stehly, L., et al., 2005. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 307(5715): 1615–1618. https://doi.org/10.1126/science.1108339 |
Sharov, N. V., 2017. Lithosphere of Northern Europe According to Seismic Data, Karelian Research Centre, Petrozavodsk. |
Shipton, Z. K., Cowie, P. A., 2003. A Conceptual Model for the Origin of Fault Damage Zone Structures in High-Porosity Sandstone. Journal of Structural Geology, 25(3): 333–344. https://doi.org/10.1016/s0191-8141(02)00037-8 |
Skordas, E., Meyer, K., Olsson, R., et al., 1991. Causality between Interplate (North Atlantic) and Intraplate (Fennoscandia) Seismicities. Tectonophysics, 185(3/4): 295–307. https://doi.org/10.1016/0040-1951(91)90450-7 |
Smithson, S. B., Wenzel, F., Ganchin, Y. V., et al., 2000. Seismic Results at Kola and KTB Deep Scientific Boreholes: Velocities, Reflections, Fluids, and Crustal Composition. Tectonophysics, 329(1/2/3/4): 301–317. https://doi.org/10.1016/s0040-1951(00)00200-6 |
Sobissevitch, A. L., Gorbatikov, A. V., Ovsuchenko, A. N., 2008. Deep Structure of the Mt. Karabetov Mud Volcano. Doklady Earth Sciences, 422(1): 1181–1185. https://doi.org/10.1134/s1028334x08070428 |
Sornette, D., Knopoff, L., Kagan, Y. Y., et al., 1996. Rank-Ordering Statistics of Extreme Events: Application to the Distribution of Large Earthquakes. Journal of Geophysical Research: Solid Earth, 101(B6): 13883–13893. https://doi.org/10.1029/96jb00177 |
Tary, J. B., Hobbs, R. W., Peirce, C., et al., 2021. Local Rift and Intraplate Seismicity Reveal Shallow Crustal Fluid-Related Activity and Sub-Crustal Faulting. Earth and Planetary Science Letters, 562: 116857. https://doi.org/10.1016/j.epsl.2021.116857 |
Taylor, G., Rost, S., Houseman, G., 2016. Crustal Imaging across the North Anatolian Fault Zone from the Autocorrelation of Ambient Seismic Noise. Geophysical Research Letters, 43(6): 2502–2509. https://doi.org/10.1002/2016gl067715 |
Thingbaijam, K. K. S., Martin Mai, P., Goda, K., 2017. New Empirical Earthquake Source-Scaling Laws. Bulletin of the Seismological Society of America, 107(5): 2225–2246. https://doi.org/10.1785/0120170017 |
Tibuleac, I. M., von Seggern, D., 2012. Crust-Mantle Boundary Reflectors in Nevada from Ambient Seismic Noise Autocorrelations. Geophysical Journal International, 189(1): 493–500. https://doi.org/10.1111/j.1365-246x.2011.05336.x |
Wapenaar, K., Slob, E., Snieder, R., et al., 2010. Tutorial on Seismic Interferometry: Part 2—Underlying Theory and New Advances. Geophysics, 75(5): 75A211–75A227. https://doi.org/10.1190/1.3463440 |
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974–1002. https://doi.org/10.1785/bssa0840040974 |
Xia, S. H., Zhou, P. X., Zhao, D. P., et al., 2020. Seismogenic Structure in the Source Zone of the 1918 M7.5 NanAo Earthquake in the Northern South China Sea. Physics of the Earth and Planetary Interiors, 302: 106472. https://doi.org/10.1016/j.pepi.2020.106472 |
Yudakhin, F. N., Kapustyan, N. K., Antonovskaya, G. N., et al., 2010. Study of the Transformation Processes of External Impacts by Block Media on Field Models. Doklady Earth Sciences, 431(2): 474–478. https://doi.org/10.1134/s1028334x10040148 |
Yukutake, Y., Honda, R., Harada, M., et al., 2017. Analyzing the Continuous Volcanic Tremors Detected during the 2015 Phreatic Eruption of the Hakone Volcano. Earth, Planets and Space, 69(1): 164. https://doi.org/10.1186/s40623-017-0751-y |