Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Lei Han, Ang Hu, Hellen Lucas Mzuka, Xingting Chen, Ji Shen, Jianjun Wang. Molecular Properties of Dissolved Organic Matter across Earth Systems: A Meta-Analysis. Journal of Earth Science, 2025, 36(6): 2674-2688. doi: 10.1007/s12583-024-0061-9
Citation: Lei Han, Ang Hu, Hellen Lucas Mzuka, Xingting Chen, Ji Shen, Jianjun Wang. Molecular Properties of Dissolved Organic Matter across Earth Systems: A Meta-Analysis. Journal of Earth Science, 2025, 36(6): 2674-2688. doi: 10.1007/s12583-024-0061-9

Molecular Properties of Dissolved Organic Matter across Earth Systems: A Meta-Analysis

doi: 10.1007/s12583-024-0061-9
More Information
  • Corresponding author: Ang Hu, anghu@niglas.ac.cn
  • Received Date: 10 Apr 2024
  • Accepted Date: 29 Jun 2024
  • Issue Publish Date: 30 Dec 2025
  • Dissolved organic matter (DOM) represents the largest pool of reactive carbon on the Earth and plays a crucial role in various biogeochemical processes and ecosystem functions. However, it is understudied for a global understanding of DOM molecular properties such as molecular weight, stoichiometry, and oxidation state, and the linkages among them across Earth systems. Here, a meta-analysis of 2 707 sites in 204 literatures was conducted by synthesizing four representative molecular properties of DOM, i.e., mass, double bond equivalent (DBE), modified aromaticity index (AImod), and nominal oxidation state of carbon (NOSC). By exploring H/C and O/C ratios, we examined the relationships among these DOM properties across waters and land systems, and their geographical patterns and environmental drivers. We found that, compared to land system, the mass, DBE, and AImod were all significantly higher in water systems, with river sediments exhibiting the highest values. The DOM oxidation state indicated by NOSC was greater on average in wastewater (NOSC = 0.226 ± 0.06) and marine water (NOSC = 0.133 ± 0.06) than in other habitats. Compared to waters, the mass in land system showed more strongly positive correlations with oxidation states such as NOSC and O/C, and the NOSC showed stronger relations to bioavailability properties such as DBE, AImod, and H/C. Among all the properties, H/C and AImod contributed to the most variations in global DOM properties. In waters, NOSC monotonically increased towards high latitudes, while DBE and AImod showed significant hump-shaped patterns indicating peaked unsaturation and aromaticity at mid-latitudes of approximately absolute 30°–50°. The variations in DOM properties were significantly correlated with environmental factors such as annual mean temperature and pH. Collectively, we revealed the spatial distribution and environmental drivers of DOM molecular properties across Earth ecosystems, which could shed light on our comprehensive understanding of DOM characteristics and its dynamics.

     

  • Electronic Supplementary Materials: Supplementary materials (ESM Ⅰ Figures S1–S3, ESM Ⅱ Tables S1–S4) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0061-9.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Ahonen, S. A., Hayden, B., Leppänen, J. J., et al., 2018. Climate and Productivity Affect Total Mercury Concentration and Bioaccumulation Rate of Fish along a Spatial Gradient of Subarctic Lakes. Science of the Total Environment, 637/638: 1586–1596. https://doi.org/10.1016/j.scitotenv.2018.04.436
    Bahureksa, W., Tfaily, M. M., Boiteau, R. M., et al., 2021. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environmental Science & Technology, 55(14): 9637–9656. https://doi.org/10.1021/acs.est.1c01135
    Begum, M. S., Park, J. H., Yang, L. Y., et al., 2023. Optical and Molecular Indices of Dissolved Organic Matter for Estimating Biodegradability and Resulting Carbon Dioxide Production in Inland waters: A Review. Water Research, 228: 119362. https://doi.org/10.1016/j.watres.2022.119362
    Benk, S. A., Li, Y., Roth, V. N., et al., 2018. Lignin Dimers as Potential Markers for 14C-Young Terrestrial Dissolved Organic Matter in the Critical Zone. Frontiers in Earth Science, 6: 168. https://doi.org/10.3389/feart.2018.00168
    Benner, R., Amon, R. M. W., 2015. The Size-Reactivity Continuum of Major Bioelements in the Ocean. Annual Review of Marine Science, 7: 185–205. https://doi.org/10.1146/annurev-marine-010213-135126
    Boye, K., Noël, V., Tfaily, M. M., et al., 2017. Thermodynamically Controlled Preservation of Organic Carbon in Floodplains. Nature Geoscience, 10(6): 415–419. https://doi.org/10.1038/ngeo2940
    Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5–32. https://doi.org/10.1023/a:1010933404324
    Brown, V. A., 2021. An Introduction to Linear Mixed-Effects Modeling in R. Advances in Methods and Practices in Psychological Science, 4(1): 2–30. https://doi.org/10.1177/2515245920960351
    Butturini, A., Herzsprung, P., Lechtenfeld, O. J., et al., 2022. Origin, Accumulation and Fate of Dissolved Organic Matter in an Extreme Hypersaline Shallow Lake. Water Research, 221: 118727. https://doi.org/10.1016/j.watres.2022.118727
    Butturini, A., Herzsprung, P., Lechtenfeld, O. J., et al., 2020. Dissolved Organic Matter in a Tropical Saline-Alkaline Lake of the East African Rift Valley. Water Research, 173: 115532. https://doi.org/10.1016/j.watres.2020.115532
    Cai, R. H., Jiao, N. Z., 2023. Recalcitrant Dissolved Organic Matter and Its Major Production and Removal Processes in the Ocean. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 191: 103922. https://doi.org/10.1016/j.dsr.2022.103922
    Cai, R. H., Zhou, W. C., He, C., et al., 2019. Microbial Processing of Sediment-Derived Dissolved Organic Matter: Implications for Its Subsequent Biogeochemical Cycling in Overlying Seawater. Journal of Geophysical Research: Biogeosciences, 124(11): 3479–3490. https://doi.org/10.1029/2019jg005212
    Carena, L., García-Gil, Á., Marugán, J., et al., 2023. Global Modeling of Lake-Water Indirect Photochemistry Based on the Equivalent Monochromatic Wavelength Approximation: The Case of the Triplet States of Chromophoric Dissolved Organic Matter. Water Research, 241: 120153. https://doi.org/10.1016/j.watres.2023.120153
    Catalán, N., Marcé, R., Kothawala, D. N., et al., 2016. Organic Carbon Decomposition Rates Controlled by Water Retention Time across Inland Waters. Nature Geoscience, 9(7): 501–504. https://doi.org/10.1038/ngeo2720
    Chen, Q., Chen, F., Gonsior, M., et al., 2021. Correspondence between DOM Molecules and Microbial Community in a Subtropical Coastal Estuary on a Spatiotemporal Scale. Environment International, 154: 106558. https://doi.org/10.1016/j.envint.2021.106558
    Chen, W. M., Gu, Z. P., He, C., et al., 2023. Molecular Characteristics and Formation Mechanisms of Unknown Ozonation Byproducts during the Treatment of Flocculated Nanofiltration Leachate Concentrates Using O3 and UV/O3 Processes. Environmental Science & Technology, 57(48): 20349–20359. https://doi.org/10.1021/acs.est.3c05134
    Chen, W., Teng, C. Y., Qian, C., et al., 2019. Characterizing Properties and Environmental Behaviors of Dissolved Organic Matter Using Two-Dimensional Correlation Spectroscopic Analysis. Environmental Science & Technology, 53(9): 4683–4694. https://doi.org/10.1021/acs.est.9b01103
    Chen, Z. L., Zhang, H. B., Yi, Y. B., et al., 2024. Dissolved Organic Matter Composition and Characteristics during Extreme Flood Events in the Yangtze River Estuary. Science of the Total Environment, 914: 169827. https://doi.org/10.1016/j.scitotenv.2023.169827
    Creed, I. F., Bergström, A. K., Trick, C. G., et al., 2018. Global Change-Driven Effects on Dissolved Organic Matter Composition: Implications for Food Webs of Northern Lakes. Global Change Biology, 24(8): 3692–3714. https://doi.org/10.1111/gcb.14129
    D'Andrilli, J., Cooper, W. T., Foreman, C. M., et al., 2015. An Ultrahigh-Resolution Mass Spectrometry Index to Estimate Natural Organic Matter Lability. Rapid Communications in Mass Spectrometry, 29(24): 2385–2401. https://doi.org/10.1002/rcm.7400
    D'Andrilli, J., Junker, J. R., Smith, H. J., et al., 2019. DOM Composition Alters Ecosystem Function during Microbial Processing of Isolated Sources. Biogeochemistry, 142(2): 281–298. https://doi.org/10.1007/s10533-018-00534-5
    DiDonato, N., Chen, H. M., Waggoner, D., et al., 2016. Potential Origin and Formation for Molecular Components of Humic Acids in Soils. Geochimica et Cosmochimica Acta, 178: 210–222. https://doi.org/10.1016/j.gca.2016.01.013
    Dittmar, T., Lennartz, S. T., Buck-Wiese, H., et al., 2021. Enigmatic Persistence of Dissolved Organic Matter in the Ocean. Nature Reviews Earth & Environment, 2(8): 570–583. https://doi.org/10.1038/s43017-021-00183-7
    Dittmar, T., Stubbins, A., 2014. Dissolved Organic Matter in Aquatic Systems. Treatise on Geochemistry. Elsevier, Amsterdam. 125–156. https://doi.org/10.1016/b978-0-08-095975-7.01010-x
    Drake, T. W., Raymond, P. A., Spencer, R. G. M., 2018. Terrestrial Carbon Inputs to Inland Waters: A Current Synthesis of Estimates and Uncertainty. Limnology and Oceanography Letters, 3(3): 132–142. https://doi.org/10.1002/lol2.10055
    Ejarque, E., Khan, S., Steniczka, G., et al., 2018. Climate-Induced Hydrological Variation Controls the Transformation of Dissolved Organic Matter in a Subalpine Lake. Limnology and Oceanography, 63(3): 1355–1371. https://doi.org/10.1002/lno.10777
    Follstad Shah, J. J., Kominoski, J. S., Ardón, M., et al., 2017. Global Synthesis of the Temperature Sensitivity of Leaf Litter Breakdown in Streams and Rivers. Global Change Biology, 23(8): 3064–3075. https://doi.org/10.1111/gcb.13609
    Frey, K. E., Sobczak, W. V., Mann, P. J., et al., 2016. Optical Properties and Bioavailability of Dissolved Organic Matter along a Flow-Path Continuum from Soil Pore Waters to the Kolyma River Mainstem, East Siberia. Biogeosciences, 13(8): 2279–2290. https://doi.org/10.5194/bg-13-2279-2016
    Galecki, A., Burzykowski, T., 2013. Linear Mixed Effects Models Using R: A Step-by-Step Approach. Springer, New York. https://doi.org/10.1007/978-1-4614-3900-4
    Gao, Z. Y., Niu, F. J., Luo, D. L., et al., 2024. Role of Suprapermafrost Groundwater Recharge in Dissolved Organic Carbon Dynamics of Thermokarst Lakes. Journal of Earth Science, 35(6): 2175–2179. https://doi.org/10.1007/s12583-024-2017-5
    Ge, J. F., Qi, Y. L., Li, C., et al., 2022. Fluorescence and Molecular Signatures of Dissolved Organic Matter to Monitor and Assess Its Multiple Sources from a Polluted River in the Farming-Pastoral Ecotone of Northern China. Science of the Total Environment, 837: 154575. https://doi.org/10.1016/j.scitotenv.2022.154575
    Gillman, L. N., Wright, S. D., Cusens, J., et al., 2015. Latitude, Productivity and Species Richness. Global Ecology and Biogeography, 24(1): 107–117. https://doi.org/10.1111/geb.12245
    Groeneveld, M., Catalán, N., Einarsdottir, K., et al., 2022. The Influence of pH on Dissolved Organic Matter Fluorescence in Inland Waters. Analytical Methods, 14(13): 1351–1360. https://doi.org/10.1039/d1ay01702k
    Hansell, D., Carlson, C., Repeta, D., et al., 2009. Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights. Oceanography, 22(4): 202–211. https://doi.org/10.5670/oceanog.2009.109
    Hawkes, J. A., D'Andrilli, J., Agar, J. N., et al., 2020. An International Laboratory Comparison of Dissolved Organic Matter Composition by High Resolution Mass Spectrometry: Are we Getting the Same Answer? Limnology and Oceanography: Methods, 18(6): 235–258. https://doi.org/10.1002/lom3.10364
    He, C., Yi, Y. B., He, D., et al., 2023. Molecular Composition of Dissolved Organic Matter across Diverse Ecosystems: Preliminary Implications for Biogeochemical Cycling. Journal of Environmental Management, 344: 118559. https://doi.org/10.1016/j.jenvman.2023.118559
    Hertkorn, N., Benner, R., Frommberger, M., et al., 2006. Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. Geochimica et Cosmochimica Acta, 70(12): 2990–3010. https://doi.org/10.1016/j.gca.2006.03.021
    Hildebrand, T., Osterholz, H., Bunse, C., et al., 2022. Transformation of Dissolved Organic Matter by Two Indo-Pacific Sponges. Limnology and Oceanography, 67(11): 2483–2496. https://doi.org/10.1002/lno.12214
    Hu, A., Choi, M., Tanentzap, A. J., et al., 2022a. Ecological Networks of Dissolved Organic Matter and Microorganisms under Global Change. Nature Communications, 13: 3600. https://doi.org/10.1038/s41467-022-31251-1
    Hu, A., Jang, K. S., Meng, F. F., et al., 2022b. Microbial and Environmental Processes Shape the Link between Organic Matter Functional Traits and Composition. Environmental Science & Technology, 56(14): 10504–10516. https://doi.org/10.1021/acs.est.2c01432
    Hu, A., Han, L., Lu, X. C., et al., 2024a. Global Patterns and Drivers of Dissolved Organic Matter across Earth Systems: Insights from H/C and O/C Ratios. Fundamental Research. https://doi.org/10.1016/j.fmre.2023.11.018
    Hu, A., Jang, K. S., Tanentzap, A. J., et al., 2024b. Thermal Responses of Dissolved Organic Matter under Global Change. Nature Communications, 15: 576. https://doi.org/10.1038/s41467-024-44813-2
    Hu, A., Cui, Y. F., Bercovici, S. K., et al., 2024c. Photochemical Processes Drive Thermal Responses of Dissolved Organic Matter in the Dark Ocean. bioRxiv. https://doi.org/10.1101/2024.09.06.611638
    Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573–6593. https://doi.org/10.5194/bg-11-6573-2014
    Hyung, H., Kim, J. H., 2008. Natural Organic Matter (NOM) Adsorption to Multi-walled Carbon Nanotubes: Effect of NOM Characteristics and Water Quality Parameters. Environmental Science & Technology, 42(12): 4416–4421. https://pubs.acs.org/doi/10.1021/es702916h doi: 10.1021/es702916h
    Jiao, N. Z., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 8(8): 593–599. https://doi.org/10.1038/nrmicro2386
    Johnston, S. E., Carey, J. C., Kellerman, A., et al., 2021. Controls on Riverine Dissolved Organic Matter Composition across an Arctic-Boreal Latitudinal Gradient. Journal of Geophysical Research: Biogeosciences, 126(9): 1–20. https://doi.org/10.1029/2020jg005988
    Kellerman, A. M., Dittmar, T., Kothawala, D. N., et al., 2014. Chemodiversity of Dissolved Organic Matter in Lakes Driven by Climate and Hydrology. Nature Communications, 5: 3804. https://doi.org/10.1038/ncomms4804
    Kellerman, A. M., Guillemette, F., Podgorski, D. C., et al., 2018. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. Environmental Science & Technology, 52(5): 2538–2548. https://doi.org/10.1021/acs.est.7b05513
    Kellerman, A. M., Kothawala, D. N., Dittmar, T., et al., 2015. Persistence of Dissolved Organic Matter in Lakes Related to Its Molecular Characteristics. Nature Geoscience, 8(6): 454–457. https://doi.org/10.1038/ngeo2440
    Kim, S., Kramer, R. W., Hatcher, P. G., 2003. Graphical Method for Analysis of Ultrahigh-Resolution Broadband Mass Spectra of Natural Organic Matter, the van Krevelen Diagram. Analytical Chemistry, 75(20): 5336–5344. https://doi.org/10.1021/ac034415p
    Kleber, M., Bourg, I. C., Coward, E. K., et al., 2021. Dynamic Interactions at the Mineral-Organic Matter Interface. Nature Reviews Earth & Environment, 2(6): 402–421. https://doi.org/10.1038/s43017-021-00162-y
    Koch, B. P., Dittmar, T., 2006. From Mass to Structure: An Aromaticity Index for High-Resolution Mass Data of Natural Organic Matter. Rapid Communications in Mass Spectrometry, 20(5): 926–932. https://doi.org/10.1002/rcm.2386
    Krachler, R., Krachler, R. F., 2021. Northern High-Latitude Organic Soils as a Vital Source of River-Borne Dissolved Iron to the Ocean. Environmental Science & Technology, 55(14): 9672–9690. https://doi.org/10.1021/acs.est.1c01439
    Kurek, M. R., Garcia-Tigreros, F., Wickland, K. P., et al., 2023. Hydrologic and Landscape Controls on Dissolved Organic Matter Composition across Western North American Arctic Lakes. Global Biogeochemical Cycles, 37(1): e2022GB007495. https://doi.org/10.1029/2022gb007495
    LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030–2042. https://doi.org/10.1016/j.gca.2011.01.020
    Laszakovits, J. R., MacKay, A. A., 2022. Data-Based Chemical Class Regions for van Krevelen Diagrams. Journal of the American Society for Mass Spectrometry, 33(1): 198–202. https://doi.org/10.1021/jasms.1c00230
    Li, J. F., Wang, B. L., Yang, M. L., et al., 2022. Geographical Constraints on Chemodiversity of Sediment Dissolved Organic Matter in China's Coastal Wetlands. Applied Geochemistry, 147: 105506. https://doi.org/10.1016/j.apgeochem.2022.105506
    Li, P. H., Tao, J. C., Lin, J., et al., 2019. Stratification of Dissolved Organic Matter in the Upper 2 000 m Water Column at the Mariana Trench. Science of the Total Environment, 668: 1222–1231. https://doi.org/10.1016/j.scitotenv.2019.03.094
    Li, X. M., Sun, G. X., Chen, S. C., et al., 2018. Molecular Chemodiversity of Dissolved Organic Matter in Paddy Soils. Environmental Science & Technology, 52(3): 963–971. https://doi.org/10.1021/acs.est.7b00377
    Lin, Q. L., Tian, Q. X., Liao, C., et al., 2024. Persistence of Soil Microbial Residuals and Lignin Phenols in Forest Ecosystems along the Latitude Gradient. Journal of Soils and Sediments, 24(6): 2425–2436. https://doi.org/10.1007/s11368-024-03794-x
    Liu, W. W., Chen, X. C., Strong, D. R., et al., 2020. Climate and Geographic Adaptation Drive Latitudinal Clines in Biomass of a Widespread Saltmarsh Plant in Its Native and Introduced Ranges. Limnology and Oceanography, 65(6): 1399–1409. https://doi.org/10.1002/lno.11395
    Lu, K. T., Gao, H. J., Yu, H. B., et al., 2022. Insight into Variations of DOM Fractions in Different Latitudinal Rural Black-Odor Waterbodies of Eastern China Using Fluorescence Spectroscopy Coupled with Structure Equation Model. Science of the Total Environment, 816: 151531. https://doi.org/10.1016/j.scitotenv.2021.151531
    Luo, D. L., Gao, Z. Y., Chen, F. F., et al., 2025. Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances. Journal of Earth Science, 36(1): 339–346. https://doi.org/10.1007/s12583-024-0111-3
    Manning, D. W. P., Rosemond, A. D., Gulis, V., et al., 2018. Nutrients and Temperature Additively Increase Stream Microbial Respiration. Global Change Biology, 24(1): e233–e247. https://doi.org/10.1111/gcb.13906
    McDonough, L. K., Santos, I. R., Andersen, M. S., et al., 2020. Changes in Global Groundwater Organic Carbon Driven by Climate Change and Urbanization. Nature Communications, 11: 1279. https://doi.org/10.1038/s41467-020-14946-1
    Medeiros, P. M., Seidel, M., Powers, L. C., et al., 2015. Dissolved Organic Matter Composition and Photochemical Transformations in the Northern North Pacific Ocean. Geophysical Research Letters, 42(3): 863–870. https://doi.org/10.1002/2014gl062663
    Meng, F. F., Hu, A., Jang, K. S., et al., 2025. iDOM: Statistical Analysis of Dissolved Organic Matter Characterized by High-Resolution Mass Spectrometry. mLife, 4(3): 319–331. https://doi.org/10.1002/mlf2.70002
    Mladenov, N., Sommaruga, R., Morales-Baquero, R., et al., 2011. Dust Inputs and Bacteria Influence Dissolved Organic Matter in Clear Alpine Lakes. Nature Communications, 2: 405. https://doi.org/10.1038/ncomms1411
    Moody, C. S., 2020. A Comparison of Methods for the Extraction of Dissolved Organic Matter from Freshwaters. Water Research, 184: 116114. https://doi.org/10.1016/j.watres.2020.116114
    Nagar, S., Antony, R., Thamban, M., 2021. Extracellular Polymeric Substances in Antarctic Environments: A Review of Their Ecological Roles and Impact on Glacier Biogeochemical Cycles. Polar Science, 30: 100686. https://doi.org/10.1016/j.polar.2021.100686
    Nakagawa, S., Schielzeth, H., 2013. A General and Simple Method for Obtaining R2 from Generalized Linear Mixed-Effects Models. Methods in Ecology and Evolution, 4(2): 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
    O'Donnell, J. A., Aiken, G. R., Butler, K. D., et al., 2016. DOM Composition and Transformation in Boreal Forest Soils: The Effects of Temperature and Organic-Horizon Decomposition State. Journal of Geophysical Research: Biogeosciences, 121(10): 2727–2744. https://doi.org/10.1002/2016jg003431
    Pang, Y., Wang, K., Sun, Y. G., et al., 2021. Linking the Unique Molecular Complexity of Dissolved Organic Matter to Flood Period in the Yangtze River Mainstream. Science of the Total Environment, 764: 142803. https://doi.org/10.1016/j.scitotenv.2020.142803
    Paz, A., Crowther, T. W., Maynard, D. S., 2024. Functional and Phylogenetic Dimensions of Tree Biodiversity Reveal Unique Geographic Patterns. Global Ecology and Biogeography, 33(9): e13877. https://doi.org/10.1111/geb.13877
    Peralta-Maraver, I., Stubbington, R., Arnon, S., et al., 2021. The Riverine Bioreactor: An Integrative Perspective on Biological Decomposition of Organic Matter across Riverine Habitats. Science of the Total Environment, 772: 145494. https://doi.org/10.1016/j.scitotenv.2021.145494
    Pracht, L. E., Tfaily, M. M., Ardissono, R. J., et al., 2018. Molecular Characterization of Organic Matter Mobilized from Bangladeshi Aquifer Sediment: Tracking Carbon Compositional Change during Microbial Utilization. Biogeosciences, 15(6): 1733–1747. https://doi.org/10.5194/bg-15-1733-2018
    Raymond, P. A., Hartmann, J., Lauerwald, R., et al., 2013. Global Carbon Dioxide Emissions from Inland Waters. Nature, 503(7476): 355–359. https://doi.org/10.1038/nature12760
    Ripszam, M., Paczkowska, J., Figueira, J., et al., 2015. Dissolved Organic Carbon Quality and Sorption of Organic Pollutants in the Baltic Sea in Light of Future Climate Change. Environmental Science & Technology, 49(3): 1445–1452. https://doi.org/10.1021/es504437s
    Rodríguez-Zorro, P. A., Ledru, M. P., Favier, C., et al., 2022. Alternate Atlantic Forest and Climate Phases during the Early Pleistocene 41 Kyr Cycles in Southeastern Brazil. Quaternary Science Reviews, 286: 107560. https://doi.org/10.1016/j.quascirev.2022.107560
    Rodríguez-Cardona, B. M., Wymore, A. S., Argerich, A., et al., 2022. Shifting Stoichiometry: Long-Term Trends in Stream-Dissolved Organic Matter Reveal Altered C : N Ratios due to History of Atmospheric Acid Deposition. Global Change Biology, 28(1): 98–114. https://doi.org/10.1111/gcb.15965
    Roth, V. N., Dittmar, T., Gaupp, R., et al., 2013. Latitude and pH Driven Trends in the Molecular Composition of DOM across a North South Transect along the Yenisei River. Geochimica et Cosmochimica Acta, 123: 93–105. https://doi.org/10.1016/j.gca.2013.09.002
    Roth, V. N., Dittmar, T., Gaupp, R., et al., 2014. Ecosystem-Specific Composition of Dissolved Organic Matter. Vadose Zone Journal, 13(7): 1–10. https://doi.org/10.2136/vzj2013.09.0162
    Roth, V. N., Lange, M., Simon, C., et al., 2019. Persistence of Dissolved Organic Matter Explained by Molecular Changes during Its Passage through Soil. Nature Geoscience, 12(9): 755–761. https://doi.org/10.1038/s41561-019-0417-4
    Schmidt, M. W. I., Torn, M. S., Abiven, S., et al., 2011. Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478(7367): 49–56. https://doi.org/10.1038/nature10386
    Sheng, M., Chen, S., Liu, C. Q., et al., 2023. Spatial and Molecular Variations in Forest Topsoil Dissolved Organic Matter as Revealed by FT-ICR Mass Spectrometry. Science of the Total Environment, 895: 165099. https://doi.org/10.1016/j.scitotenv.2023.165099
    Singer, G. A., Fasching, C., Wilhelm, L., et al., 2012. Biogeochemically Diverse Organic Matter in Alpine Glaciers and Its Downstream Fate. Nature Geoscience, 5(10): 710–714. https://doi.org/10.1038/ngeo1581
    Speetjens, N. J., Tanski, G., Martin, V., et al., 2022. Dissolved Organic Matter Characterization in Soils and Streams in a Small Coastal Low-Arctic Catchment. Biogeosciences, 19(12): 3073–3097. https://doi.org/10.5194/bg-19-3073-2022
    Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeo-chemistry and Microbial Ecology. Nature Communications, 9: 585. https://doi.org/10.1038/s41467-018-02922-9
    Szkokan-Emilson, E. J., Kielstra, B. W., Arnott, S. E., et al., 2017. Dry Conditions Disrupt Terrestrial-Aquatic Linkages in Northern Catchments. Global Change Biology, 23(1): 117–126. https://doi.org/10.1111/gcb.13361
    Valle, J., Harir, M., Gonsior, M., et al., 2020. Molecular Differences between Water Column and Sediment Pore Water SPE-DOM in Ten Swedish Boreal Lakes. Water Research, 170: 115320. https://doi.org/10.1016/j.watres.2019.115320
    van Vliet, M. T. H., Thorslund, J., Strokal, M., et al., 2023. Global River Water Quality under Climate Change and Hydroclimatic Extremes. Nature Reviews Earth & Environment, 4(10): 687–702. https://doi.org/10.1038/s43017-023-00472-3
    Wadham, J. L., Hawkings, J. R., Tarasov, L., et al., 2019. Ice Sheets Matter for the Global Carbon Cycle. Nature Communications, 10: 3567. https://doi.org/10.1038/s41467-019-11394-4
    Wagner, S., Riedel, T., Niggemann, J., et al., 2015. Linking the Molecular Signature of Heteroatomic Dissolved Organic Matter to Watershed Characteristics in World Rivers. Environmental Science & Technology, 49(23): 13798–13806. https://doi.org/10.1021/acs.est.5b00525
    Wagner, S., Schubotz, F., Kaiser, K., et al., 2020. Soothsaying DOM: A Current Perspective on the Future of Oceanic Dissolved Organic Carbon. Frontiers in Marine Science, 7: 341. https://doi.org/10.3389/fmars.2020.00341
    Wang, W. X., Tao, J. C., Yu, K., et al., 2021. Vertical Stratification of Dissolved Organic Matter Linked to Distinct Microbial Communities in Subtropic Estuarine Sediments. Frontiers in Microbiology, 12: 697860. https://doi.org/10.3389/fmicb.2021.697860
    Ward, C. P., Cory, R. M., 2015. Chemical Composition of Dissolved Organic Matter Draining Permafrost Soils. Geochimica et Cosmochimica Acta, 167: 63–79. https://doi.org/10.1016/j.gca.2015.07.001
    Ward, C. P., Cory, R. M., 2016. Complete and Partial Photo-Oxidation of Dissolved Organic Matter Draining Permafrost Soils. Environmental Science & Technology, 50(7): 3545–3553. https://doi.org/10.1021/acs.est.5b05354
    Ward, C. P., Nalven, S. G., Crump, B. C., et al., 2017. Photochemical Alteration of Organic Carbon Draining Permafrost Soils Shifts Microbial Metabolic Pathways and Stimulates Respiration. Nature Communications, 8: 772. https://doi.org/10.1038/s41467-017-00759-2
    Wologo, E., Shakil, S., Zolkos, S., et al., 2021. Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects. Global Biogeochemical Cycles, 35(1): e2020GB006719. https://doi.org/10.1029/2020gb006719
    Yamaoka, K., Nakagawa, T., Uno, T., 1978. Application of Akaike's Information Criterion (AIC) in the Evaluation of Linear Pharmacokinetic Equations. Journal of Pharmacokinetics and Biopharmaceutics, 6(2): 165–175. https://doi.org/10.1007/bf01117450
    Yang, J., Jiang, H. C., Liu, W., et al., 2020. Potential Utilization of Terrestrially Derived Dissolved Organic Matter by Aquatic Microbial Communities in Saline Lakes. The ISME Journal, 14(9): 2313–2324. https://doi.org/10.1038/s41396-020-0689-0
    Yang, X., Rosario-Ortiz, F. L., Lei, Y., et al., 2022. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environmental Science & Technology, 56(16): 11111–11131. https://doi.org/10.1021/acs.est.2c01017
    Zark, M., Dittmar, T., 2018. Universal Molecular Structures in Natural Dissolved Organic Matter. Nature Communications, 9: 3178. https://doi.org/10.1038/s41467-018-05665-9
    Zheng, Q., Chen, Q., Cai, R. H., et al., 2019. Molecular Characteristics of Microbially Mediated Transformations of Synechococcus-Derived Dissolved Organic Matter as Revealed by Incubation Experiments. Environmental Microbiology, 21(7): 2533–2543. https://doi.org/10.1111/1462-2920.14646
    Zherebker, A., Rukhovich, G. D., Sarycheva, A., et al., 2022. Aromaticity Index with Improved Estimation of Carboxyl Group Contribution for Biogeochemical Studies. Environmental Science & Technology, 56(4): 2729–2737. https://doi.org/10.1021/acs.est.1c04575
    Zherebker, A., Shirshin, E., Rubekina, A., et al., 2020. Optical Properties of Soil Dissolved Organic Matter are Related to Acidic Functions of Its Components as Revealed by Fractionation, Selective Deuteromethylation, and Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 54(5): 2667–2677. https://doi.org/10.1021/acs.est.9b05298
    Zhou, Y. Q., Davidson, T. A., Yao, X. L., et al., 2018. How Autochthonous Dissolved Organic Matter Responds to Eutrophication and Climate Warming: Evidence from a Cross-Continental Data Analysis and Experiments. Earth-Science Reviews, 185: 928–937. https://doi.org/10.1016/j.earscirev.2018.08.013
    Zhu, L. J., Zhao, Y., Bai, S. C., et al., 2020. New Insights into the Variation of Dissolved Organic Matter Components in Different Latitudinal Lakes of Northeast China. Limnology and Oceanography, 65(3): 471–481. https://doi.org/10.1002/lno.11316
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return