Citation: | Kui Han, Xinzhuan Guo, Hanyong Liu, Fengbao Ji. Electrical Conductivity of Multiphase Garnet under High-Temperature and High-Pressure Conditions. Journal of Earth Science, 2024, 35(6): 1849-1859. doi: 10.1007/s12583-024-0062-8 |
Mineral mixing, a fundamental process during mantle convection, alters the chemical composition of mantle minerals. However, the impact of this process on the electrical conductivity of mineral assemblages remains poorly understood. We measured the electrical conductivity of three single-phase garnets and their corresponding mixtures at 1.5 GPa and varying temperatures using the impedance spectroscopy within frequency from 10-1 to 106 Hz. The electrical conductivity of dehydrated garnets is primarily controlled by their iron content, exhibiting an activation energy about 1.0 eV, indicative of small polaron conduction. The garnet mixture displays lower electrical conductivities and higher activation energies compared to their single-phase counterparts. This discrepancy of conductivity can be half order of magnitude at high temperatures (> 1 073 K), suggesting formation of resistive grain boundaries during the mixing process. In the mantle transition zones, grain boundary conductivity could exert a limited impact on the bulk conductivity of the interface between the stagnant slab and ambient mantle.
Amulele, G. M., Lanati, A. W., Clark, S. M., 2022. The Electrical Conductivity of Albite Feldspar: Implications for Oceanic Lower Crustal Sequences and Subduction Zones. American Mineralogist, 107(4): 614–624. https://doi.org/10.2138/am-2021-7836 |
Bell, D. R., Ihinger, P. D., Rossman, G. R., 1995. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 80(5/6): 465–474. https://doi.org/10.2138/am-1995-5-607 |
Dachs, E., 2006. Heat Capacities and Entropies of Mixing of Pyrope-Grossular (Mg3Al2Si3O12-Ca3Al2Si3O12) Garnet Solid Solutions: A Low-Temperature Calorimetric and a Thermodynamic Investigation. American Mineralogist, 91(5/6): 894–906. https://doi.org/10.2138/am.2006.2005 |
Dai, L. D., Karato, S. I., 2009. Electrical Conductivity of Wadsleyite at High Temperatures and High Pressures. Earth and Planetary Science Letters, 287(1/2): 277–283. https://doi.org/10.1016/j.epsl.2009.08.012 |
Dai, L. D., Li, H. P., Hu, H. Y., et al., 2008. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under High-Temperature, High-Pressure, and Different Oxygen Fugacity Conditions. Journal of Geophysical Research: Solid Earth, 113(B12): B12211. https://doi.org/10.1029/2008jb005820 |
Dai, L. D., Li, H. P., Hu, H. Y., et al., 2012. The Effect of Chemical Composition and Oxygen Fugacity on the Electrical Conductivity of Dry and Hydrous Garnet at High Temperatures and Pressures. Contributions to Mineralogy and Petrology, 163(4): 689–700. https://doi.org/10.1007/s00410-011-0693-5 |
Dai, L. D., Li, H. P., Hu, H. Y., et al., 2013. Electrical Conductivity of Alm82Py15Grs3 Almandine-Rich Garnet Determined by Impedance Spec-troscopy at High Temperatures and High Pressures. Tectonophysics, 608: 1086–1093. https://doi.org/10.1016/j.tecto.2013.07.004 |
Dai, L. D., Hu, H. Y., Li, H. P., et al., 2014. Influence of Temperature, Pressure, and Chemical Composition on the Electrical Conductivity of Granite. American Mineralogist, 99(7): 1420–1428. https://doi.org/10.2138/am.2014.4692 |
Farla, R. J. M., Peach, C. J., Ten Grotenhuis, S. M., 2010. Electrical Conductivity of Synthetic Iron-Bearing Olivine. Physics and Chemistry of Minerals, 37(3): 167–178. https://doi.org/10.1007/s00269-009-0321-3 |
Feng, B., Guo, X. Z., 2022. Thermal Conductivity and Thermal Diffusivity of Ferrosilite under High Temperature and High Pressure. Journal of Earth Science, 33(3): 770–777. https://doi.org/10.1007/s12583-021-1574-0 |
Fenter, P., Sturchio, N. C., 2004. Mineral-Water Interfacial Structures Revealed by Synchrotron X-Ray Scattering. Progress in Surface Science, 77(5/6/7/8): 171–258. https://doi.org/10.1016/j.progsurf.2004.12.001 |
Freer, R., Edwards, A., 1999. An Experimental Study of Ca-(Fe, Mg) Interdiffusion in Silicate Garnets. Contributions to Mineralogy and Petrology, 134(4): 370–379. https://doi.org/10.1007/s004100050491 |
Fukao, Y., Obayashi, M., Nakakuki, T., 2009. Stagnant Slab: A Review. Annual Review of Earth and Planetary Sciences, 37: 19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224 |
Gasc, J., Brunet, F., Bagdassarov, N., et al., 2011. Electrical Conductivity of Polycrystalline Mg(OH)2 at 2 GPa: Effect of Grain Boundary Hydration-Dehydration. Physics and Chemistry of Minerals, 38(7): 543–556. https://doi.org/10.1007/s00269-011-0426-3 |
Geiger, C. A., Rossman, G. R., 2018. IR Spectroscopy and OH- in Silicate Garnet: The Long Quest to Document the Hydrogarnet Substitution. American Mineralogist, 103(3): 384–393. https://doi.org/10.2138/am-2018-6160ccby |
Gerhardt, R., Nowick, A. S., 1986. Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements. Journal of the American Ceramic Society, 69(9): 641–646. https://doi.org/10.1111/j.1151-2916.1986.tb07464.x |
Gregori, G., Merkle, R., Maier, J., 2017. Ion Conduction and Redistribution at Grain Boundaries in Oxide Systems. Progress in Materials Science, 89: 252–305. https://doi.org/10.1016/j.pmatsci.2017.04.009 |
Guo, X., Sigle, W., Fleig, J., et al., 2002. Role of Space Charge in the Grain Boundary Blocking Effect in Doped Zirconia. Solid State Ionics, 154/155: 555–561. https://doi.org/10.1016/s0167-2738(02)00491-5 |
Guo, X. Z., Yoshino, T., Katayama, I., 2011. Electrical Conductivity Anisotropy of Deformed Talc Rocks and Serpentinites at 3 GPa. Physics of the Earth and Planetary Interiors, 188(1): 69–81. https://doi.org/10.1016/j.pepi.2011.06.012 |
Han, K., Clark, S. M., 2021. Review of Calculating the Electrical Conductivity of Mineral Aggregates from Constituent Conductivities. Solid Earth Sciences, 6(2): 111–128. https://doi.org/10.1016/j.sesci.2021.02.003 |
Han, K., Guo, X. Z., Zhang, J. F., et al., 2021. Fast Grain-Boundary Ionic Conduction in Multiphase Aggregates as Revealed by Electrical Conductivity Measurements. Contributions to Mineralogy and Petrology, 176(10): 80. https://doi.org/10.1007/s00410-021-01841-1 |
Hashin, Z., Shtrikman, S., 1963. A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials. Journal of the Mechanics and Physics of Solids, 11(2): 127–140. https://doi.org/10.1016/0022-5096(63)90060-7 |
Hiraga, T., Anderson, I. M., Kohlstedt, D. L., 2004. Grain Boundaries as Reservoirs of Incompatible Elements in the Earth's Mantle. Nature, 427(6976): 699–703. https://doi.org/10.1038/nature02259 |
Holzapfel, C., Rubie, D. C., Frost, D. J., et al., 2005. Fe-Mg Interdiffusion in (Mg, Fe)SiO3 Perovskite and Lower Mantle Reequilibration. Science, 309(5741): 1707–1710. https://doi.org/10.1126/science.1111895 |
Hu, H. Y., Li, H. P., Dai, L. D., et al., 2013. Electrical Conductivity of Alkali Feldspar Solid Solutions at High Temperatures and High Pressures. Physics and Chemistry of Minerals, 40(1): 51–62. https://doi.org/10.1007/s00269-012-0546-4 |
Huang, J. L., Zhao, D. P., 2006. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research: Solid Earth, 111(B9): B09305. https://doi.org/10.1029/2005jb004066 |
Hui, K. S., Zhang, H., Li, H. P., et al., 2015. Experimental Study on the Electrical Conductivity of Quartz Andesite at High Temperature and High Pressure: Evidence of Grain Boundary Transport. Solid Earth, 6(3): 1037–1043. https://doi.org/10.5194/se-6-1037-2015 |
Irifune, T., Tsuchiya, T., 2007. Mineralogy of the Earth—Phase Transitions and Mineralogy of the Lower Mantle. Treatise on Geophysics. Elsevier, Amsterdam. 33–62. https://doi.org/10.1016/b978-044452748-6/00030-4 |
Katsura, T., 2022. A Revised Adiabatic Temperature Profile for the Mantle. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB023562. https://doi.org/10.1029/2021jb023562 |
Kelbert, A., Schultz, A., Egbert, G., 2009. Global Electromagnetic Induction Constraints on Transition-Zone Water Content Variations. Nature, 460(7258): 1003–1006. https://doi.org/10.1038/nature08257 |
Keppler, H., Rauch, M., 2000. Water Solubility in Nominally Anhydrous Minerals Measured by FTIR and 1H MAS NMR: The Effect of Sample Preparation. Physics and Chemistry of Minerals, 27(6): 371–376. https://doi.org/10.1007/s002699900070 |
Kiss, Á. K., Rauch, E. F., Lábár, J. L., 2016. Highlighting Material Structure with Transmission Electron Diffraction Correlation Coefficient Maps. Ultramicroscopy, 163: 31–37. https://doi.org/10.1016/j.ultramic.2016.01.006 |
Li, X., Liu, L., Liao, X. Y., et al., 2023. Metamorphic Evolution of Garnet Amphibolite from the Yaganbuyang Area in the South Altyn Orogen, West China: Insights from Phase Equilibria Modeling and Geochronology. Journal of Earth Science, 34(3): 640–657. https://doi.org/10.1007/s12583-021-1439-6 |
Linckens, J., Tholen, S., 2021. Formation of Ultramylonites in an Upper Mantle Shear Zone, Erro-Tobbio, Italy. Minerals, 11(10): 1036. https://doi.org/10.3390/min11101036 |
Liu, H. Y., Yang, X. Z., Karato, S. I., 2023. Small Effect of Partial Melt on Electrical Anomalies in the Asthenosphere. Science Advances, 9(13): eabq7884. https://doi.org/10.1126/sciadv.abq7884 |
Liu, H. Y., Zhu, Q., Yang, X. Z., 2019. Electrical Conductivity of OH-Bearing Omphacite and Garnet in Eclogite: The Quantitative Dependence on Water Content. Contributions to Mineralogy and Petrology, 174(7): 57. https://doi.org/10.1007/s00410-019-1593-3 |
Liu, J., Yuan, L. L., Yang, Z. L., 2022. Geochronology and Geochemistry of Mesozoic Mafic Intrusive Rocks in Zhongtiao Mountain Area: Charac-terizing Lithospheric Mantle of Southern North China Craton. Earth Science, 47(4): 1271–1294. https://doi.org/10.3799/dqkx.2021.104 (in Chinese with English Abstract) |
Luo, X., Xia, Q. X., Zheng, Y. F., et al., 2022. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 33(3): 753–769. https://doi.org/10.1007/s12583-021-1547-3 |
Marquardt, K., Faul, U. H., 2018. The Structure and Composition of Olivine Grain Boundaries: 40 Years of Studies, Status and Current Developments. Physics and Chemistry of Minerals, 45(2): 139–172. https://doi.org/10.1007/s00269-017-0935-9 |
Nagurney, A. B., Caddick, M. J., Pattison, D. R. M., et al., 2021. Preferred Orientations of Garnet Porphyroblasts Reveal Previously Cryptic Templating during Nucleation. Scientific Reports, 11: 6869. https://doi.org/10.1038/s41598-021-85525-7 |
Peng, Z. R., Meiners, T., Lu, Y. F., et al., 2022. Quantitative Analysis of Grain Boundary Diffusion, Segregation and Precipitation at a Sub-Nanometer Scale. Acta Materialia, 225: 117522. https://doi.org/10.1016/j.actamat.2021.117522 |
Pommier, A., Kohlstedt, D. L., Hansen, L. N., et al., 2018. Transport Properties of Olivine Grain Boundaries from Electrical Conductivity Experiments. Contributions to Mineralogy and Petrology, 173(5): 41. https://doi.org/10.1007/s00410-018-1468-z |
Roberts, J. J., Tyburczy, J. A., 1991. Frequency Dependent Electrical Properties of Polycrystalline Olivine Compacts. Journal of Geophysical Research: Solid Earth, 96(B10): 16205–16222. https://doi.org/10.1029/91jb01574 |
Roberts, J. J., Tyburczy, J. A., 1999. Partial-Melt Electrical Conductivity: Influence of Melt Composition. Journal of Geophysical Research: Solid Earth, 104(B4): 7055–7065. https://doi.org/10.1029/1998jb900111 |
Romano, C., Poe, B. T., Kreidie, N., et al., 2006. Electrical Conductivities of Pyrope-Almandine Garnets up to 19 GPa and 1 700 ℃. American Mine-ralogist, 91(8/9): 1371–1377. https://doi.org/10.2138/am.2006.1983 |
Salje, E. K. H., 2007. An Empirical Scaling Model for Averaging Elastic Properties Including Interfacial Effects. American Mineralogist, 92(2/3): 429–432. https://doi.org/10.2138/am.2007.2472 |
Schmid, C., van der Lee, S., Giardini, D., 2006. Correlated Shear and Bulk Moduli to 1 400 km beneath the Mediterranean Region. Physics of the Earth and Planetary Interiors, 159(3/4): 213–224. https://doi.org/10.1016/j.pepi.2006.07.003 |
Shirpour, M., Rahmati, B., Sigle, W., et al., 2012. Dopant Segregation and Space Charge Effects in Proton-Conducting BaZrO3 Perovskites. The Journal of Physical Chemistry C, 116(3): 2453–2461. https://doi.org/10.1021/jp208213x |
Stixrude, L., Lithgow-Bertelloni, C., 2012. Geophysics of Chemical Heterogeneity in the Mantle. Annual Review of Earth and Planetary Sciences, 40(1): 569–595. https://doi.org/10.1146/annurev.earth.36.031207.124244 |
Tarits, P., Hautot, S., Perrier, F., 2004. Water in the Mantle: Results from Electrical Conductivity beneath the French Alps. Geophysical Research Letters, 31(6): L06612. https://doi.org/10.1029/2003gl019277 |
Vahidi, H., Syed, K., Guo, H. M., et al., 2021. A Review of Grain Boundary and Heterointerface Characterization in Polycrystalline Oxides by (Scanning) Transmission Electron Microscopy. Crystals, 11(8): 878. https://doi.org/10.3390/cryst11080878 |
van Keken, P. E., Hauri, E. H., Ballentine, C. J., 2002. Mantle Mixing: The Generation, Preservation, and Destruction of Chemical Heterogeneity. Annual Review of Earth and Planetary Sciences, 30: 493–525. https://doi.org/10.1146/annurev.earth.30.091201.141236 |
Wada, I., Behn, M. D., He, J. H., 2011. Grain-Size Distribution in the Mantle Wedge of Subduction Zones. Journal of Geophysical Research: Solid Earth, 116(B10): B10203. https://doi.org/10.1029/2011jb008294 |
Waff, H. S., 1974. Theoretical Considerations of Electrical Conductivity in a Partially Molten Mantle and Implications for Geothermometry. Journal of Geophysical Research, 79(26): 4003–4010. https://doi.org/10.1029/jb079i026p04003 |
Wang, D. J., Yu, Y. J., Zhou, Y. S., 2014. Electrical Conductivity Anisotropy in Alkali Feldspar at High Temperature and Pressure. High Pressure Research, 34(3): 297–308. https://doi.org/10.1080/08957959.2014.913042 |
Wang, W. Z., Xu, Y. H., Sun, D. Y., et al., 2020. Velocity and Density Characteristics of Subducted Oceanic Crust and the Origin of Lower-Mantle Heterogeneities. Nature Communications, 11: 64. https://doi.org/10.1038/s41467-019-13720-2 |
Wood, B. J., Kiseeva, E. S., Matzen, A. K., 2013. Garnet in the Earth's Mantle. Elements, 9(6): 421–426. https://doi.org/10.2113/gselements.9.6.421 |
Xu, Y. S., Shankland, T. J., 1999. Electrical Conductivity of Orthopyroxene and Its High Pressure Phases. Geophysical Research Letters, 26(17): 2645–2648. https://doi.org/10.1029/1999gl008378 |
Xue, Q. N., Huang, X. W., Zhang, J. X., et al., 2019. Grain Boundary Segregation and Its Influences on Ionic Conduction Properties of Scandia Doped Zirconia Electrolytes. Journal of Rare Earths, 37(6): 645–651. https://doi.org/10.1016/j.jre.2018.11.006 |
Yang, X. Z., McCammon, C., 2012. Fe3+-Rich Augite and High Electrical Conductivity in the Deep Lithosphere. Geology, 40(2): 131–134. https://doi.org/10.1130/g32725.1 |
Yoshino, T., Nishi, M., Matsuzaki, T., et al., 2008. Electrical Conductivity of Majorite Garnet and Its Implications for Electrical Structure in the Mantle Transition Zone. Physics of the Earth and Planetary Interiors, 170(3/4): 193–200. https://doi.org/10.1016/j.pepi.2008.04.009 |
Yoshino, T., Shimojuku, A., Shan, S. M., et al., 2012. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Olivine and Its High-Pressure Polymorphs. Journal of Geophysical Research: Solid Earth, 117(B8): 102. https://doi.org/10.1029/2011jb008774 |
Yu, P. P., Ding, W., Zeng, C. Y., et al., 2023. Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China. Earth Science, 48(9): 3205–3220. https://doi.org/10.3799/dqkx.2023.078 (in Chinese with English Abstract) |
Zhang, B. H., Yoshino, T., 2016. Effect of Temperature, Pressure and Iron Content on the Electrical Conductivity of Orthopyroxene. Contributions to Mineralogy and Petrology, 171(12): 102. https://doi.org/10.1007/s00410-016-1315-z |
Zhang, B. H., Yoshino, T., Zhao, C. C., 2019. The Effect of Water on Fe-Mg Interdiffusion Rates in Ringwoodite and Implications for the Electrical Conductivity in the Mantle Transition Zone. Journal of Geophysical Research: Solid Earth, 124(3): 2510–2524. https://doi.org/10.1029/2018jb016415 |
Zhang, J., Chen, X. B., Yin, X. K., et al., 2022. 3-D AMT Array Exploration in the Selaha Fault and Adjacent Area. Earth Science, 47(3): 856–866. https://doi.org/10.3799/dqkx.2022.060 (in Chinese with English Abstract) |
Zhang, X. B., Zhang, P. H., He, M. X., et al., 2023. Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications. Journal of Earth Science, 34(6): 1744–1757. https://doi.org/10.1007/s12583-022-1682-5 |
Zhang, Y. H., Weng, A. H., Li, S. W., et al., 2020. Electrical Conductivity in the Mantle Transition Zone beneath Eastern China Derived from L1-Norm C-Responses. Geophysical Journal International, 221(2): 1110–1124. https://doi.org/10.1093/gji/ggaa059 |
Zhou, C. A., Song, S. G., 2023. Post-Collision Magmatism and Continental Crust Growth in Continental Orogenic Belt: An Example from North Qaidam Ultrahigh-Pressure Metamorphic Belt. Earth Science, 48(12): 4481–4494. https://doi.org/10.3799/dqkx.2022.117 (in Chinese with English Abstract) |