Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Jiali Fu, Xinqian He, Zhaochu Hu, Shuo Yin, Jian Ma, Kaiyun Chen, Wen Zhang. New Potential Barite Reference Materials for LA-MC-ICP-MS Sulfur Isotope Analysis with Application to Hydrothermal Barite in the Huayangchuan Deposit, Western China. Journal of Earth Science, 2025, 36(1): 1-10. doi: 10.1007/s12583-024-0065-5
Citation: Jiali Fu, Xinqian He, Zhaochu Hu, Shuo Yin, Jian Ma, Kaiyun Chen, Wen Zhang. New Potential Barite Reference Materials for LA-MC-ICP-MS Sulfur Isotope Analysis with Application to Hydrothermal Barite in the Huayangchuan Deposit, Western China. Journal of Earth Science, 2025, 36(1): 1-10. doi: 10.1007/s12583-024-0065-5

New Potential Barite Reference Materials for LA-MC-ICP-MS Sulfur Isotope Analysis with Application to Hydrothermal Barite in the Huayangchuan Deposit, Western China

doi: 10.1007/s12583-024-0065-5
More Information
  • Corresponding author: Jiali Fu, 1132993269@qq.com
  • Received Date: 04 May 2024
  • Accepted Date: 26 Jun 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Sulfur isotopes of S-bearing materials are powerful tools to trace various geological processes and sulfur sources in earth sciences, especially in ore deposits where sulfide-sulfate pair coprecipitates widely. However, in-situ S isotope determination of barite is challenging without natural matrix-matched reference material. In this study, we present two natural barite reference materials (1-YS and 294-YS) for in-situ sulfur isotopic analysis. Independent LA-MC-ICP-MS laboratories were utilized to test the δ34S micron-scale homogeneity of 1-YS and 294-YS barites that have 2s repeatabilities of better than ±0.45‰ and ±0.41‰, respectively. Meanwhile, the in-situ analysis results are consistent with the results of the bulk analysis by GS-IRMS within uncertainty. The grand mean δ34S values of 1-YS (13.37‰ ± 0.42‰, 2s) and 294-YS (14.38‰ ± 0.44‰, 2s) are the final recommended values obtained from four independent laboratories. All the results confirm the suitability of 1-YS and 294-YS barite used as calibration materials with respect to in-situ S isotopic analysis. Moreover, the new developed barite reference materials were used as matrix-matched standard to calibrate the barite samples from the Huayangchuan carbonatite-hosted U-polymetallic deposit (Qinling orogenic belt, western China) to obtain δ34S values. Utilizing the temperature-dependent δ34S fractionation of barite-pyrite pair, we calculate the formation temperature of barite (i.e., 506 to 537 ºC) and the δ34S value of mineralizing fluid (i.e., -7.11‰ to -7.59‰) in the Huayangchuan deposit. The results indicate an involvement of sedimentary sulfur, presumably acting as a potential uranium source (e.g., upper crustal materials) for the giant Huayangchuan deposit.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bao, Z. A., Chen, K. Y., Zong, C. L., et al., 2021. TC1725: A Proposed Chalcopyrite Reference Material for LA-MC-ICP-MS Sulfur Isotope Determination. Journal of Analytical Atomic Spectrometry, 36(8): 1657–1665. https://doi.org/10.1039/D1JA00168J
    Brand, W. A., Coplen, T. B., Vogl, J., et al., 2014. Assessment of International Reference Materials for Isotope-Ratio Analysis (IUPAC Technical Report). Pure and Applied Chemistry, 86(3): 425–467. https://doi.org/10.1515/pac-2013-1023
    Chen, K. Y., Bao, Z. A., Liang, P., et al., 2022. Preparation of Sulfur-Bearing Reference Materials for in situ Sulfur Isotope Measurements Using Laser Ablation Multicollector Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 188: 106344. https://doi.org/10.1016/j.sab.2021.106344
    Chen, L., Chen, K. Y., Bao, Z. A., et al., 2017. Preparation of Standards for in situ Sulfur Isotope Measurement in Sulfides Using Femtosecond Laser Ablation MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(1): 107–116. https://doi.org/10.1039/C6JA00270F
    Chen, L., Liu, Y., Li, Y., et al., 2021. New Potential Pyrrhotite and Pentlandite Reference Materials for Sulfur and Iron Isotope Microanalysis. Journal of Analytical Atomic Spectrometry, 36(7): 1431–1440. https://doi.org/10.1039/D1JA00029B
    Chen, Y., Chen, L., Tang, G. Q., et al., 2023. A Quantity Chalcopyrite Reference Material for in situ Sulfur Isotope Analysis. Atomic Spectroscopy, 44(3): 131–141 doi: 10.46770/AS.2023.141
    Craddock, P. R., Rouxel, O. J., Ball, L. A., et al., 2008. Sulfur Isotope Measurement of Sulfate and Sulfide by High-Resolution MC-ICP-MS. Chemical Geology, 253(3/4): 102–113. https://doi.org/10.1016/j.chemgeo.2008.04.017
    Ding, T. P., Valkiers, S., Kipphardt, H., et al., 2001. Calibrated Sulfur Isotope Abundance Ratios of Three IAEA Sulfur Isotope Reference Materials and V-CDT with a Reassessment of the Atomic Weight of Sulfur. Geochimica et Cosmochimica Acta, 65(15): 2433–2437. https://doi.org/10.1016/S0016-7037(01)00611-1
    Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2018. Development of Sulfide Reference Materials for in situ Platinum Group Elements and S-Pb Isotope Analyses by LA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry, 33(12): 2172–2183. https://doi.org/10.1039/C8JA00305J
    Fu, J. L., Hu, Z. C., Li, J. W., et al., 2017. Accurate Determination of Sulfur Isotopes (δ33S and δ34S) in Sulfides and Elemental Sulfur by Femtosecond Laser Ablation MC-ICP-MS with Non-Matrix Matched Calibration. Journal of Analytical Atomic Spectrometry, 32(12): 2341–2351. https://doi.org/10.1039/C7JA00282C
    Fu, J. L., Hu, Z. C., Zhang, W., et al., 2016. In Situ Sulfur Isotopes (δ34S and δ33S) Analyses in Sulfides and Elemental Sulfur Using High Sensitivity Cones Combined with the Addition of Nitrogen by Laser Ablation MC-ICP-MS. Analytica Chimica Acta, 911: 14–26. https://doi.org/10.1016/j.aca.2016.01.026
    Gilbert, S. E., 2015. Development of Analytical Methods and Standard Reference Materials for Analysis of Trace Elements and Isotopic Ratios in Sulphides: [Dissertation]. University of Tasmania, Tasmania
    Gilbert, S. E., Danyushevsky, L. V., Rodemann, T., et al., 2014. Optimisation of Laser Parameters for the Analysis of Sulphur Isotopes in Sulphide Minerals by Laser Ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6): 1042–1051. https://doi.org/10.1039/c4ja00011k
    Halas, S., Szaran, J., 2001. Improved Thermal Decomposition of Sulfates to SO2 and Mass Spectrometric Determination of δ34S of IAEA SO-5, IAEA SO-6 and NBS-127 Sulfate Standards. Rapid Communications in Mass Spectrometry, 15(17): 1618–1620. https://doi.org/10.1002/rcm.416
    Hoefs, J., 1997. Stable Isotope Geochemistry. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03377-7
    Huang, H., Wang, K. X., Cuney, M., et al., 2022. Mesozoic Magmatic and Hydrothermal Uranium Mineralization in the Huayangchuan Carbonatite-Hosted U-Nb-Polymetallic Deposit, North Qinling Orogen (Central China): Evidence from Uraninite Chemical and Isotopic Compositions. Ore Geology Reviews, 146: 104958. https://doi.org/10.1016/j.oregeorev.2022.104958
    Kozdon, R., Kita, N. T., Huberty, J. M., et al., 2010. In situ Sulfur Isotope Analysis of Sulfide Minerals by SIMS: Precision and Accuracy, with Application to Thermometry of ∼3.5 Ga Pilbara Cherts. Chemical Geology, 275(3/4): 243–253. https://doi.org/10.1016/j.chemgeo.2010.05.015
    Labidi, J., Cartigny, P., Moreira, M., 2013. Non-Chondritic Sulphur Isotope Composition of the Terrestrial Mantle. Nature, 501(7466): 208–211. https://www.nature.com/articles/nature12490 doi: 10.1038/nature12490
    Li, B., Wiedenbeck, M., Couffignal, F., et al., 2024. Barite, Anhydrite and Gypsum Reference Materials for in situ Oxygen and Sulfur Isotope Ratio Measurements. Geostandards and Geoanalytical Research, 48(1): 179–205. https://doi.org/10.1111/ggr.12533
    Li, R. C., Xia, X. P., Yang, S. H., et al., 2019. Off-Mount Calibration and One New Potential Pyrrhotite Reference Material for Sulfur Isotope Measurement by Secondary Ion Mass Spectrometry. Geostandards and Geoanalytical Research, 43(1): 177–187. https://doi.org/10.1111/ggr.12244
    Lin, J., Yang, A., Lin, R., et al., 2023. Review on in situ Isotopic Analysis by LA-MC-ICP-MS. Journal of Earth Science, 34(6): 1663–1691. https://doi.org/10.1007/s12583-023-2002-4
    Lu, J., Chen, W., Jiang, S. Y., 2021. In-situ Sulfur Isotopic Analysis of Sulfate by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS). Atomic Spectroscopy, 41(6): 223–233. https://doi.org/10.46770/as.2020.208
    Lv, N., Bao, Z. A., Nie, X. J., et al., 2024. Development of a Matrix-Matched Barite Reference Material (NWU-Brt) for Calibration of in situ S Isotope Measurements by Laser Ablation Multi-Collector Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 48(2): 411–421. https://doi.org/10.1111/ggr.12544
    Magnall, J. M., Gleeson, S. A., Stern, R. A., et al., 2016. Open System Sulphate Reduction in a Diagenetic Environment-Isotopic Analysis of Barite (δ34S and δ18O) and Pyrite (δ34S) from the Tom and Jason Late Devonian Zn-Pb-Ba Deposits, Selwyn Basin, Canada. Geochimica et Cosmochimica Acta, 180: 146–163. https://doi.org/10.1016/j.gca.2016.02.015
    Mandeville, C. W., 2010. Sulfur: A Ubiquitous and Useful Tracer in Earth and Planetary Sciences. Elements, 6(2): 75–80. https://doi.org/10.2113/gselements.6.2.75
    Mann, J. L., Kelly, W. R., 2005. Measurement of Sulfur Isotope Composition (δ34S) by Multiple-Collector Thermal Ionization Mass Spectrometry Using a 33S-36S Double Spike. Rapid Communications in Mass Spectrometry, 19(23): 3429–3441. https://doi.org/10.1002/rcm.2213
    Muller, É., Philippot, P., Rollion-Bard, C., et al., 2016. Multiple Sulfur-Isotope Signatures in Archean Sulfates and Their Implications for the Chemistry and Dynamics of the Early Atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 113(27): 7432–7437. https://doi.org/10.1073/pnas.1520522113
    Paris, G., Sessions, A. L., Subhas, A. V., et al., 2013. MC-ICP-MS Measurement of δ34S and ∆33S in Small Amounts of Dissolved Sulfate. Chemical Geology, 345: 50–61. https://doi.org/10.1016/j.chemgeo.2013.02.022
    Park, Y. R., Ripley, E. M., 1998. Sulfur Isotopic Analysis of 3–10 Micromole Samples of SO2 from Sulfides, Sulfates, and Whole Rocks Using Conventional Combustion and Mass Spectrometric Techniques. Chemical Geology, 150(1/2): 191–195. https://doi.org/10.1016/S0009-2541(98)00064-3
    Pribil, M. J., Ridley, W. I., Emsbo, P., 2015. Sulfate and Sulfide Sulfur Isotopes (δ34S and δ33S) Measured by Solution and Laser Ablation MC-ICP-MS: An Enhanced Approach Using External Correction. Chemical Geology, 412: 99–106. https://doi.org/10.1016/j.chemgeo.2015.07.014
    Pritzkow, W., Vogl, J., Köppen, R., et al., 2005. Determination of Sulfur Isotope Abundance Ratios for SI-Traceable Low Sulfur Concentration Measurements in Fossil Fuels by ID-TIMS. International Journal of Mass Spectrometry, 242(2/3): 309–318. https://doi.org/10.1016/j.ijms.2004.10.024
    Riciputi, L. R., Paterson, B. A., Ripperdan, R. L., 1998. Measurement of Light Stable Isotope Ratios by SIMS: Matrix Effects for Oxygen, Carbon, and Sulfur Isotopes in Minerals. International Journal of Mass Spectrometry, 178(1/2): 81–112. https://doi.org/10.1016/s1387-3806(98)14088-5
    Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633–677. https://doi.org/10.2138/rmg.2006.61.12
    Seal, R. R., Alpers, C. N., Rye, R. O., 2000. Stable Isotope Systematics of Sulfate Minerals. Reviews in Mineralogy and Geochemistry, 40(1): 541–602. https://doi.org/10.2138/rmg.2000.40.12
    Strauss, H., 1997. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1/2/3/4): 97–118. https://doi.org/10.1016/S0031-0182(97)00067-9
    Studley, S. A., Ripley, E. M., Elswick, E. R., et al., 2002. Analysis of Sulfides in Whole Rock Matrices by Elemental Analyzer-Continuous Flow Isotope Ratio Mass Spectrometry. Chemical Geology, 192(1/2): 141–148. https://doi.org/10.1016/S0009-2541(02)00162-6
    Sylvester, P., 2008. Matrix Effects in Laser Ablation ICP-MS, Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, 40: 67–78
    Ushikubo, T., Williford, K. H., Farquhar, J., et al., 2014. Development of in Situ Sulfur Four-Isotope Analysis with Multiple Faraday Cup Detectors by SIMS and Application to Pyrite Grains in a Paleoproterozoic Glaciogenic Sandstone. Chemical Geology, 383: 86–99. https://doi.org/10.1016/j.chemgeo.2014.06.006
    Yun, M., Wadleigh, M. A., Pye, A., 2004. Direct Measurement of Sulphur Isotopic Composition in Lichens by Continuous Flow-Isotope Ratio Mass Spectrometry. Chemical Geology, 204(3/4): 369–376. https://doi.org/10.1016/j.chemgeo.2003.11.008
    Zhang, W., Hu, Z. C., Liu, Y. S., 2020. Iso-Compass: New Freeware Software for Isotopic Data Reduction of LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 35(6): 1087–1096. https://doi.org/10.1039/D0JA00084A
    Zhu, Z. Y., Jiang, S. Y., Ciobanu, C. L., et al., 2017. Sulfur Isotope Fractionation in Pyrite during Laser Ablation: Implications for Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry Mapping. Chemical Geology, 450: 223–234. https://doi.org/10.1016/j.chemgeo.2016.12.037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views(34) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return