Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Zhijie Jia, Pietro Sternai, Jianbing Peng. Role of Surface Processes and Mantle Plumes in the Formation of Microcontinents: Insights from Numerical Modeling and the Seychelles Microcontinent Case Study. Journal of Earth Science, 2025, 36(1): 233-249. doi: 10.1007/s12583-024-0067-3
Citation: Zhijie Jia, Pietro Sternai, Jianbing Peng. Role of Surface Processes and Mantle Plumes in the Formation of Microcontinents: Insights from Numerical Modeling and the Seychelles Microcontinent Case Study. Journal of Earth Science, 2025, 36(1): 233-249. doi: 10.1007/s12583-024-0067-3

Role of Surface Processes and Mantle Plumes in the Formation of Microcontinents: Insights from Numerical Modeling and the Seychelles Microcontinent Case Study

doi: 10.1007/s12583-024-0067-3
More Information
  • Corresponding author: Pietro Sternai, pietro.sternai@unimib.it
  • Received Date: 11 Jan 2024
  • Accepted Date: 02 Aug 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings, modulating the evolution of rifting margins. However, their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive. Here, we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath. Our modeling results indicate that fast extension rates and hillslope (i.e., diffusion) erosion promote ridge jump events and therefore the formation of microcontinents. On the contrary, efficient fluvial erosion and far-reaching sediment transport (i.e., stream power erosion) inhibits ridge jump events and the formation of microcontinents. The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent. We therefore speculate that hillslope erosion, rather than fluvial erosion, was predominant during the formation of the Seychelles, a possible indication of overall dry local climate conditions.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Anderson, D. L., 2000. The Thermal State of the Upper Mantle: No Role for Mantle Plumes. Geophysical Research Letters, 27(22): 3623–3626. https://doi.org/10.1029/2000gl011533
    Bahadori, A., Holt, W. E., Feng, R., et al., 2022. Coupled Influence of Tectonics, Climate, and Surface Processes on Landscape Evolution in Southwestern North America. Nature Communications, 13(1): 4437. https://doi.org/10.1038/s41467-022-31903-2
    Bishop, P., 2007. Long-Term Landscape Evolution: Linking Tectonics and Surface Processes. Earth Surface Processes and Landforms, 32(3): 329–365. https://doi.org/10.1002/esp.1493
    Bott, M. H., 1991. Sublithospheric Loading and Plate-Boundary Forces. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 337(1645): 83–93. https://doi.org/10.1098/rsta.1991.0108
    Braun, J., Beaumont, C., 1989. A Physical Explanation of the Relation between Flank Uplifts and the Breakup Unconformity at Rifted Continental Margins. Geology, 17(8): 760–764. https://doi.org/10.1130/0091-7613(1989)017<0760:APEOTR>2.3.CO;2 doi: 10.1130/0091-7613(1989)017<0760:APEOTR>2.3.CO;2
    Brune, S., Popov, A. A., Sobolev, S. V., 2013. Quantifying the Thermo-Mechanical Impact of Plume Arrival on Continental Break-up. Tectonophysics, 604: 51–59. https://doi.org/10.1016/j.tecto.2013.02.009
    Buiter, S. J. H., Torsvik, T. H., 2014. A Review of Wilson Cycle Plate Margins: A Role for Mantle Plumes in Continental Break-up along Sutures? Gondwana Research, 26(2): 627–653. https://doi.org/10.1016/j.gr.2014.02.007
    Burov, E., Cloetingh, S., 1997. Erosion and Rift Dynamics: New Thermomechanical Aspects of Post-Rift Evolution of Extensional Basins. Earth and Planetary Science Letters, 150(1/2): 7–26. https://doi.org/10.1016/S0012-821X(97)00069-1
    Burov, E., Poliakov, A., 2001. Erosion and Rheology Controls on Synrift and Postrift Evolution: Verifying Old and New Ideas Using a Fully Coupled Numerical Model. Journal of Geophysical Research: Solid Earth, 106(B8): 16461–16481. https://doi.org/10.1029/2001jb000433
    Carlson, R. L., Christensen, N. I., Moore, R. P., 1980. Anomalous Crustal Structures in Ocean Basins: Continental Fragments and Oceanic Plateaus. Earth and Planetary Science Letters, 51(1): 171–180. https://doi.org/10.1016/0012-821X(80)90264-2
    Chandra, R., Cripps, S., Butterworth, N., et al., 2021. Precipitation Reconstruction from Climate-Sensitive Lithologies Using Bayesian Machine Learning. Environmental Modelling & Software, 139: 105002. https://doi.org/10.1016/j.envsoft.2021.105002
    Cloetingh, S., Sternai, P., Koptev, A., et al., 2023. Coupled Surface to Deep Earth Processes: Perspectives from TOPO-EUROPE with an Emphasis on Climate- and Energy-Related Societal Challenges. Global and Planetary Change, 226: 104140. https://doi.org/10.1016/j.gloplacha.2023.104140
    Collier, J. S., Minshull, T. A., Kendall, J. M., et al., 2004. Rapid Continental Breakup and Microcontinent Formation in the Western Indian Ocean. Eos, Transactions American Geophysical Union, 85(46): 481–487. https://doi.org/10.1029/2004EO460001
    Collier, J. S., Sansom, V., Ishizuka, O., et al., 2008. Age of Seychelles—India Break-up. Earth and Planetary Science Letters, 272(1/2): 264–277. https://doi.org/10.1016/j.epsl.2008.04.045
    Courant, R., Friedrichs, K., Lewy, H., 1967. On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, 11(2): 215–234. https://doi.org/10.1147/rd.112.0215
    Crameri, F., Schmeling, H., Golabek, G. J., et al., 2012. A Comparison of Numerical Surface Topography Calculations in Geodynamic Modelling: An Evaluation of the 'Sticky Air' Method. Geophysical Journal International, 189(1): 38–54. https://doi.org/10.1111/j.1365-246X.2012.05388.x
    Davies, D., 1968. When Did the Seychelles Leave India? Nature, 220: 1225–1226. https://doi.org/10.1038/2201225a0
    Dickin, A. P., Fallick, A. E., Halliday, A. N., et al., 1986. An Isotopic and Geochronological Investigation of the Younger Igneous Rocks of the Seychelles Microcontinent. Earth and Planetary Science Letters, 81(1): 46–56. https://doi.org/10.1016/0012-821X(86)90099-3
    Gaina, C., Gernigon, L., Ball, P., 2009. Palaeocene–Recent Plate Boundaries in the NE Atlantic and the Formation of the Jan Mayen Microcontinent. Journal of the Geological Society, 166(4): 601–616. https://doi.org/10.1144/0016-76492008-112
    Gaina, C., Müller, R. D., Brown, B. J., et al., 2003. Microcontinent Formation around Australia. Special Paper of the Geological Society of America, 372: 405–416. https://doi.org/10.1130/0-8137-2372-8.405
    Ganerød, M., Torsvik, T. H., van Hinsbergen, D. J. J., et al., 2011. Palaeoposition of the Seychelles Microcontinent in Relation to the Deccan Traps and the Plume Generation Zone in Late Cretaceous–Early Palaeogene Time. Geological Society of London Special Publications, 357(1): 229–252. https://doi.org/10.1144/SP357.12
    Gerya, T. V., Yuen, D. A., 2007. Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems. Physics of the Earth and Planetary Interiors, 163(1/2/3/4): 83–105. https://doi.org/10.1016/j.pepi.2007.04.015
    Gerya, T., 2019. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316534243
    Hammond, J. O. S., Kendall, J. M., Collier, J. S., et al., 2013. The Extent of Continental Crust beneath the Seychelles. Earth and Planetary Science Letters, 381: 166–176. https://doi.org/10.1016/j.epsl.2013.08.023
    Hammond, J. O. S., Kendall, J. M., Rümpker, G., et al., 2005. Upper Mantle Anisotropy beneath the Seychelles Microcontinent. Journal of Geophysical Research (Solid Earth), 110(B11): B11401. https://doi.org/10.1029/2005JB003757
    Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739-752 doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2
    Kaula, W. M., 1983. Minimal Upper Mantle Temperature Variations Consistent with Observed Heat Flow and Plate Velocities. Journal of Geophysical Research: Solid Earth, 88(B12): 10323–10332. https://doi.org/10.1029/jb088ib12p10323
    Keen, C. E., Courtney, R. C., Dehler, S. A., et al., 1994. Decompression Melting at Rifted Margins: Comparison of Model Predictions with the Distribution of Igneous Rocks on the Eastern Canadian Margin. Earth and Planetary Science Letters, 121(3/4): 403–416. https://doi.org/10.1016/0012-821X(94)90080-9
    Kendall, J. M., Stuart, G. W., Ebinger, C. J., et al., 2005. Magma-Assisted Rifting in Ethiopia. Nature, 433(7022): 146–148. https://doi.org/10.1038/nature03161
    Koehn, D., Aanyu, K., Haines, S., et al., 2008. Rift Nucleation, Rift Propagation and the Creation of Basement Micro-Plates within Active Rifts. Tectonophysics, 458(1/2/3/4): 105–116. https://doi.org/10.1016/j.tecto.2007.10.003
    Kooi, H., Beaumont, C., 1994. Escarpment Evolution on High-Elevation Rifted Margins: Insights Derived from a Surface Processes Model that Combines Diffusion, Advection, and Reaction. Journal of Geophysical Research: Solid Earth, 99(B6): 12191–12209. https://doi.org/10.1029/94jb00047
    Lai, Y. G., 2017. Modeling Stream Bank Erosion: Practical Stream Results and Future Needs. Water, 9(12): 950. https://doi.org/10.3390/w9120950
    Lavecchia, A., Beekman, F., Clark, S. R., et al., 2016. Thermo-Rheological Aspects of Crustal Evolution during Continental Breakup and Melt Intrusion: The Main Ethiopian Rift, East Africa. Tectonophysics, 686: 51–62. https://doi.org/10.1016/j.tecto.2016.07.018
    Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2018a. Microplate Tectonics: New Insights from Micro-Blocks in the Global Oceans, Continental Margins and Deep Mantle. Earth-Science Reviews, 185: 1029–1064. https://doi.org/10.1016/j.earscirev.2018.09.005
    Li, S. Z., Zhao, S. J., Liu, X., et al., 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37–75. https://doi.org/10.1016/j.earscirev.2017.01.011
    Martin, Y., 2000. Modelling Hillslope Evolution: Linear and Nonlinear Transport Relations. Geomorphology, 34(1/2): 1–21. https://doi.org/10.1016/S0169-555X(99)00127-0
    Minshull, T. A., Lane, C. I., Collier, J. S., et al., 2008. The Relationship between Rifting and Magmatism in the Northeastern Arabian Sea. Nature Geoscience, 1: 463–467. https://doi.org/10.1038/ngeo228
    Misra, A. A., Sinha, N., Mukherjee, S., 2015. Repeat Ridge Jumps and Microcontinent Separation: Insights from NE Arabian Sea. Marine and Petroleum Geology, 59: 406–428. https://doi.org/10.1016/j.marpetgeo.2014.08.019
    Müller, R. D., Gaina, C., Roest, W. R., et al., 2001. A Recipe for Microcontinent Formation. Geology, 29(3): 203–206. https://doi.org/10.1130/0091-7613(2001)029<0203:arfmf>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0203:arfmf>2.0.co;2
    Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743
    Muller, V. A. P., Sternai, P., Sue, C., et al., 2022. Climatic Control on the Location of Continental Volcanic Arcs. Scientific Reports, 12(1): 22167. https://doi.org/10.1038/s41598-022-26158-2
    Nemčok, M., Sinha, S. T., Doré, A. G., et al., 2016. Mechanisms of Microcontinent Release Associated with Wrenching-Involved Continental Break-Up; A Review. Geological Society of London Special Publications, 431(1): 323–359. https://doi.org/10.1144/SP431.14
    Nur, A., Ben-Avraham, Z., 1982. Oceanic Plateaus, the Fragmentation of Continents, and Mountain Building. Journal of Geophysical Research: Solid Earth, 87(B5): 3644–3661. https://doi.org/10.1029/jb087ib05p03644
    Olesen, O., Pascal Kierulf, H., Brönner, M., et al., 2013. Deep Weathering, Neotectonics and Strandflat Formation in Nordland, Northern Norway. Norwegian Journal of Geology, 93.
    Olive, J. A., Behn, M. D., Malatesta, L. C., 2014. Modes of Extensional Faulting Controlled by Surface Processes. Geophysical Research Letters, 41(19): 6725–6733. https://doi.org/10.1002/2014gl061507
    Olive, J. A., Malatesta, L. C., Behn, M. D., et al., 2022. Sensitivity of Rift Tectonics to Global Variability in the Efficiency of River Erosion. Proceedings of the National Academy of Sciences of the United States of America, 119(13): e2115077119. https://doi.org/10.1073/pnas.2115077119
    Pelletier, J. D., 2008. Quantitative Modeling of Earth Surface Processes. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511813849
    Péron-Pinvidic, G., Manatschal, G., 2010. From Microcontinents to Extensional Allochthons: Witnesses of how Continents Rift and Break Apart? Petroleum Geoscience, 16(3): 189–197. https://doi.org/10.1144/1354-079309-903
    Pik, R., Marty, B., Carignan, J., et al., 2003. Stability of the Upper Nile Drainage Network (Ethiopia) Deduced from (U-Th)/He Thermochronometry: Implications for Uplift and Erosion of the Afar Plume Dome. Earth and Planetary Science Letters, 215(1/2): 73–88. https://doi.org/10.1016/S0012-821X(03)00457-6
    Poblete, F., Dupont-Nivet, G., Licht, A., et al., 2021. Towards Interactive Global Paleogeographic Maps, New Reconstructions at 60, 40 and 20 Ma. Earth-Science Reviews, 214: 103508. https://doi.org/10.1016/j.earscirev.2021.103508
    Ranalli, G., 1995. Rheology of the Earth. Springer Science & Business Media. Springer, Dordrecht
    Reguzzoni, M., Sampietro, D., Sansò, F., 2013. Global Moho from the Combination of the CRUST2.0 Model and GOCE Data. Geophysical Journal International, 195(1): 222–237. https://doi.org/10.1093/gji/ggt247
    Salles, T., Husson, L., Rey, P., et al., 2023. Hundred Million Years of Landscape Dynamics from Catchment to Global Scale. Science, 379(6635): 918–923. https://doi.org/10.1126/science.add2541
    Savage, J. E. G., Long, R. E., 1985. Lithospheric Structure beneath the Kenya Dome. Geophysical Journal of the Royal Astronomical Society, 82(3): 461–477. https://doi.org/10.1111/j.1365-246X.1985.tb05146.x
    Schlich, R., 1982. The Indian Ocean: Aseismic Ridges, Spreading Centers, and Oceanic Basins. In: The Ocean Basins and Margins. Springer, Boston. 51–147. https://doi.org/10.1007/978-1-4615-8038-6_2
    Shellnutt, J. G., Nguyen, D. T., Lee, H. Y., 2020. Resolving the Origin of the Seychelles Microcontinent: Insight from Zircon Geochronology and Hf Isotopes. Precambrian Research, 343: 105725. https://doi.org/10.1016/j.precamres.2020.105725
    Shellnutt, J. G., Yeh, M. W., Suga, K. S., et al., 2017. Temporal and Structural Evolution of the Early Palæogene Rocks of the Seychelles Microcontinent. Scientific Reports, 7(1): 179. https://doi.org/10.1038/s41598-017-00248-y
    Steckler, M. S., Ten Brink, U. S., 1986. Lithospheric Strength Variations as a Control on New Plate Boundaries: Examples from the Northern Red Sea Region. Earth and Planetary Science Letters, 79(1/2): 120–132. https://doi.org/10.1016/0012-821X(86)90045-2
    Sternai, P., 2020. Surface Processes Forcing on Extensional Rock Melting. Scientific Reports, 10(1): 7711. https://doi.org/10.1038/s41598-020-63920-w
    Sternai, P., Muller, V. A. P., Jolivet, L., et al., 2021. Effects of Asthenospheric Flow and Orographic Precipitation on Continental Rifting. Tectonophysics, 820: 229120. https://doi.org/10.1016/j.tecto.2021.229120
    Strahler, A. N., 1952. Dynamic Basis of Geomorphology. Geological Society of America Bulletin, 63(9): 923–938 doi: 10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2
    Suo, Y. H., Li, S. Z., Cao, X. Z., et al., 2021. Mantle Micro-Block beneath the Indian Ocean and Its Implications on the Continental Rift-Drift-Collision of the Tethyan Evolution. Earth-Science Reviews, 217: 103622. https://doi.org/10.1016/j.earscirev.2021.103622
    Torsvik, T. H., Amundsen, H., Hartz, E. H., et al., 2013. A Precambrian Microcontinent in the Indian Ocean. Nature Geoscience, 6(3): 223–227. https://doi.org/10.1038/ngeo1736
    Tucker, G. E., Bras, R. L., 1998. Hillslope Processes, Drainage Density, and Landscape Morphology. Water Resources Research, 34(10): 2751–2764. https://doi.org/10.1029/98WR01474
    Tucker, G. E., McCoy, S. W., Hobley, D. E. J., 2018. A Lattice Grain Model of Hillslope Evolution. Earth Surface Dynamics, 6(3): 563–582. https://doi.org/10.5194/esurf-6-563-2018
    Tucker, G. E., Slingerland, R. L., 1994. Erosional Dynamics, Flexural Isostasy, and Long-Lived Escarpments: A Numerical Modeling Study. Journal of Geophysical Research: Solid Earth, 99(B6): 12229–12243. https://doi.org/10.1029/94jb00320
    Tucker, G. E., Whipple, K. X., 2002. Topographic Outcomes Predicted by Stream Erosion Models: Sensitivity Analysis and Intermodel Comparison. Journal of Geophysical Research (Solid Earth), 107(B9): 2179. https://doi.org/10.1029/2001JB000162
    Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511807442
    Valdes, P. J., Scotese, C. R., Lunt, D. J., 2021. Deep Ocean Temperatures through Time. Climate of the Past, 17(4): 1483–1506. https://doi.org/10.5194/cp-17-1483-2021
    van Wijk, J. W., Blackman, D. K., 2005. Dynamics of Continental Rift Propagation: The End-Member Modes. Earth and Planetary Science Letters, 229(3/4): 247–258. https://doi.org/10.1016/j.epsl.2004.10.039
    van Wijk, J. W., Lawrence, J. F., Driscoll, N. W., 2008. Formation of the Transantarctic Mountains Related to Extension of the West Antarctic Rift System. Tectonophysics, 458(1/2/3/4): 117–126. https://doi.org/10.1016/j.tecto.2008.03.009
    Vink, G. E., Morgan, W. J., Zhao, W. L., 1984. Preferential Rifting of Continents: A Source of Displaced Terranes. Journal of Geophysical Research: Solid Earth, 89(B12): 10072–10076. https://doi.org/10.1029/JB089iB12p10072
    Wang, Z. S., Kusky, T. M., 2019. The Importance of a Weak Mid-Lithospheric Layer on the Evolution of the Cratonic Lithosphere. Earth-Science Reviews, 190: 557–569. https://doi.org/10.1016/j.earscirev.2019.02.010
    Wang, Z. S., Kusky, T. M., Capitanio, F. A., 2016. Lithosphere Thinning Induced by Slab Penetration into a Hydrous Mantle Transition Zone. Geophysical Research Letters, 43(22): 11567–11577. https://doi.org/10.1002/2016GL071186
    Wegener, A., 1924. The Origin of Continents and Oceans. Methuen, London. 212
    Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661–17674. https://doi.org/10.1029/1999JB900120
    Whittaker, J. M., Williams, S. E., Halpin, J. A., et al., 2016. Eastern Indian Ocean Microcontinent Formation Driven by Plate Motion Changes. Earth and Planetary Science Letters, 454: 203–212. https://doi.org/10.1016/j.epsl.2016.09.019
    Xue, L., Gani, N. D., Abdelsalam, M. G., 2019. Drainage Incision, Tectonic Uplift, Magmatic Activity, and Paleo-Environmental Changes in the Kenya Rift, East African Rift System: A Morpho-Tectonic Analysis. Geomorphology, 345: 106839. https://doi.org/10.1016/j.geomorph.2019.106839
    Yamasaki, T., Gernigon, L., 2010. Redistribution of the Lithosphere Deformation by the Emplacement of Underplated Mafic Bodies: Implications for Microcontinent Formation. Journal of the Geological Society, 167(5): 961–971. https://doi.org/10.1144/0016-76492010-027
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(11) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return