Citation: | Zhijie Jia, Pietro Sternai, Jianbing Peng. Role of Surface Processes and Mantle Plumes in the Formation of Microcontinents: Insights from Numerical Modeling and the Seychelles Microcontinent Case Study. Journal of Earth Science, 2025, 36(1): 233-249. doi: 10.1007/s12583-024-0067-3 |
Mantle plumes and surface erosion and sediment deposition affect the modes of continental lithospheric rupturing in extensional tectonic settings, modulating the evolution of rifting margins. However, their relative contributions to the overall evolution of rifting margins and possible roles in the formation of microcontinent are still elusive. Here, we use coupled geodynamic and surface processes numerical modeling to assess the extent to which surface processes may determine the formation of microcontinent during lithospheric stretching in presence or absence of a mantle plume underneath. Our modeling results indicate that fast extension rates and hillslope (i.e., diffusion) erosion promote ridge jump events and therefore the formation of microcontinents. On the contrary, efficient fluvial erosion and far-reaching sediment transport (i.e., stream power erosion) inhibits ridge jump events and the formation of microcontinents. The ridge jump event and overall evolution in our numerical models is consistent with the shift from the Mascarene Ridge to the Carlsberg Ridge that determined the formation of the Seychelles microcontinent. We therefore speculate that hillslope erosion, rather than fluvial erosion, was predominant during the formation of the Seychelles, a possible indication of overall dry local climate conditions.
Anderson, D. L., 2000. The Thermal State of the Upper Mantle: No Role for Mantle Plumes. Geophysical Research Letters, 27(22): 3623–3626. https://doi.org/10.1029/2000gl011533 |
Bahadori, A., Holt, W. E., Feng, R., et al., 2022. Coupled Influence of Tectonics, Climate, and Surface Processes on Landscape Evolution in Southwestern North America. Nature Communications, 13(1): 4437. https://doi.org/10.1038/s41467-022-31903-2 |
Bishop, P., 2007. Long-Term Landscape Evolution: Linking Tectonics and Surface Processes. Earth Surface Processes and Landforms, 32(3): 329–365. https://doi.org/10.1002/esp.1493 |
Bott, M. H., 1991. Sublithospheric Loading and Plate-Boundary Forces. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 337(1645): 83–93. https://doi.org/10.1098/rsta.1991.0108 |
Braun, J., Beaumont, C., 1989. A Physical Explanation of the Relation between Flank Uplifts and the Breakup Unconformity at Rifted Continental Margins. Geology, 17(8): 760–764. https://doi.org/10.1130/0091-7613(1989)017<0760:APEOTR>2.3.CO;2 doi: 10.1130/0091-7613(1989)017<0760:APEOTR>2.3.CO;2 |
Brune, S., Popov, A. A., Sobolev, S. V., 2013. Quantifying the Thermo-Mechanical Impact of Plume Arrival on Continental Break-up. Tectonophysics, 604: 51–59. https://doi.org/10.1016/j.tecto.2013.02.009 |
Buiter, S. J. H., Torsvik, T. H., 2014. A Review of Wilson Cycle Plate Margins: A Role for Mantle Plumes in Continental Break-up along Sutures? Gondwana Research, 26(2): 627–653. https://doi.org/10.1016/j.gr.2014.02.007 |
Burov, E., Cloetingh, S., 1997. Erosion and Rift Dynamics: New Thermomechanical Aspects of Post-Rift Evolution of Extensional Basins. Earth and Planetary Science Letters, 150(1/2): 7–26. https://doi.org/10.1016/S0012-821X(97)00069-1 |
Burov, E., Poliakov, A., 2001. Erosion and Rheology Controls on Synrift and Postrift Evolution: Verifying Old and New Ideas Using a Fully Coupled Numerical Model. Journal of Geophysical Research: Solid Earth, 106(B8): 16461–16481. https://doi.org/10.1029/2001jb000433 |
Carlson, R. L., Christensen, N. I., Moore, R. P., 1980. Anomalous Crustal Structures in Ocean Basins: Continental Fragments and Oceanic Plateaus. Earth and Planetary Science Letters, 51(1): 171–180. https://doi.org/10.1016/0012-821X(80)90264-2 |
Chandra, R., Cripps, S., Butterworth, N., et al., 2021. Precipitation Reconstruction from Climate-Sensitive Lithologies Using Bayesian Machine Learning. Environmental Modelling & Software, 139: 105002. https://doi.org/10.1016/j.envsoft.2021.105002 |
Cloetingh, S., Sternai, P., Koptev, A., et al., 2023. Coupled Surface to Deep Earth Processes: Perspectives from TOPO-EUROPE with an Emphasis on Climate- and Energy-Related Societal Challenges. Global and Planetary Change, 226: 104140. https://doi.org/10.1016/j.gloplacha.2023.104140 |
Collier, J. S., Minshull, T. A., Kendall, J. M., et al., 2004. Rapid Continental Breakup and Microcontinent Formation in the Western Indian Ocean. Eos, Transactions American Geophysical Union, 85(46): 481–487. https://doi.org/10.1029/2004EO460001 |
Collier, J. S., Sansom, V., Ishizuka, O., et al., 2008. Age of Seychelles—India Break-up. Earth and Planetary Science Letters, 272(1/2): 264–277. https://doi.org/10.1016/j.epsl.2008.04.045 |
Courant, R., Friedrichs, K., Lewy, H., 1967. On the Partial Difference Equations of Mathematical Physics. IBM Journal of Research and Development, 11(2): 215–234. https://doi.org/10.1147/rd.112.0215 |
Crameri, F., Schmeling, H., Golabek, G. J., et al., 2012. A Comparison of Numerical Surface Topography Calculations in Geodynamic Modelling: An Evaluation of the 'Sticky Air' Method. Geophysical Journal International, 189(1): 38–54. https://doi.org/10.1111/j.1365-246X.2012.05388.x |
Davies, D., 1968. When Did the Seychelles Leave India? Nature, 220: 1225–1226. https://doi.org/10.1038/2201225a0 |
Dickin, A. P., Fallick, A. E., Halliday, A. N., et al., 1986. An Isotopic and Geochronological Investigation of the Younger Igneous Rocks of the Seychelles Microcontinent. Earth and Planetary Science Letters, 81(1): 46–56. https://doi.org/10.1016/0012-821X(86)90099-3 |
Gaina, C., Gernigon, L., Ball, P., 2009. Palaeocene–Recent Plate Boundaries in the NE Atlantic and the Formation of the Jan Mayen Microcontinent. Journal of the Geological Society, 166(4): 601–616. https://doi.org/10.1144/0016-76492008-112 |
Gaina, C., Müller, R. D., Brown, B. J., et al., 2003. Microcontinent Formation around Australia. Special Paper of the Geological Society of America, 372: 405–416. https://doi.org/10.1130/0-8137-2372-8.405 |
Ganerød, M., Torsvik, T. H., van Hinsbergen, D. J. J., et al., 2011. Palaeoposition of the Seychelles Microcontinent in Relation to the Deccan Traps and the Plume Generation Zone in Late Cretaceous–Early Palaeogene Time. Geological Society of London Special Publications, 357(1): 229–252. https://doi.org/10.1144/SP357.12 |
Gerya, T. V., Yuen, D. A., 2007. Robust Characteristics Method for Modelling Multiphase Visco-Elasto-Plastic Thermo-Mechanical Problems. Physics of the Earth and Planetary Interiors, 163(1/2/3/4): 83–105. https://doi.org/10.1016/j.pepi.2007.04.015 |
Gerya, T., 2019. Introduction to Numerical Geodynamic Modelling. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316534243 |
Hammond, J. O. S., Kendall, J. M., Collier, J. S., et al., 2013. The Extent of Continental Crust beneath the Seychelles. Earth and Planetary Science Letters, 381: 166–176. https://doi.org/10.1016/j.epsl.2013.08.023 |
Hammond, J. O. S., Kendall, J. M., Rümpker, G., et al., 2005. Upper Mantle Anisotropy beneath the Seychelles Microcontinent. Journal of Geophysical Research (Solid Earth), 110(B11): B11401. https://doi.org/10.1029/2005JB003757 |
Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739-752 doi: 10.1130/0016-7606(1983)94<739:CCIB>2.0.CO;2 |
Kaula, W. M., 1983. Minimal Upper Mantle Temperature Variations Consistent with Observed Heat Flow and Plate Velocities. Journal of Geophysical Research: Solid Earth, 88(B12): 10323–10332. https://doi.org/10.1029/jb088ib12p10323 |
Keen, C. E., Courtney, R. C., Dehler, S. A., et al., 1994. Decompression Melting at Rifted Margins: Comparison of Model Predictions with the Distribution of Igneous Rocks on the Eastern Canadian Margin. Earth and Planetary Science Letters, 121(3/4): 403–416. https://doi.org/10.1016/0012-821X(94)90080-9 |
Kendall, J. M., Stuart, G. W., Ebinger, C. J., et al., 2005. Magma-Assisted Rifting in Ethiopia. Nature, 433(7022): 146–148. https://doi.org/10.1038/nature03161 |
Koehn, D., Aanyu, K., Haines, S., et al., 2008. Rift Nucleation, Rift Propagation and the Creation of Basement Micro-Plates within Active Rifts. Tectonophysics, 458(1/2/3/4): 105–116. https://doi.org/10.1016/j.tecto.2007.10.003 |
Kooi, H., Beaumont, C., 1994. Escarpment Evolution on High-Elevation Rifted Margins: Insights Derived from a Surface Processes Model that Combines Diffusion, Advection, and Reaction. Journal of Geophysical Research: Solid Earth, 99(B6): 12191–12209. https://doi.org/10.1029/94jb00047 |
Lai, Y. G., 2017. Modeling Stream Bank Erosion: Practical Stream Results and Future Needs. Water, 9(12): 950. https://doi.org/10.3390/w9120950 |
Lavecchia, A., Beekman, F., Clark, S. R., et al., 2016. Thermo-Rheological Aspects of Crustal Evolution during Continental Breakup and Melt Intrusion: The Main Ethiopian Rift, East Africa. Tectonophysics, 686: 51–62. https://doi.org/10.1016/j.tecto.2016.07.018 |
Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2018a. Microplate Tectonics: New Insights from Micro-Blocks in the Global Oceans, Continental Margins and Deep Mantle. Earth-Science Reviews, 185: 1029–1064. https://doi.org/10.1016/j.earscirev.2018.09.005 |
Li, S. Z., Zhao, S. J., Liu, X., et al., 2018b. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37–75. https://doi.org/10.1016/j.earscirev.2017.01.011 |
Martin, Y., 2000. Modelling Hillslope Evolution: Linear and Nonlinear Transport Relations. Geomorphology, 34(1/2): 1–21. https://doi.org/10.1016/S0169-555X(99)00127-0 |
Minshull, T. A., Lane, C. I., Collier, J. S., et al., 2008. The Relationship between Rifting and Magmatism in the Northeastern Arabian Sea. Nature Geoscience, 1: 463–467. https://doi.org/10.1038/ngeo228 |
Misra, A. A., Sinha, N., Mukherjee, S., 2015. Repeat Ridge Jumps and Microcontinent Separation: Insights from NE Arabian Sea. Marine and Petroleum Geology, 59: 406–428. https://doi.org/10.1016/j.marpetgeo.2014.08.019 |
Müller, R. D., Gaina, C., Roest, W. R., et al., 2001. A Recipe for Microcontinent Formation. Geology, 29(3): 203–206. https://doi.org/10.1130/0091-7613(2001)029<0203:arfmf>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0203:arfmf>2.0.co;2 |
Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World's Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 |
Muller, V. A. P., Sternai, P., Sue, C., et al., 2022. Climatic Control on the Location of Continental Volcanic Arcs. Scientific Reports, 12(1): 22167. https://doi.org/10.1038/s41598-022-26158-2 |
Nemčok, M., Sinha, S. T., Doré, A. G., et al., 2016. Mechanisms of Microcontinent Release Associated with Wrenching-Involved Continental Break-Up; A Review. Geological Society of London Special Publications, 431(1): 323–359. https://doi.org/10.1144/SP431.14 |
Nur, A., Ben-Avraham, Z., 1982. Oceanic Plateaus, the Fragmentation of Continents, and Mountain Building. Journal of Geophysical Research: Solid Earth, 87(B5): 3644–3661. https://doi.org/10.1029/jb087ib05p03644 |
Olesen, O., Pascal Kierulf, H., Brönner, M., et al., 2013. Deep Weathering, Neotectonics and Strandflat Formation in Nordland, Northern Norway. Norwegian Journal of Geology, 93. |
Olive, J. A., Behn, M. D., Malatesta, L. C., 2014. Modes of Extensional Faulting Controlled by Surface Processes. Geophysical Research Letters, 41(19): 6725–6733. https://doi.org/10.1002/2014gl061507 |
Olive, J. A., Malatesta, L. C., Behn, M. D., et al., 2022. Sensitivity of Rift Tectonics to Global Variability in the Efficiency of River Erosion. Proceedings of the National Academy of Sciences of the United States of America, 119(13): e2115077119. https://doi.org/10.1073/pnas.2115077119 |
Pelletier, J. D., 2008. Quantitative Modeling of Earth Surface Processes. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511813849 |
Péron-Pinvidic, G., Manatschal, G., 2010. From Microcontinents to Extensional Allochthons: Witnesses of how Continents Rift and Break Apart? Petroleum Geoscience, 16(3): 189–197. https://doi.org/10.1144/1354-079309-903 |
Pik, R., Marty, B., Carignan, J., et al., 2003. Stability of the Upper Nile Drainage Network (Ethiopia) Deduced from (U-Th)/He Thermochronometry: Implications for Uplift and Erosion of the Afar Plume Dome. Earth and Planetary Science Letters, 215(1/2): 73–88. https://doi.org/10.1016/S0012-821X(03)00457-6 |
Poblete, F., Dupont-Nivet, G., Licht, A., et al., 2021. Towards Interactive Global Paleogeographic Maps, New Reconstructions at 60, 40 and 20 Ma. Earth-Science Reviews, 214: 103508. https://doi.org/10.1016/j.earscirev.2021.103508 |
Ranalli, G., 1995. Rheology of the Earth. Springer Science & Business Media. Springer, Dordrecht |
Reguzzoni, M., Sampietro, D., Sansò, F., 2013. Global Moho from the Combination of the CRUST2.0 Model and GOCE Data. Geophysical Journal International, 195(1): 222–237. https://doi.org/10.1093/gji/ggt247 |
Salles, T., Husson, L., Rey, P., et al., 2023. Hundred Million Years of Landscape Dynamics from Catchment to Global Scale. Science, 379(6635): 918–923. https://doi.org/10.1126/science.add2541 |
Savage, J. E. G., Long, R. E., 1985. Lithospheric Structure beneath the Kenya Dome. Geophysical Journal of the Royal Astronomical Society, 82(3): 461–477. https://doi.org/10.1111/j.1365-246X.1985.tb05146.x |
Schlich, R., 1982. The Indian Ocean: Aseismic Ridges, Spreading Centers, and Oceanic Basins. In: The Ocean Basins and Margins. Springer, Boston. 51–147. |
Shellnutt, J. G., Nguyen, D. T., Lee, H. Y., 2020. Resolving the Origin of the Seychelles Microcontinent: Insight from Zircon Geochronology and Hf Isotopes. Precambrian Research, 343: 105725. https://doi.org/10.1016/j.precamres.2020.105725 |
Shellnutt, J. G., Yeh, M. W., Suga, K. S., et al., 2017. Temporal and Structural Evolution of the Early Palæogene Rocks of the Seychelles Microcontinent. Scientific Reports, 7(1): 179. https://doi.org/10.1038/s41598-017-00248-y |
Steckler, M. S., Ten Brink, U. S., 1986. Lithospheric Strength Variations as a Control on New Plate Boundaries: Examples from the Northern Red Sea Region. Earth and Planetary Science Letters, 79(1/2): 120–132. https://doi.org/10.1016/0012-821X(86)90045-2 |
Sternai, P., 2020. Surface Processes Forcing on Extensional Rock Melting. Scientific Reports, 10(1): 7711. https://doi.org/10.1038/s41598-020-63920-w |
Sternai, P., Muller, V. A. P., Jolivet, L., et al., 2021. Effects of Asthenospheric Flow and Orographic Precipitation on Continental Rifting. Tectonophysics, 820: 229120. https://doi.org/10.1016/j.tecto.2021.229120 |
Strahler, A. N., 1952. Dynamic Basis of Geomorphology. Geological Society of America Bulletin, 63(9): 923–938 doi: 10.1130/0016-7606(1952)63[923:DBOG]2.0.CO;2 |
Suo, Y. H., Li, S. Z., Cao, X. Z., et al., 2021. Mantle Micro-Block beneath the Indian Ocean and Its Implications on the Continental Rift-Drift-Collision of the Tethyan Evolution. Earth-Science Reviews, 217: 103622. https://doi.org/10.1016/j.earscirev.2021.103622 |
Torsvik, T. H., Amundsen, H., Hartz, E. H., et al., 2013. A Precambrian Microcontinent in the Indian Ocean. Nature Geoscience, 6(3): 223–227. https://doi.org/10.1038/ngeo1736 |
Tucker, G. E., Bras, R. L., 1998. Hillslope Processes, Drainage Density, and Landscape Morphology. Water Resources Research, 34(10): 2751–2764. https://doi.org/10.1029/98WR01474 |
Tucker, G. E., McCoy, S. W., Hobley, D. E. J., 2018. A Lattice Grain Model of Hillslope Evolution. Earth Surface Dynamics, 6(3): 563–582. https://doi.org/10.5194/esurf-6-563-2018 |
Tucker, G. E., Slingerland, R. L., 1994. Erosional Dynamics, Flexural Isostasy, and Long-Lived Escarpments: A Numerical Modeling Study. Journal of Geophysical Research: Solid Earth, 99(B6): 12229–12243. https://doi.org/10.1029/94jb00320 |
Tucker, G. E., Whipple, K. X., 2002. Topographic Outcomes Predicted by Stream Erosion Models: Sensitivity Analysis and Intermodel Comparison. Journal of Geophysical Research (Solid Earth), 107(B9): 2179. https://doi.org/10.1029/2001JB000162 |
Turcotte, D. L., Schubert, G., 2002. Geodynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511807442 |
Valdes, P. J., Scotese, C. R., Lunt, D. J., 2021. Deep Ocean Temperatures through Time. Climate of the Past, 17(4): 1483–1506. https://doi.org/10.5194/cp-17-1483-2021 |
van Wijk, J. W., Blackman, D. K., 2005. Dynamics of Continental Rift Propagation: The End-Member Modes. Earth and Planetary Science Letters, 229(3/4): 247–258. https://doi.org/10.1016/j.epsl.2004.10.039 |
van Wijk, J. W., Lawrence, J. F., Driscoll, N. W., 2008. Formation of the Transantarctic Mountains Related to Extension of the West Antarctic Rift System. Tectonophysics, 458(1/2/3/4): 117–126. https://doi.org/10.1016/j.tecto.2008.03.009 |
Vink, G. E., Morgan, W. J., Zhao, W. L., 1984. Preferential Rifting of Continents: A Source of Displaced Terranes. Journal of Geophysical Research: Solid Earth, 89(B12): 10072–10076. https://doi.org/10.1029/JB089iB12p10072 |
Wang, Z. S., Kusky, T. M., 2019. The Importance of a Weak Mid-Lithospheric Layer on the Evolution of the Cratonic Lithosphere. Earth-Science Reviews, 190: 557–569. https://doi.org/10.1016/j.earscirev.2019.02.010 |
Wang, Z. S., Kusky, T. M., Capitanio, F. A., 2016. Lithosphere Thinning Induced by Slab Penetration into a Hydrous Mantle Transition Zone. Geophysical Research Letters, 43(22): 11567–11577. https://doi.org/10.1002/2016GL071186 |
Wegener, A., 1924. The Origin of Continents and Oceans. Methuen, London. 212 |
Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661–17674. https://doi.org/10.1029/1999JB900120 |
Whittaker, J. M., Williams, S. E., Halpin, J. A., et al., 2016. Eastern Indian Ocean Microcontinent Formation Driven by Plate Motion Changes. Earth and Planetary Science Letters, 454: 203–212. https://doi.org/10.1016/j.epsl.2016.09.019 |
Xue, L., Gani, N. D., Abdelsalam, M. G., 2019. Drainage Incision, Tectonic Uplift, Magmatic Activity, and Paleo-Environmental Changes in the Kenya Rift, East African Rift System: A Morpho-Tectonic Analysis. Geomorphology, 345: 106839. https://doi.org/10.1016/j.geomorph.2019.106839 |
Yamasaki, T., Gernigon, L., 2010. Redistribution of the Lithosphere Deformation by the Emplacement of Underplated Mafic Bodies: Implications for Microcontinent Formation. Journal of the Geological Society, 167(5): 961–971. https://doi.org/10.1144/0016-76492010-027 |