Citation: | Xue Peng, Xiang Li, Yingyibing Shen, Xuehua Che, Shipei Dong, Zhuolun Li. Applicability of Different Indices for Delineating the Boundary of Arid Region: A Case Study in Northwestern China. Journal of Earth Science, 2025, 36(1): 212-222. doi: 10.1007/s12583-024-0069-1 |
Arid regions are vital components of Earth's land surface. Clarifying the area/boundary of arid region is crucial for comprehending area changes and potential mechanisms. However, the accuracy and applicability of arid region boundary delineated by different indices remain unclear. In this study, the annual precipitation (AP), humidity index (H), and aridity index (K) were calculated for delineating arid region of China using 106 meteorological stations during 1990–2019. The results suggest that AP and H can accurately delineate arid region, because they are consistent with the distribution of typical soil and vegetation in arid region, whereas K is not. Moreover, AP is the best index for delineating arid region in regions with limited meteorological data, especially in studying long-term patterns and mechanisms of area changes. The accuracy of delineating arid region using H is enhanced in regions with abundant meteorological data. Over the past 30 years, influenced by the increase of atmospheric moisture influx and precipitation, the area in arid region of northwestern China decreased by 70 × 103–90 × 103 km2, resulting in the present area of approximately 1.55 × 106 km2. This study provides appropriate indices for delineating arid region, contributing to improving our knowledge of regional responses difference to climate change.
Allen, R. G., Pereira, L. S., Raes, D., et al., 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. United Nations Food and Agriculture Organization, Rome |
Bastin, J. F., Berrahmouni, N., Grainger, A., et al., 2017. The Extent of Forest in Dryland Biomes. Science, 356(6338): 635–638. https://doi.org/10.1126/science.aam6527 |
Beck, H. E., Zimmermann, N. E., McVicar, T. R., et al., 2018. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Scientific Data, 5(1): 180214. https://doi.org/10.1038/sdata.2018.214 |
Cao, L. J., Yan, Z. W., Zhao, P., et al., 2017. Climatic Warming in China during 1901–2015 Based on an Extended Dataset of Instrumental Temperature Records. Environmental Research Letters, 12(6): 064005. https://doi.org/10.1088/1748-9326/aa68e8 |
CAS (Chinese Academy of Sciences), Commission on Nature Regionalization, 1959. Climate Regionalization in China (Draft Version). Science Press, Beijing (in Chinese) |
Chen, C. Z., Zhang, X. J., Lu, H. Y., et al., 2021. Increasing Summer Precipitation in Arid Central Asia Linked to the Weakening of the East Asian Summer Monsoon in the Recent Decades. International Journal of Climatology, 41(2): 1024–1038. https://doi.org/10.1002/joc.6727 |
Chen, J. H., Yang, H., Jin, T. Y., et al., 2024. Assessment of Terrestrial Ecosystem Sensitivity to Climate Change in Arid, Semi-Arid, Sub-Humid, and Humid Regions Using EVI, LAI, and SIF Products. Ecological Indicators, 158: 111511. https://doi.org/10.1016/j.ecolind.2023.111511 |
Chen, L. Z., 2014. Flora and Vegetation Geography of China. Science Press, Beijing. 469–531 (in Chinese) |
Chen, X., 2015. Physical Geography of Arid Land in China. Science Press, Beijing. 1–10 (in Chinese) |
Chen, Y. N., Li, Z., Fan, Y. T., et al., 2015. Progress and Prospects of Climate Change Impacts on Hydrology in the Arid Region of Northwest China. Environmental Research, 139: 11–19. https://doi.org/10.1016/j.envres.2014.12.029 |
Chen, Y. N., Zhang, X. Q., Fang, G. H., et al., 2020. Potential Risks and Challenges of Climate Change in the Arid Region of NorthWestern China. Regional Sustainability, 1(1): 20–30. https://doi.org/10.1016/j.regsus.2020.06.003 |
Delworth, T. L., Zeng, F. R., Vecchi, G. A., et al., 2016. The North Atlantic Oscillation as a Driver of Rapid Climate Change in the Northern Hemisphere. Nature Geoscience, 9(7): 509–512. https://doi.org/10.1038/ngeo2738 |
Deng, H. J., Chen, Y. N., Shi, X., et al., 2014. Dynamics of Temperature and Precipitation Extremes and Their Spatial Variation in the Arid Region of Northwest China. Atmospheric Research, 138: 346–355. https://doi.org/10.1016/j.atmosres.2013.12.001 |
Fan, Y. F., Liu, W., Zhang, P. F., et al., 2023. North Atlantic Oscillation Contributes to the Subpolar North Atlantic Cooling in the Past Century. Climate Dynamics, 61(11/12): 5199–5215. https://doi.org/10.1007/s00382-023-06847-y |
Feng, S., Fu, Q., 2013. Expansion of Global Drylands under a Warming Climate. Atmospheric Chemistry and Physics, 13(19): 10081–10094. https://doi.org/10.5194/acp-13-10081-2013 |
Gao, Y. H., Li, Z. L., Zhu, R. X., et al., 2020. Quantitative Reconstruction of Holocene Millennial-Scale Precipitation in the Asian Monsoon Margin of Northwest China, Revealed by Phytolith Assemblages from Calcareous Root Tubes in the Tengger Desert. Climate Dynamics, 55(3): 755–770. https://doi.org/10.1007/s00382-020-05293-4 |
Gavilán, P., Castillo-Llanque, F., 2009. Estimating Reference Evapotranspiration with Atmometers in a Semiarid Environment. Agricultural Water Management, 96(3): 465–472. https://doi.org/10.1016/j.agwat.2008.09.011 |
Guan, X. D., Ma, J. R., Huang, J. P., et al., 2019. Impact of Oceans on Climate Change in Drylands. Science China Earth Sciences, 62(6): 891–908. https://doi.org/10.1007/s11430-018-9317-8 |
Hai, C., Chen, J., 2017. Soil Geography. Science Press, Beijing. 143–160 (in Chinese) |
Han, F., Liu, P. T., Niu, J. M., et al., 2013. Spatial Distribution and Evolution of Climatic Aridity in Desert Steppe in Inner Mongolia in Recent 50 Years. Arid Zone Research, 30(3): 449–456. https://doi.org/10.13866/j.azr.2013.03.020 (in Chinese with English Abstract) |
Huang, B. W., 1989. China Comprehensive Natural Zoning Map: China Nature Conservation Atlas. Science Press, Beijing. 155-157 (in Chinese) |
Huang, J. P., Ma, J. R., Guan, X. D., et al., 2019. Progress in Semi-Arid Climate Change Studies in China. Advances in Atmospheric Sciences, 36(9): 922–937. https://doi.org/10.1007/s00376-018-8200-9 |
Huang, J. P., Yu, H. P., Dai, A. G., et al., 2017. Drylands Face Potential Threat under 2 ℃ Global Warming Target. Nature Climate Change, 7: 417–422. https://doi.org/10.1038/nclimate3275 |
Huang, J. P., Yu, H. P., Guan, X. D., et al., 2016. Accelerated Dryland Expansion under Climate Change. Nature Climate Change, 6: 166–171. https://doi.org/10.1038/nclimate2837 |
Huang, Y. F., Lu, C. Y., Lei, Y. F., et al., 2022. Spatio-Temporal Variations of Temperature and Precipitation during 1951–2019 in Arid and Semiarid Region, China. Chinese Geographical Science, 32(2): 285–301. https://doi.org/10.1007/s11769-022-1262-8 |
Irannezhad, M., Marttila, H., Kløve, B., 2014. Long-Term Variations and Trends in Precipitation in Finland. International Journal of Climatology, 34(10): 3139–3153. https://doi.org/10.1002/joc.3902 |
Jiang, J., Jiang, D. B., Lin, Y. H., 2017. Changes and Projection of Dry/Wet Areas over China. Chinese Journal of Atmospheric Sciences, 41(1): 43–56 (in Chinese with English Abstract) |
Kim, J. B., Kim, S. H., Bae, D. H., 2023. The Impacts of Global Warming on Arid Climate and Drought Features. Theoretical and Applied Climatology, 152(1/2): 693–708. https://doi.org/10.1007/s00704-022-04348-2 |
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., et al., 2002. Daily Dataset of 20th-Century Surface Air Temperature and Precipitation Series for the European Climate Assessment. International Journal of Climatology, 22(12): 1441–1453. https://doi.org/10.1002/joc.773 |
Koutroulis, A. G., 2019. Dryland Changes under Different Levels of Global Warming. Science of the Total Environment, 655: 482–511. https://doi.org/10.1016/j.scitotenv.2018.11.215 |
Lancaster, N., 1994. Arid Geomorphology. Progress in Physical Geography, 18(1): 97–102 doi: 10.1177/030913339401800106 |
Li, B. F., Chen, Y. N., Shi, X., et al., 2013. Temperature and Precipitation Changes in Different Environments in the Arid Region of Northwest China. Theoretical and Applied Climatology, 112(3/4): 589–596. https://doi.org/10.1007/s00704-012-0753-4 |
Li, B. Y., Liu, D. W., Yu, E. T., et al., 2024. Warming-and-Wetting Trend over the China's Drylands: Observational Evidence and Future Projection. Global Environmental Change, 86: 102826. https://doi.org/10.1016/j.gloenvcha.2024.102826 |
Li, Y. P., Chen, Y. N., Li, Z., 2019. Dry/Wet Pattern Changes in Global Dryland Areas over the Past Six Decades. Global and Planetary Change, 178: 184–192. https://doi.org/10.1016/j.gloplacha.2019.04.017 |
Li, Y., Huang, J. P., Ji, M. X., et al., 2015. Dryland Expansion in Northern China from 1948 to 2008. Advances in Atmospheric Sciences, 32(6): 870–876. https://doi.org/10.1007/s00376-014-4106-3 |
Li, Z. L., Li, X., Dong, S. P., et al., 2022. Holocene Climate Background for Lake Evolution in the Badain Jaran Desert of NorthWestern China Revealed by Proxies from Calcareous Root Tubes. Quaternary Research, 110: 1–12. https://doi.org/10.1017/qua.2022.31 |
Li, Z. L., Wei, M. H., Zhou, J. Y., et al., 2020. Arid-Humid Variations in the Summer Climate and Their Influence Mechanism in Asian Monsoon Margin of Northwest China during 1960–2010: A Case Study in the Alashan Plateau. International Journal of Climatology, 40(15): 6574–6586. https://doi.org/10.1002/joc.6599 |
Li, Z., Li, Y. P., Li, H. W., et al., 2022. Analysis of Drought Change and Its Impact in Central Asia. Advances in Earth Science, 37(1): 37–50 (in Chinese with English Abstract) |
Lian, X., Piao, S. L., Chen, A. P., et al., 2021. Multifaceted Characteristics of Dryland Aridity Changes in a Warming World. Nature Reviews Earth & Environment, 2(4): 232–250. https://doi.org/10.1038/s43017-021-00144-0 |
Liang, X. W., Yang, M. X., Wan, G. N., et al., 2015. Research on the Homogeneity of Air Temperature Series over Tibetan Plateau. Journal of Glaciology and Geocryology, 37(2): 275–285. https://doi.org/10.7522/j.issn.1000-0240.2015.0031 (in Chinese with English Abstract) |
Liu, B., Zhao, H., Jin, H. L., et al., 2023. Quantitative Estimates of Holocene Precipitation from Aeolian Sand-Palaeosol Sequences across the Ordos Plateau, Northern China, Based on Surface Soil Geochemistry. Catena, 229: 107232. https://doi.org/10.1016/j.catena.2023.107232 |
Liu, C., Huang, W., Feng, S., et al., 2018. Spatiotemporal Variations of Aridity in China during 1961–2015: Decomposition and Attribution. Science Bulletin, 63(18): 1187–1199. https://doi.org/10.1016/j.scib.2018.07.007 |
Liu, J., Zhai, P. M., 2014. Changes in Climate Regionalization Indices in China during 1961–2010. Advances in Atmospheric Sciences, 31(2): 374–384. https://doi.org/10.1007/s00376-013-3017-z |
Liu, L. B., Wang, Y., You, N. S., et al., 2019. Changes in Aridity and Its Driving Factors in China during 1961–2016. International Journal of Climatology, 39(1): 50–60. https://doi.org/10.1002/joc.5781 |
Liu, X. K., Rao, Z. G., Zhang, X. J., et al., 2015. Variations in the Oxygen Isotopic Composition of Precipitation in the Tianshan Mountains Region and Their Significance for the Westerly Circulation. Journal of Geographical Sciences, 25(7): 801–816. https://doi.org/10.1007/s11442-015-1203-x |
Lu, F. Z., Ma, C. M., Zhu, C., et al., 2019. Variability of East Asian Summer Monsoon Precipitation during the Holocene and Possible Forcing Mechanisms. Climate Dynamics, 52(1): 969–989. https://doi.org/10.1007/s00382-018-4175-6 |
Ma, Z. G., Fu, C. B., 2005. Decadal Variations of Arid and Semi-Arid Boundary in China. Chinese Journal of Geophysics, 48(3): 519–525 (in Chinese with English Abstract) |
Ma, Z. G., Fu, C. B., Yang, Q., et al., 2018. Drying Trend in Northern China and Its Shift during 1951–2016. Chinese Journal of Atmospheric Sciences, 42(4): 951–961. https://doi.org/10.3878/j.issn.1006-9895.1802.18110 (in Chinese with English Abstract) |
Mao, F., Sun, H., Yang, H. L., 2011. Research Progress in Dry/Wet Climate Zoning. Progress in Geography, 30(1): 17–26 (in Chinese with English Abstract) |
Meng, M., Ni, J., Zhang, Z. G., 2004. Aridity Index and Its Applications in Geo-Ecological Study. Chinese Journal of Plant Ecology, 28(6): 853–861 (in Chinese with English Abstract) doi: 10.17521/cjpe.2004.0111 |
Middleton, N. J., Thomas, D. S. G., 1997. World Atlas of Desertification. Wiley, London. |
Nyamtseren, M., Feng, Q., Deo, R., 2018. A Comparative Study of Temperature and Precipitation-Based Aridity Indices and Their Trends in Mongolia. International Journal of Environmental Research, 12(6): 887–899. https://doi.org/10.1007/s41742-018-0143-6 |
Prăvălie, R., 2016. Drylands Extent and Environmental Issues. A Global Approach. Earth-Science Reviews, 161: 259–278. https://doi.org/10.1016/j.earscirev.2016.08.003 |
Qian, W., Lin, X., 2005. Regional Trends in Recent Precipitation Indices in China. Meteorology and Atmospheric Physics, 90(3): 193–207. https://doi.org/10.1007/s00703-004-0101-z |
Reynolds, J. F., Stafford Smith, D. M., Lambin, E. F., et al., 2007. Global Desertification: Building a Science for Dryland Development. Science, 316(5826): 847–851. https://doi.org/10.1126/science.1131634 |
Shan, N., Shi, Z. J., Yang, X. H., et al., 2016. Trends in Potential Evapotranspiration from 1960 to 2013 for a Desertification-Prone Region of China. International Journal of Climatology, 36(10): 3434–3445. https://doi.org/10.1002/joc.4566 |
Shen, S. H., Zhang, F. M., Sheng, Q., 2009. Spatio-Temporal Changes of Wetness Index in China from 1975 to 2004. Transactions of the Chinese Society of Agricultural Engineering, 25(1): 11–15 (in Chinese with English Abstract) |
Shen, Y. J., Chen, Y. N., 2010. Global Perspective on Hydrology, Water Balance, and Water Resources Management in Arid Basins. Hydrological Processes, 24(2): 129–135. https://doi.org/10.1002/hyp.7428 |
Smith, W. K., Dannenberg, M. P., Yan, D., et al., 2019. Remote Sensing of Dryland Ecosystem Structure and Function: Progress, Challenges, and Opportunities. Remote Sensing of Environment, 233: 111401. https://doi.org/10.1016/j.rse.2019.111401 |
Su, Y. J., Guo, Q. H., Hu, T. Y., et al., 2020. An Updated Vegetation Map of China (1 : 1 000 000). Science Bulletin, 65(13): 1125–1136. https://doi.org/10.1016/j.scib.2020.04.004 |
Sun, H. L., Chen, Y. N., Li, W. H., et al., 2010. Variation and Abrupt Change of Climate in Ili River Basin, Xinjiang. Journal of Geographical Sciences, 20(5): 652–666. https://doi.org/10.1007/s11442-010-0802-9 |
Tang, M. C., Jiang, H., Liu, Y. X., et al., 2002. Cause Analysis of Arid Region Formation on the World. Journal of Desert Research, 22(1): 1–5 (in Chinese with English Abstract) |
Ullah, S., You, Q. L., Sachindra, D. A., et al., 2022. Spatiotemporal Changes in Global Aridity in Terms of Multiple Aridity Indices: An Assessment Based on the CRU Data. Atmospheric Research, 268: 105998. https://doi.org/10.1016/j.atmosres.2021.105998 |
Wang, F., Li, B. Y., Tian, S. Y., et al., 2024. Updated Scheme for Eco-Geographical Regionalization in China. Acta Geographica Sinica, 79(1): 3–16 (in Chinese with English Abstract) |
Wang, G., Cheng, G., 1999. The Characteristics of Soil Resources and Sustainable Development in the Arid Northwest China. Advances in Earth Science, 14(5): 492–497 (in Chinese with English Abstract) |
Wang, H. J., Chen, Y. N., Chen, Z. S., 2013. Spatial Distribution and Temporal Trends of Mean Precipitation and Extremes in the Arid Region, Northwest of China, during 1960–2010. Hydrological Processes, 27(12): 1807–1818. https://doi.org/10.1002/hyp.9339 |
Wang, L., Xie, X. Q., Li, Y. S., et al., 2004. Changes of Humid Index and Borderline of Wet and Dry Climate Zone in Northern China over the Past 40 Years. Geographical Research, 23(1): 45–54. https://doi.org/10.3321/j.issn:1000-0585.2004.01.006 (in Chinese with English Abstract) |
Wang, R., Tian, W. S., Chen, F. J., et al., 2021. Analysis of Convective and Stratiform Precipitation Characteristics in the Summers of 2014–2019 over Northwest China Based on GPM Observations. Atmospheric Research, 262: 105762. https://doi.org/10.1016/j.atmosres.2021.105762 |
Wang, S. J., Yang, G. H., Bershaw, J., et al., 2024. Interannual Variations in Stable Isotopes of Atmospheric Water in Arid Central Asia Due to Changes in Atmospheric Circulation. Global and Planetary Change, 234: 104367. https://doi.org/10.1016/j.gloplacha.2024.104367 |
Wang, S. P., Zhang, Q., Yue, P., et al., 2020. Effects of Evapotranspiration and Precipitation on Dryness/Wetness Changes in China. Theoretical and Applied Climatology, 142(3): 1027–1038. https://doi.org/10.1007/s00704-020-03336-8 |
Wen, X. Y., Wang, S. W., Zhu, J. H., et al., 2006. An Overview of China Climate Change over the 20th Century Using UK UEA/CRU High Resolution Grid Data. Chinese Journal of Atmospheric Sciences, 30(5): 894–904 (in Chinese with English Abstract) |
Wu, P., Ding, Y. H., Liu, Y. J., et al., 2019. The Characteristics of Moisture Recycling and Its Impact on Regional Precipitation Against the Background of Climate Warming over Northwest China. International Journal of Climatology, 39(14): 5241–5255. https://doi.org/10.1002/joc.6136 |
Wu, P., Liu, Y. J., Ding, Y. H., et al., 2022. Modulation of Sea Surface Temperature over the North Atlantic and Indian-Pacific Warm Pool on Interdecadal Change of Summer Precipitation over Northwest China. International Journal of Climatology, 42(16): 8526–8538. https://doi.org/10.1002/joc.7743 |
Wu, S. H., Yang, Q. Y., Zheng, D., 2003. Delineation of Eco-Geographic Regional System of China. Journal of Geographical Sciences, 13(3): 309–315. https://doi.org/10.1007/BF02837505 |
Xu, J. Q., Wang, D. D., Qiu, X. F., et al., 2021. Dominant Factor of Dry-Wet Change in China since 1960s. International Journal of Climatology, 41(2): 1039–1055. https://doi.org/10.1002/joc.6728 |
Xu, L. G., Zhou, H. F., Du, L., et al., 2015. Precipitation Trends and Variability from 1950 to 2000 in Arid Lands of Central Asia. Journal of Arid Land, 7(4): 514–526. https://doi.org/10.1007/s40333-015-0045-9 |
Xue, T., Ding, Y. H., Lu, C. H., 2022. Interdecadal Variability of Summer Precipitation in Northwest China and Associated Atmospheric Circulation Changes. Journal of Meteorological Research, 36(6): 824–840. https://doi.org/10.1007/s13351-022-2021-6 |
Yan, X. Y., Zhang, Q., Yan, X. M., et al., 2019. An Overview of Distribution Characteristics and Formation Mechanisms in Global Arid Areas. Advances in Earth Science, 34(8): 826–841 (in Chinese with English Abstract) |
Yang, Q., Yao, J. Q., Zhao, Y., et al., 2013. Spatial-Temporal Variation of Water Vapor and Its Relationship with the Precipitation in the Ili River Basin. Journal of Desert Research, 33(4): 1174–1183. https://doi.org/10.7522/j.issn.1000-694X.2013.00166 (in Chinese with English Abstract) |
Yao, J. Q., Chen, Y. N., Zhao, Y., et al., 2020. Climatic and Associated Atmospheric Water Cycle Changes over the Xinjiang, China. Journal of Hydrology, 585: 124823. https://doi.org/10.1016/j.jhydrol.2020.124823 |
Yin, Y. H., Ma, D. Y., Wu, S. H., 2019. Enlargement of the Semi-Arid Region in China from 1961 to 2010. Climate Dynamics, 52(1/2): 509–521. https://doi.org/10.1007/s00382-018-4139-x |
Zeng, N., Yoon, J., 2009. Expansion of the World's Deserts Due to Vegetation-Albedo Feedback under Global Warming. Geophysical Research Letters, 36(17): L17401. https://doi.org/10.1029/2009GL039699 |
Zhang, A., Zhao, X. Y., 2022. Changes of Precipitation Pattern in China: 1961–2010. Theoretical and Applied Climatology, 148(3): 1005–1019. https://doi.org/10.1007/s00704-022-03986-w |
Zhang, C. H., Wang, M. J., Li, X. H., et al., 2011. The Characteristics of Temporal and Spatial Distribution of Climate Dry-Wet Conditions over Inner Mongolia in Recent 30 Years. Journal of Arid Land Resources and Environment, 25(8): 70–75. https://doi.org/10.13448/j.cnki.jalre.2011.08.019 (in Chinese with English Abstract) |
Zhang, C. J., Liao, Y. M., Duan, J. Q., et al., 2016. The Progresses of Dry-Wet Climate Divisional Research in China. Climate Change Research, 12(4): 261–267. https://doi.org/10.12006/j.issn.1673-1719.2015.191 (in Chinese with English Abstract) |
Zhang, J. T., Li, Z., 1999. A Study on Demacation Indexes between Subhumid and Semiarid Sectors in China. Progress in Geography, 18(3): 230–237 (in Chinese with English Abstract) |
Zhang, J. Y., Ding, J. L., Wang, J. J., et al., 2023. Remote Sensing Drought Factor Integration Based on Machine Learning Can Improve the Estimation of Drought in Arid and Semi-Arid Regions. Theoretical and Applied Climatology, 151(3): 1753–1770. https://doi.org/10.1007/s00704-022-04305-z |
Zhang, L., Yang, B. Y., Li, S., et al., 2020. Potential Dry/Wet Dynamic in China under RCP Scenarios. Theoretical and Applied Climatology, 141(1/2): 443–454. https://doi.org/10.1007/s00704-020-03193-5 |
Zhang, Q., Lin, J. J., Liu, W. C., et al., 2019. Precipitation Seesaw Phenomenon and Its Formation Mechanism in the Eastern and Western Parts of Northwest China during the Flood Season. Science China Earth Sciences, 62(12): 2083–2098. https://doi.org/10.1007/s11430-018-9357-y |
Zhang, Q., Yang, J. H., Duan, X. Y., et al., 2022. The Eastward Expansion of the Climate Humidification Trend in Northwest China and the Synergistic Influences on the Circulation Mechanism. Climate Dynamics, 59(7): 2481–2497. https://doi.org/10.1007/s00382-022-06221-4 |
Zhang, Q., Zhu, B., Yang, J. H., et al., 2021. New Characteristics about the Climate Humidification Trend in Northwest China. Chinese Science Bulletin, 66(28/29): 3757–3771 (in Chinese with English Abstract) |
Zheng, D., 2015. General Introduction to China's Physical Geography. Science Press, Beijing. 1–767 (in Chinese) |