Eseme, E., Littke, R., Krooss, B. M., et al., 2007. Experimental Investigation of the Compositional Variation of Petroleum during Primary Migration. Organic Geochemistry, 38(8): 1373–1397. https://doi.org/10.1016/j.orggeochem.2007.03.003 |
Gao, G., Yang, S. R., Ren, J. L., et al., 2018. Geochemistry and Depositional Conditions of the Carbonate-Bearing Lacustrine Source Rocks: a Case Study from the Early Permian Fengcheng Formation of Well FN7 in the Northwestern Junggar Basin. Journal of Petroleum Science and Engineering, 162: 407–418. https://doi.org/10.1016/j.petrol.2017.12.065 |
Gou, Q. Y., Xu, S., Hao, F., et al., 2023. Petrography and Mineralogy Control the Nm-Μm-Scale Pore Structure of Saline Lacustrine Carbonate-Rich Shales from the Jianghan Basin, China. Marine and Petroleum Geology, 155: 106399. https://doi.org/10.1016/j.marpetgeo.2023.106399 |
Gu, Y. T., Wan, Q., Li, X. X., et al., 2023. Structure and Evolution of Clay-Organic Nanocomposites in Three Leading Shales in China. Journal of Earth Science, 34(3): 824–837. https://doi.org/10.1007/s12583-022-1717-y |
Hackley, P., Zhang, T. W., Jubb, A. M., et al., 2020. Organic Petrography of Leonardian (Wolfcamp a) Mudrocks and Carbonates, Midland Basin, Texas: The Fate of Oil-Prone Sedimentary Organic Matter in the Oil Window. Marine and Petroleum Geology, 112: 104086 |
Han, Y. J., Poetz, S., Mahlstedt, N., et al., 2018. Fractionation and Origin of NyOx and Ox Compounds in the Barnett Shale Sequence of the Marathon 1 Mesquite Well, Texas. Marine and Petroleum Geology, 97: 517–524. https://doi.org/10.1016/j.marpetgeo.2018.07.031 |
Hu, T., Jiang, F. J., Pang, X. Q., et al., 2024. Identification and Evaluation of Shale Oil Micro-Migration and Its Petroleum Geological Significance. Petroleum Exploration and Development, 51(1): 127–140. https://doi.org/10.1016/s1876-3804(24)60010-8 |
Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2 Shale-Oil Resource Systems. Shale Reservoirs—Giant Resources for the 21st Century. American Association of Petroleum Geologists, 97: 89–119. https://doi.org/10.1306/13321447m973489 |
Jubb, A. M., Hackley, P. C., Hatcherian, J. J., et al., 2019. Nanoscale Molecular Fractionation of Organic Matter within Unconventional Petroleum Source Beds. Energy & Fuels, 33(10): 9759–9766. https://doi.org/10.1021/acs.energyfuels.9b02518 |
Leythaeuser, D., Schaefer, R. G., Radke, M., 1988. Geochemical Effects of Primary Migration of Petroleum in Kimmeridge Source Rocks from Brae Field Area, North Sea. I: Gross Composition of C15+-Soluble Organic Matter and Molecular Composition of C15+-Saturated Hydrocarbons. GCA, 52(3): 701–713. https://doi.org/10.1016/0016-7037(88)90331-6 |
Li, M. W., Chen, Z. H., Cao, T. T., et al., 2018. Expelled Oils and Their Impacts on Rock-Eval Data Interpretation, Eocene Qianjiang Formation in Jianghan Basin, China. International Journal of Coal Geology, 191: 37–48. https://doi.org/10.1016/j.coal.2018.03.001 |
Li, Q. Q., Chen, F. L., Wu, S. Q., et al., 2022. A Simple and Effective Evaluation Method for Lacustrine Shale Oil Based on Mass Balance Calculation of Rock-Eval Data. Applied Geochemistry, 140: 105287. https://doi.org/10.1016/j.apgeochem.2022.105287 |
Liu, B., Sun, J. H., Zhang, Y. Q., et al., 2021. Reservoir Space and Enrichment Model of Shale Oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 48(3): 608–624. https://doi.org/10.1016/s1876-3804(21)60049-6 |
Raji, M., Gröcke, D. R., Greenwell, H. C., et al., 2015. The Effect of Interbedding on Shale Reservoir Properties. Marine and Petroleum Geology, 67: 154–169. https://doi.org/10.1016/j.marpetgeo.2015.04.015 |
Wu, Y. P., Liu, C. L., Jiang, F. J., et al., 2024. Investigation of Oil Content in Lacustrine Shale-Oil Systems: Insights from Two Different Pyrolysis. Journal of Earth Science, https://doi.org/10.1007/s12583-023-1814-6(online first) |
Xu, S., Zhao, T. X., Cui, X. Q., et al., 2024a. Organic-Inorganic Interactions of Clay Minerals and Organic Matter: Action Mechanism and Analysis Techniques. Advances in Geo-Energy Research, 14(3): 161–164 doi: 10.46690/ager.2024.12.01 |
Xu, S., Wen, J., Liu, K. Q., et al., 2024b. Brittle Minerals, Mechanical Properties and Fracability Evaluation of Shales. Advances in Geo-Energy Research, 14(1): 8–11. https://doi.org/10.46690/ager.2024.10.03 |
Yurchenko, I. A., Moldowan, J. M., Peters, K. E., et al., 2018. Source Rock Heterogeneity and Migrated Hydrocarbons in the Triassic Shublik Formation and Their Implication for Unconventional Resource Evaluation in Arctic Alaska. Marine and Petroleum Geology, 92: 932–952. https://doi.org/10.1016/j.marpetgeo.2018.03.033 |
Zhang, T. W., Fu, Q. L., Sun, X., et al., 2021. Meter-Scale Lithofacies Cycle and Controls on Variations in Oil Saturation, Wolfcamp A, Delaware and Midland Basins. AAPG Bulletin, 105(9): 1821–1846. https://doi.org/10.1306/01152120065 |
Zou, C. N., Pan, S. Q., Horsfield, B., et al., 2019. Oil Retention and Intrasource Migration in the Organic-Rich Lacustrine Chang 7 Shale of the Upper Triassic Yanchang Formation, Ordos Basin, Central China. AAPG Bulletin, 103(11): 2627–2663. https://doi.org/10.1306/01301917052 |