Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 35 Issue 6
Dec 2024
Turn off MathJax
Article Contents
Xiao-Wen Huang, Yiping Yang, Mei-Fu Zhou, Yu-Miao Meng, Jian-Feng Gao, Liang Qi. Linkage of Mineral Inclusions and Zoning of Magnetite with Fluid Evolution of Hydrothermal Systems: A Case Study of the Fenghuangshan Cu-Fe-Au Skarn Deposit, Eastern China. Journal of Earth Science, 2024, 35(6): 1902-1917. doi: 10.1007/s12583-024-0073-5
Citation: Xiao-Wen Huang, Yiping Yang, Mei-Fu Zhou, Yu-Miao Meng, Jian-Feng Gao, Liang Qi. Linkage of Mineral Inclusions and Zoning of Magnetite with Fluid Evolution of Hydrothermal Systems: A Case Study of the Fenghuangshan Cu-Fe-Au Skarn Deposit, Eastern China. Journal of Earth Science, 2024, 35(6): 1902-1917. doi: 10.1007/s12583-024-0073-5

Linkage of Mineral Inclusions and Zoning of Magnetite with Fluid Evolution of Hydrothermal Systems: A Case Study of the Fenghuangshan Cu-Fe-Au Skarn Deposit, Eastern China

doi: 10.1007/s12583-024-0073-5
More Information
  • Magnetite from hydrothermal deposits may show compositional zoning with various mineral inclusions in response to the evolution of hydrothermal fluids. Magnetite from the Fenghuangshan Cu-Fe-Au skarn deposit (eastern China) is a common mineral formed in the earlier stage of skarnization. Magnetite grains have dark gray and light gray zones and contain diverse mineral inclusions. Dark gray zones have higher Si, Ca, Al, and Mg contents than light gray zones. The magnetite matrix from dark gray zones shows superstructure along the [0-11] zone axis in fast Fourier transform patterns, different from magnetite in light gray zones with normal structure. Three types of mineral inclusions are identified within magnetite: nano-, micron- and submicron-nanometer inclusions. Nanoinclusions hosted in dark gray zones are actinolite, diopside, and trace element-rich magnetite, and these are likely formed by growth entrapment during magnetite crystallization at the skarn stage. The chain-width order-disorder intergrowths of diopside nanoinclusion likely indicate fluctuating fluid compositions in a lattice scale. Submicron to nanometer inclusions at the boundary between dark gray and light gray zones are quartz, titanite, and Ti-rich magnetite, which were formed via a dissolution and reprecipitation process at the quartz-sulfide stage. Micron-inclusions randomly distributed in both dark and light gray zones include calcite, ankerite, quartz, and chlorite, and these were formed via penetration of fluids at the carbonate stage. Zoned magnetite was formed by fluid replacement, overgrowth, and fluid infilling. Our study highlights the importance of mineral inclusion assemblages, and textural and chemical zonation of magnetite in constraining fluid evolution.

     

  • Electronic Supplementary Materials:Supplementary materials (Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0073-5.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Borg, S., Liu, W. H., Pearce, M., et al., 2014. Complex Mineral Zoning Patterns Caused by Ultra-Local Equilibrium at Reaction Interfaces. Geology, 42(5): 415–418. https://doi.org/10.1130/g35287.1
    Canil, D., Lacourse, T., 2020. Geothermometry Using Minor and Trace Elements in Igneous and Hydrothermal Magnetite. Chemical Geology, 541: 119576. https://doi.org/10.1016/j.chemgeo.2020.119576
    Cheng, J. W., Liu, X. X., Zhang, J., et al., 2023. Infrared Spectral Analysis and Prospecting of Alteration Minerals of Baijian Skarn-Type Iron Deposit in Han-Xing Area. Earth Science, 48(4): 1551–1567. https://doi.org/10.3799/dqkx.2022.303 (in Chinese with English Abstract)
    Ciobanu, C. L., Cook, N. J., 2004. Skarn Textures and a Case Study: The Ocna de Fier-Dognecea Orefield, Banat, Romania. Ore Geology Reviews, 24(3/4): 315–370. https://doi.org/10.1016/j.oregeorev.2003.04.002
    Ciobanu, C. L., Verdugo-Ihl, M. R., Slattery, A., et al., 2019. Silician Magnetite: Si-Fe-Nanoprecipitates and other Mineral Inclusions in Magnetite from the Olympic Dam Deposit, South Australia. Minerals, 9(5): 311. https://doi.org/10.3390/min9050311
    Deditius, A. P., Reich, M., Simon, A. C., et al., 2018. Nanogeochemistry of Hydrothermal Magnetite. Contributions to Mineralogy and Petrology, 173(6): 46. https://doi.org/10.1007/s00410-018-1474-1
    Dupuis, C., Beaudoin, G., 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319–335. https://doi.org/10.1007/s00126-011-0334-y
    Hu, H., Lentz, D., Li, J. -W., et al., 2015. Reequilibration Processes in Magnetite from Iron Skarn Deposits. Economic Geology, 110(1): 1–8. https://doi.org/10.2113/econgeo.110.1.1
    Huang, X. -W., Gao, J. F., Qi, L., et al., 2016. In-situ LA-ICP-MS Trace Elements Analysis of Magnetite: The Fenghuangshan Cu-Fe-Au Deposit, Tongling, Eastern China. Ore Geology Reviews, 72: 746–759. https://doi.org/10.1016/j.oregeorev.2015.09.012
    Huang, X. -W., Zhou, M. -F., Beaudoin, G., et al., 2018. Origin of the Volcanic-Hosted Yamansu Fe Deposit, Eastern Tianshan, NW China: Constraints from Pyrite Re-Os Isotopes, Stable Isotopes, and in situ Magnetite Trace Elements. Mineralium Deposita, 53(7): 1039–1060. https://doi.org/10.1007/s00126-018-0794-4
    Huang, X. -W., Beaudoin, G., 2019. Textures and Chemical Compositions of Magnetite from Iron Oxide Copper-Gold (IOCG) and Kiruna-Type Iron Oxide-Apatite (IOA) Deposits and Their Implications for Ore Genesis and Magnetite Classification Schemes. Economic Geology, 114(5): 953–979. https://doi.org/10.5382/econgeo.4651
    Huang, X. -W., Boutroy, É., Makvandi, S., et al., 2019a. Trace Element Composition of Iron Oxides from IOCG and IOA Deposits: Relationship to Hydrothermal Alteration and Deposit Subtypes. Mineralium Deposita, 54(4): 525–552. https://doi.org/10.1007/s00126-018-0825-1
    Huang, X. -W., Sappin, A. -A., Boutroy, É., et al., 2019b. Trace Element Composition of Igneous and Hydrothermal Magnetite from Porphyry Deposits: Relationship to Deposit Subtypes and Magmatic Affinity. Economic Geology, 114(5): 917–952. https://doi.org/10.5382/econgeo.4648
    Huang, X. -W., Beaudoin, G., 2021. Nanoinclusions in Zoned Magnetite from the Sossego IOCG Deposit, Carajás, Brazil: Implication for Mineral Zoning and Magnetite Origin Discrimination. Ore Geology Reviews, 139: 104453. https://doi.org/10.1016/j.oregeorev.2021.104453
    Huang, X. -W., Beaudoin, G., Yang, Y. P., 2022. A HR-TEM Study on Two Generations of Magnetite from the Alemao IOCG Deposit, Carajás, Brazil: Implication for Fe-Cu Mineralization. Ore Geology Reviews, 146: 104934. https://doi.org/10.1016/j.oregeorev.2022.104934
    Huang, X. -W., Meng, Y. M., Qi, L., et al., 2024. Magnetite: Research Methods and Applications to Ore Deposit Research. East China Geology, 45(1): 1–15. https://doi.org/10.16788/j.hddz.32-1865/p.2024.01.001 (in Chinese with English Abstract)
    Knipping, J. L., Bilenker, L. D., Simon, A. C., et al., 2015. Trace Elements in Magnetite from Massive Iron Oxide-Apatite Deposits Indicate a Combined Formation by Igneous and Magmatic-Hydrothermal Processes. Geochimica et Cosmochimica Acta, 171: 15–38. https://doi.org/10.1016/j.gca.2015.08.010
    Konishi, H., Buseck, P. R., Xu, H., et al., 2008. Proto-Polymorphs of Jimthompsonite and Chesterite in Contact-Metamorphosed Serpen-tinites from Japan. American Mineralogist, 93(2/3): 351–359. https://doi.org/10.2138/am.2008.2637
    Konishi, H., Xu, H., Dymek, R. F., 2010. High-Resolution TEM Study of Jimthompsonite, Chesterite, and Chain-Width Disorder in Archean Ultramafic Rocks from Isua, West Greenland. American Mineralogist, 95(1): 73–80. https://doi.org/10.2138/am.2010.3212
    Lai, J., Chi, G., Peng, S., et al., 2007. Fluid Evolution in the Formation of the Fenghuangshan Cu-Fe-Au Deposit, Tongling, Anhui, China. Economic Geology, 102(5): 949–970. https://doi.org/10.2113/gsecongeo.102.5.949
    Li, J. X., Hu, T. Y., Liu, L., 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404–4426. https://doi.org/10.3799/dqkx.2022.293 (in Chinese with English Abstract)
    Luan, Y., Wang, R. T., Qian, Z. Z., et al., 2022. Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyrite and in-situ Sulfur Isotope Compositions of Sulfides. Earth Science, 47(1): 259–276. https://doi.org/10.3799/dqkx.2021.265 (in Chinese with English Abstract)
    Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., et al., 2016. Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes: Application to Mineral Exploration. Ore Geology Reviews, 78: 388–408. https://doi.org/10.1016/j.oregeorev.2016.04.014
    Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle–Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294–314. https://doi.org/10.1016/j.oregeorev.2011.07.010
    Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds. Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, Colorado. 299–336. https://doi.org/10.5382/av100.11
    Nadoll, P., Angerer, T., Mauk, J. L., et al., 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013
    Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177–242. https://doi.org/10.1016/s0169-1368(99)00022-0
    Pisiak, L. K., Canil, D., Lacourse, T., et al., 2017. Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in till near the Mount Polley Cu-Au Deposit, British Columbia, Canada. Economic Geology, 112(4): 919–940. https://doi.org/10.2113/econgeo.112.4.919
    Putnis, A., 2009. Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry, 70(1): 87–124. https://doi.org/10.2138/rmg.2009.70.3
    Qu, H. Y., Pei, R. F., Fei, H. C., et al., 2012. Geology, Geochemistry, and Geochronology of the Fenghuangshan Skarn-Type Copper Deposit in the Tongling Ore Cluster, Anhui Province, East China. Acta Geologica Sinica—English Edition, 86(3): 700–718. https://doi.org/10.1111/j.1755-6724.2012.00697.x
    Ruiz-Agudo, E., Putnis, C. V., Putnis, A., 2014. Coupled Dissolution and Precipitation at Mineral-Fluid Interfaces. Chemical Geology, 383: 132–146. https://doi.org/10.1016/j.chemgeo.2014.06.007
    Shao, Y. J., Peng, S. L., Lai, J. Q., et al., 2007. Identification of Two Types of Mineralized Intrusion in the Fenghuangshan Copper Deposit and Analysis of Their Genesis. Acta Petrologica Sinica, 23(10): 2471–2482 (in Chinese with English Abstract)
    Tan, W., He, H. P., Wang, C. Y., et al., 2016. Magnetite Exsolution in Ilmenite from the Fe-Ti Oxide Gabbro in the Xinjie Intrusion (SW China) and Sources of Unusually Strong Remnant Magnetization. American Mineralogist, 101(12): 2759–2767. https://doi.org/10.2138/am-2016-5688
    Tao, L., Zhang, H. F., Wu, J., et al., 2022. Magma Generation of Magnetite-Rich Intermediate-Mafic Rocks and Its Mantle Processes in the Southwestern Alxa Block, NW China. Journal of Earth Science, 33(1): 161–176. https://doi.org/10.1007/s12583-021-1539-3
    Veblen, D. R., Buseck, P. R., 1980. Microstructures and Reaction Mechanisms in Biopyriboles. American Mineralogist, 65(7/8): 599–623
    Verdugo-Ihl, M. R., Ciobanu, C. L., Cook, N. J., et al., 2021. Nanomineralogy of Hydrothermal Magnetite from Acropolis, South Australia: Genetic Implications for Iron-Oxide Copper Gold Mineralization. American Mineralogist, 106(8): 1273–1293. https://doi.org/10.2138/am-2021-7557
    Watson, E. B., 1996. Surface Enrichment and Trace-Element Uptake during Crystal Growth. Geochimica et Cosmochimica Acta, 60(24): 5013–5020. https://doi.org/10.1016/s0016-7037(96)00299-2
    Wen, G., Li, J. W., Hofstra, A. H., et al., 2017. Hydrothermal Reequilibration of Igneous Magnetite in Altered Granitic Plutons and Its Implications for Magnetite Classification Schemes: Insights from the Handan-Xingtai Iron District, North China Craton. Geochimica et Cosmochimica Acta, 213: 255–270. https://doi.org/10.1016/j.gca.2017.06.043
    Westendorp, R. W., Watkinson, D. H., Jonasson, I. R., 1991. Silicon-Bearing Zoned Magnetite Crystals and the Evolution of Hydrothermal Fluids at the Ansil Cu-Zn Mine, Rouyn-Noranda, Quebec. Economic Geology, 86(5): 1110–1114. https://doi.org/10.2113/gsecongeo.86.5.1110
    Wu, C., Chen, H. Y., Hong, W., et al., 2019. Magnetite Chemistry and Implications for the Magmatic-Hydrothermal Ore-Forming Process: An Example from the Devonian Yuleken Porphyry Cu System, NW China. Chemical Geology, 522: 1–15. https://doi.org/10.1016/j.chemgeo.2019.04.022
    Wu, C. L., Wang, F. S., Hao, M. Y., et al., 2000. Geochronology of Intermediate-Acid Intrusive Rocks from Tongling, Anhui. Continental Dynamics, 5(1): 15–23 (in Chinese with English Abstract)
    Xia, F., Brugger, J., Chen, G. R., et al., 2009. Mechanism and Kinetics of Pseudomorphic Mineral Replacement Reactions: A Case Study of the Replacement of Pentlandite by Violarite. Geochimica et Cosmochimica Acta, 73(7): 1945–1969. https://doi.org/10.1016/j.gca.2009.01.007
    Xu, H., Shen, Z., Konishi, H., 2014. Si-Magnetite Nano-Precipitates in Silician Magnetite from Banded Iron Formation: Z-Contrast Imaging and Ab Initio Study. American Mineralogist, 99(11/12): 2196–2202. https://doi.org/10.2138/am-2014-4964
    Xu, J., Ciobanu, C. L., Cook, N. J., et al., 2023. Tin-Bearing Magnetite with Nanoscale Mg-Si Defects: Evidence for the Early Stages of Mineralization in a Skarn System. Frontiers in Earth Science, 10: 994153. https://doi.org/10.3389/feart.2022.994153
    Yang, J. L., Wang, C., Jin, Z. M., 2022. Crystallization of Hydrous Ti-Rich Basaltic Magma and Its Implication for the Origin of Fe-Ti Oxide in Layered Intrusions of the Emeishan Large Igneous Province. Journal of Earth Science, 33(2): 507–512. https://doi.org/10.1007/s12583-021-1475-2
    Yin, S., Ma, C., Robinson, P. T., 2017. Textures and High Field Strength Elements in Hydrothermal Magnetite from a Skarn System: Implications for Coupled Dissolution-Reprecipitation Reactions. American Mineralogist, 102(5): 1045–1056. https://doi.org/10.2138/am-2017-5913
    Yin, S., Wirth, R., Ma, C. Q., et al., 2019. The Role of Mineral Nanoparticles at a Fluid-Magnetite Interface: Implications for Trace-Element Uptake in Hydrothermal Systems. American Mineralogist, 104(8): 1180–1188. https://doi.org/10.2138/am-2019-6996
    Zhai, Y., Yao, S., Lin, X., et al., 1992. Fe-Cu-Au Metallogeny of the Middle–Lower Changjiang Region. Geological Publishing House, Beijing. 235 (in Chinese)
    Zhang, D., Wu, G., Di, Y., et al., 2006. Emplacement Dynamics of Fenghuangshan Pluton (Tongling, Anhui Province): Constraints from U-Pb SHRIMP Dating of Zircons and Structural Deformation. Earth Science, 31(6): 823–829 (in Chinese with English Abstract)
    Zhang, J. B., Ding, X. Z., Liu, Y. X., 2023. Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A-Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications. Journal of Earth Science, 34(2): 504–517. https://doi.org/10.1007/s12583-020-1090-7
    Zhang, X. B., Zhang, P. H., He, M. X., et al., 2023. Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications. Journal of Earth Science, 34(6): 1744–1757. https://doi.org/10.1007/s12583-022-1682-5
    Zhang, L. L., Jiang, S. H., Wang, H. K., et al., 2022. Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia. Earth Science, 47(8): 2856–2870. https://doi.org/10.3799/dqkx.2021.136 (in Chinese with English Abstract)
    Zhao, Y. M., Zhang, Y. N., Bi, C. S., 1999. Geology of Gold-Bearing Skarn Deposits in the Middle and Lower Yangtze River Valley and Adjacent Regions. Ore Geology Reviews, 14(3/4): 227–249. https://doi.org/10.1016/s0169-1368(99)00008-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(54) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return