Citation: | Xiao-Wen Huang, Yiping Yang, Mei-Fu Zhou, Yu-Miao Meng, Jian-Feng Gao, Liang Qi. Linkage of Mineral Inclusions and Zoning of Magnetite with Fluid Evolution of Hydrothermal Systems: A Case Study of the Fenghuangshan Cu-Fe-Au Skarn Deposit, Eastern China. Journal of Earth Science, 2024, 35(6): 1902-1917. doi: 10.1007/s12583-024-0073-5 |
Magnetite from hydrothermal deposits may show compositional zoning with various mineral inclusions in response to the evolution of hydrothermal fluids. Magnetite from the Fenghuangshan Cu-Fe-Au skarn deposit (eastern China) is a common mineral formed in the earlier stage of skarnization. Magnetite grains have dark gray and light gray zones and contain diverse mineral inclusions. Dark gray zones have higher Si, Ca, Al, and Mg contents than light gray zones. The magnetite matrix from dark gray zones shows superstructure along the [0-11] zone axis in fast Fourier transform patterns, different from magnetite in light gray zones with normal structure. Three types of mineral inclusions are identified within magnetite: nano-, micron- and submicron-nanometer inclusions. Nanoinclusions hosted in dark gray zones are actinolite, diopside, and trace element-rich magnetite, and these are likely formed by growth entrapment during magnetite crystallization at the skarn stage. The chain-width order-disorder intergrowths of diopside nanoinclusion likely indicate fluctuating fluid compositions in a lattice scale. Submicron to nanometer inclusions at the boundary between dark gray and light gray zones are quartz, titanite, and Ti-rich magnetite, which were formed via a dissolution and reprecipitation process at the quartz-sulfide stage. Micron-inclusions randomly distributed in both dark and light gray zones include calcite, ankerite, quartz, and chlorite, and these were formed via penetration of fluids at the carbonate stage. Zoned magnetite was formed by fluid replacement, overgrowth, and fluid infilling. Our study highlights the importance of mineral inclusion assemblages, and textural and chemical zonation of magnetite in constraining fluid evolution.
Borg, S., Liu, W. H., Pearce, M., et al., 2014. Complex Mineral Zoning Patterns Caused by Ultra-Local Equilibrium at Reaction Interfaces. Geology, 42(5): 415–418. https://doi.org/10.1130/g35287.1 |
Canil, D., Lacourse, T., 2020. Geothermometry Using Minor and Trace Elements in Igneous and Hydrothermal Magnetite. Chemical Geology, 541: 119576. https://doi.org/10.1016/j.chemgeo.2020.119576 |
Cheng, J. W., Liu, X. X., Zhang, J., et al., 2023. Infrared Spectral Analysis and Prospecting of Alteration Minerals of Baijian Skarn-Type Iron Deposit in Han-Xing Area. Earth Science, 48(4): 1551–1567. https://doi.org/10.3799/dqkx.2022.303 (in Chinese with English Abstract) |
Ciobanu, C. L., Cook, N. J., 2004. Skarn Textures and a Case Study: The Ocna de Fier-Dognecea Orefield, Banat, Romania. Ore Geology Reviews, 24(3/4): 315–370. https://doi.org/10.1016/j.oregeorev.2003.04.002 |
Ciobanu, C. L., Verdugo-Ihl, M. R., Slattery, A., et al., 2019. Silician Magnetite: Si-Fe-Nanoprecipitates and other Mineral Inclusions in Magnetite from the Olympic Dam Deposit, South Australia. Minerals, 9(5): 311. https://doi.org/10.3390/min9050311 |
Deditius, A. P., Reich, M., Simon, A. C., et al., 2018. Nanogeochemistry of Hydrothermal Magnetite. Contributions to Mineralogy and Petrology, 173(6): 46. https://doi.org/10.1007/s00410-018-1474-1 |
Dupuis, C., Beaudoin, G., 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319–335. https://doi.org/10.1007/s00126-011-0334-y |
Hu, H., Lentz, D., Li, J. -W., et al., 2015. Reequilibration Processes in Magnetite from Iron Skarn Deposits. Economic Geology, 110(1): 1–8. https://doi.org/10.2113/econgeo.110.1.1 |
Huang, X. -W., Gao, J. F., Qi, L., et al., 2016. In-situ LA-ICP-MS Trace Elements Analysis of Magnetite: The Fenghuangshan Cu-Fe-Au Deposit, Tongling, Eastern China. Ore Geology Reviews, 72: 746–759. https://doi.org/10.1016/j.oregeorev.2015.09.012 |
Huang, X. -W., Zhou, M. -F., Beaudoin, G., et al., 2018. Origin of the Volcanic-Hosted Yamansu Fe Deposit, Eastern Tianshan, NW China: Constraints from Pyrite Re-Os Isotopes, Stable Isotopes, and in situ Magnetite Trace Elements. Mineralium Deposita, 53(7): 1039–1060. https://doi.org/10.1007/s00126-018-0794-4 |
Huang, X. -W., Beaudoin, G., 2019. Textures and Chemical Compositions of Magnetite from Iron Oxide Copper-Gold (IOCG) and Kiruna-Type Iron Oxide-Apatite (IOA) Deposits and Their Implications for Ore Genesis and Magnetite Classification Schemes. Economic Geology, 114(5): 953–979. https://doi.org/10.5382/econgeo.4651 |
Huang, X. -W., Boutroy, É., Makvandi, S., et al., 2019a. Trace Element Composition of Iron Oxides from IOCG and IOA Deposits: Relationship to Hydrothermal Alteration and Deposit Subtypes. Mineralium Deposita, 54(4): 525–552. https://doi.org/10.1007/s00126-018-0825-1 |
Huang, X. -W., Sappin, A. -A., Boutroy, É., et al., 2019b. Trace Element Composition of Igneous and Hydrothermal Magnetite from Porphyry Deposits: Relationship to Deposit Subtypes and Magmatic Affinity. Economic Geology, 114(5): 917–952. https://doi.org/10.5382/econgeo.4648 |
Huang, X. -W., Beaudoin, G., 2021. Nanoinclusions in Zoned Magnetite from the Sossego IOCG Deposit, Carajás, Brazil: Implication for Mineral Zoning and Magnetite Origin Discrimination. Ore Geology Reviews, 139: 104453. https://doi.org/10.1016/j.oregeorev.2021.104453 |
Huang, X. -W., Beaudoin, G., Yang, Y. P., 2022. A HR-TEM Study on Two Generations of Magnetite from the Alemao IOCG Deposit, Carajás, Brazil: Implication for Fe-Cu Mineralization. Ore Geology Reviews, 146: 104934. https://doi.org/10.1016/j.oregeorev.2022.104934 |
Huang, X. -W., Meng, Y. M., Qi, L., et al., 2024. Magnetite: Research Methods and Applications to Ore Deposit Research. East China Geology, 45(1): 1–15. https://doi.org/10.16788/j.hddz.32-1865/p.2024.01.001 (in Chinese with English Abstract) |
Knipping, J. L., Bilenker, L. D., Simon, A. C., et al., 2015. Trace Elements in Magnetite from Massive Iron Oxide-Apatite Deposits Indicate a Combined Formation by Igneous and Magmatic-Hydrothermal Processes. Geochimica et Cosmochimica Acta, 171: 15–38. https://doi.org/10.1016/j.gca.2015.08.010 |
Konishi, H., Buseck, P. R., Xu, H., et al., 2008. Proto-Polymorphs of Jimthompsonite and Chesterite in Contact-Metamorphosed Serpen-tinites from Japan. American Mineralogist, 93(2/3): 351–359. https://doi.org/10.2138/am.2008.2637 |
Konishi, H., Xu, H., Dymek, R. F., 2010. High-Resolution TEM Study of Jimthompsonite, Chesterite, and Chain-Width Disorder in Archean Ultramafic Rocks from Isua, West Greenland. American Mineralogist, 95(1): 73–80. https://doi.org/10.2138/am.2010.3212 |
Lai, J., Chi, G., Peng, S., et al., 2007. Fluid Evolution in the Formation of the Fenghuangshan Cu-Fe-Au Deposit, Tongling, Anhui, China. Economic Geology, 102(5): 949–970. https://doi.org/10.2113/gsecongeo.102.5.949 |
Li, J. X., Hu, T. Y., Liu, L., 2023. Metallogenic Age and Metallogenic Environment of Yuanjiacun Iron Deposit in Shanxi Province. Earth Science, 48(12): 4404–4426. https://doi.org/10.3799/dqkx.2022.293 (in Chinese with English Abstract) |
Luan, Y., Wang, R. T., Qian, Z. Z., et al., 2022. Genesis of Tongchang Copper-Iron Deposit in Mian-Lue-Ning Area: Constraints from Re-Os Isotopic Dating of Chalcopyrite and in-situ Sulfur Isotope Compositions of Sulfides. Earth Science, 47(1): 259–276. https://doi.org/10.3799/dqkx.2021.265 (in Chinese with English Abstract) |
Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., et al., 2016. Partial Least Squares-Discriminant Analysis of Trace Element Compositions of Magnetite from Various VMS Deposit Subtypes: Application to Mineral Exploration. Ore Geology Reviews, 78: 388–408. https://doi.org/10.1016/j.oregeorev.2016.04.014 |
Mao, J. W., Xie, G. Q., Duan, C., et al., 2011. A Tectono-Genetic Model for Porphyry-Skarn-Stratabound Cu-Au-Mo-Fe and Magnetite-Apatite Deposits along the Middle–Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294–314. https://doi.org/10.1016/j.oregeorev.2011.07.010 |
Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds. Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton, Colorado. 299–336. |
Nadoll, P., Angerer, T., Mauk, J. L., et al., 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013 |
Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177–242. https://doi.org/10.1016/s0169-1368(99)00022-0 |
Pisiak, L. K., Canil, D., Lacourse, T., et al., 2017. Magnetite as an Indicator Mineral in the Exploration of Porphyry Deposits: A Case Study in till near the Mount Polley Cu-Au Deposit, British Columbia, Canada. Economic Geology, 112(4): 919–940. https://doi.org/10.2113/econgeo.112.4.919 |
Putnis, A., 2009. Mineral Replacement Reactions. Reviews in Mineralogy and Geochemistry, 70(1): 87–124. https://doi.org/10.2138/rmg.2009.70.3 |
Qu, H. Y., Pei, R. F., Fei, H. C., et al., 2012. Geology, Geochemistry, and Geochronology of the Fenghuangshan Skarn-Type Copper Deposit in the Tongling Ore Cluster, Anhui Province, East China. Acta Geologica Sinica—English Edition, 86(3): 700–718. https://doi.org/10.1111/j.1755-6724.2012.00697.x |
Ruiz-Agudo, E., Putnis, C. V., Putnis, A., 2014. Coupled Dissolution and Precipitation at Mineral-Fluid Interfaces. Chemical Geology, 383: 132–146. https://doi.org/10.1016/j.chemgeo.2014.06.007 |
Shao, Y. J., Peng, S. L., Lai, J. Q., et al., 2007. Identification of Two Types of Mineralized Intrusion in the Fenghuangshan Copper Deposit and Analysis of Their Genesis. Acta Petrologica Sinica, 23(10): 2471–2482 (in Chinese with English Abstract) |
Tan, W., He, H. P., Wang, C. Y., et al., 2016. Magnetite Exsolution in Ilmenite from the Fe-Ti Oxide Gabbro in the Xinjie Intrusion (SW China) and Sources of Unusually Strong Remnant Magnetization. American Mineralogist, 101(12): 2759–2767. https://doi.org/10.2138/am-2016-5688 |
Tao, L., Zhang, H. F., Wu, J., et al., 2022. Magma Generation of Magnetite-Rich Intermediate-Mafic Rocks and Its Mantle Processes in the Southwestern Alxa Block, NW China. Journal of Earth Science, 33(1): 161–176. https://doi.org/10.1007/s12583-021-1539-3 |
Veblen, D. R., Buseck, P. R., 1980. Microstructures and Reaction Mechanisms in Biopyriboles. American Mineralogist, 65(7/8): 599–623 |
Verdugo-Ihl, M. R., Ciobanu, C. L., Cook, N. J., et al., 2021. Nanomineralogy of Hydrothermal Magnetite from Acropolis, South Australia: Genetic Implications for Iron-Oxide Copper Gold Mineralization. American Mineralogist, 106(8): 1273–1293. https://doi.org/10.2138/am-2021-7557 |
Watson, E. B., 1996. Surface Enrichment and Trace-Element Uptake during Crystal Growth. Geochimica et Cosmochimica Acta, 60(24): 5013–5020. https://doi.org/10.1016/s0016-7037(96)00299-2 |
Wen, G., Li, J. W., Hofstra, A. H., et al., 2017. Hydrothermal Reequilibration of Igneous Magnetite in Altered Granitic Plutons and Its Implications for Magnetite Classification Schemes: Insights from the Handan-Xingtai Iron District, North China Craton. Geochimica et Cosmochimica Acta, 213: 255–270. https://doi.org/10.1016/j.gca.2017.06.043 |
Westendorp, R. W., Watkinson, D. H., Jonasson, I. R., 1991. Silicon-Bearing Zoned Magnetite Crystals and the Evolution of Hydrothermal Fluids at the Ansil Cu-Zn Mine, Rouyn-Noranda, Quebec. Economic Geology, 86(5): 1110–1114. https://doi.org/10.2113/gsecongeo.86.5.1110 |
Wu, C., Chen, H. Y., Hong, W., et al., 2019. Magnetite Chemistry and Implications for the Magmatic-Hydrothermal Ore-Forming Process: An Example from the Devonian Yuleken Porphyry Cu System, NW China. Chemical Geology, 522: 1–15. https://doi.org/10.1016/j.chemgeo.2019.04.022 |
Wu, C. L., Wang, F. S., Hao, M. Y., et al., 2000. Geochronology of Intermediate-Acid Intrusive Rocks from Tongling, Anhui. Continental Dynamics, 5(1): 15–23 (in Chinese with English Abstract) |
Xia, F., Brugger, J., Chen, G. R., et al., 2009. Mechanism and Kinetics of Pseudomorphic Mineral Replacement Reactions: A Case Study of the Replacement of Pentlandite by Violarite. Geochimica et Cosmochimica Acta, 73(7): 1945–1969. https://doi.org/10.1016/j.gca.2009.01.007 |
Xu, H., Shen, Z., Konishi, H., 2014. Si-Magnetite Nano-Precipitates in Silician Magnetite from Banded Iron Formation: Z-Contrast Imaging and Ab Initio Study. American Mineralogist, 99(11/12): 2196–2202. https://doi.org/10.2138/am-2014-4964 |
Xu, J., Ciobanu, C. L., Cook, N. J., et al., 2023. Tin-Bearing Magnetite with Nanoscale Mg-Si Defects: Evidence for the Early Stages of Mineralization in a Skarn System. Frontiers in Earth Science, 10: 994153. https://doi.org/10.3389/feart.2022.994153 |
Yang, J. L., Wang, C., Jin, Z. M., 2022. Crystallization of Hydrous Ti-Rich Basaltic Magma and Its Implication for the Origin of Fe-Ti Oxide in Layered Intrusions of the Emeishan Large Igneous Province. Journal of Earth Science, 33(2): 507–512. https://doi.org/10.1007/s12583-021-1475-2 |
Yin, S., Ma, C., Robinson, P. T., 2017. Textures and High Field Strength Elements in Hydrothermal Magnetite from a Skarn System: Implications for Coupled Dissolution-Reprecipitation Reactions. American Mineralogist, 102(5): 1045–1056. https://doi.org/10.2138/am-2017-5913 |
Yin, S., Wirth, R., Ma, C. Q., et al., 2019. The Role of Mineral Nanoparticles at a Fluid-Magnetite Interface: Implications for Trace-Element Uptake in Hydrothermal Systems. American Mineralogist, 104(8): 1180–1188. https://doi.org/10.2138/am-2019-6996 |
Zhai, Y., Yao, S., Lin, X., et al., 1992. Fe-Cu-Au Metallogeny of the Middle–Lower Changjiang Region. Geological Publishing House, Beijing. 235 (in Chinese) |
Zhang, D., Wu, G., Di, Y., et al., 2006. Emplacement Dynamics of Fenghuangshan Pluton (Tongling, Anhui Province): Constraints from U-Pb SHRIMP Dating of Zircons and Structural Deformation. Earth Science, 31(6): 823–829 (in Chinese with English Abstract) |
Zhang, J. B., Ding, X. Z., Liu, Y. X., 2023. Zircon SHRIMP U-Pb Ages, Geochemistry and Nd-Hf Isotopes of ~1.0 Ga A-Type Felsic Rocks in the Southwestern Yangtze Block, South China: Petrogenesis and Tectonic Implications. Journal of Earth Science, 34(2): 504–517. https://doi.org/10.1007/s12583-020-1090-7 |
Zhang, X. B., Zhang, P. H., He, M. X., et al., 2023. Crustal Electrical Structure of the Wuwei Basin, Lower Yangtze Region of China, and Its Geological Implications. Journal of Earth Science, 34(6): 1744–1757. https://doi.org/10.1007/s12583-022-1682-5 |
Zhang, L. L., Jiang, S. H., Wang, H. K., et al., 2022. Geochronology and Geochemical Features of the Ore-Related Granite in the Skarn Type Fe Polymetallic Deposits in Eastern Mongolia. Earth Science, 47(8): 2856–2870. https://doi.org/10.3799/dqkx.2021.136 (in Chinese with English Abstract) |
Zhao, Y. M., Zhang, Y. N., Bi, C. S., 1999. Geology of Gold-Bearing Skarn Deposits in the Middle and Lower Yangtze River Valley and Adjacent Regions. Ore Geology Reviews, 14(3/4): 227–249. https://doi.org/10.1016/s0169-1368(99)00008-6 |