Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Aiying Cheng, Junqing Yu, Yun Li, Haicheng Wei, Chunliang Gao, Lisha Zhang. Late Holocene Hydroclimatic Variations at Lake Hurleg, Northeastern Tibet Plateau. Journal of Earth Science, 2025, 36(1): 161-172. doi: 10.1007/s12583-024-0077-1
Citation: Aiying Cheng, Junqing Yu, Yun Li, Haicheng Wei, Chunliang Gao, Lisha Zhang. Late Holocene Hydroclimatic Variations at Lake Hurleg, Northeastern Tibet Plateau. Journal of Earth Science, 2025, 36(1): 161-172. doi: 10.1007/s12583-024-0077-1

Late Holocene Hydroclimatic Variations at Lake Hurleg, Northeastern Tibet Plateau

doi: 10.1007/s12583-024-0077-1
More Information
  • Corresponding author: Aiying Cheng, aycheng@isl.ac.cn
  • Received Date: 24 Jan 2024
  • Accepted Date: 10 Apr 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • High-resolution, continuous Late Holocene lacustrine records are scarce in the Qaidam Basin, but is of especially important for our understanding the future climate variability in the western China. Here, we use grain size, element content and XRD-identified data from the Lake Hurleg in the eastern Qaidam Basin to present the Late Holocene climate variability, which have been temporally constrained using 210Pb-, 137Cs- and AMS 14C dating. Our records demonstrate that decreased precipitation climate occurred at ~800–1000 yr and ~1300–1800 yr intervals, and increased precipitation occurred at ~354–800 yr, ~1000–1300 yr and ~1800 yr to the present. The results show that the Qaidam Basin has undergone a process of warming and humidification since the Industrial Revolution, which is consistent with the meteorological records. The climate in the northeastern Qaidam Basin is dominated by the Asian Monsoon.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Appleby, P. G., Nolan, P. J., Gifford, D. W., et al., 1986.210Pb Dating by Low Background Gamma Counting. Hydrobiologia, 143(1): 21–27. https://doi.org/10.1007/BF00026640
    Appleby, P. G., Oldfield, F., 1978. The Calculation of Lead-210 Dates Assuming a Constant Rate of Supply of Unsupported 210Pb to the Sediment. Catena, 5(1): 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2
    Arnaud, F., Révillon, S., Debret, M., et al., 2012. Lake Bourget Regional Erosion Patterns Reconstruction Reveals Holocene NW European Alps Soil Evolution and Paleohydrology. Quaternary Science Reviews, 51: 81–92. https://doi.org/10.1016/j.quascirev.2012.07.025
    Arz, H. W., Lamy, F., Pätzold, J., 2006. A Pronounced Dry Event Recorded around 4.2 Ka in Brine Sediments from the Northern Red Sea. Quaternary Research, 66(3): 432–441. https://doi.org/10.1016/j.yqres.2006.05.006
    Aufgebauer, A., Panagiotopoulos, K., Wagner, B., et al., 2012. Climate and Environmental Change in the Balkans over the last 17 Ka Recorded in Sediments from Lake Prespa (Albania/F. Y. R. of Macedonia/Greece). Quaternary International, 274: 122–135. https://doi.org/10.1016/j.quaint.2012.02.015
    Balascio, N. L., Zhang, Z. H., Bradley, R. S., et al., 2011. A Multi-Proxy Approach to Assessing Isolation Basin Stratigraphy from the Lofoten Islands, Norway. Quaternary Research, 75(1): 288–300. https://doi.org/10.1016/j.yqres.2010.08.012
    Bhattacharyya, A., Sandeep, K., Misra, S., et al., 2015. Vegetational and Climatic Variations during the Past 3100 Years in Southern India: Evidence from Pollen, Magnetic Susceptibility and Particle Size Data. Environmental Earth Sciences, 74(4): 3559–3572. https://doi.org/10.1007/s12665-015-4415-6
    Binford, M. W., 1990. Calculation and Uncertainty Analysis of 210Pb Dates for PIRLA Project Lake Sediment Cores. Journal of Paleolimnology, 3(3): 253–267. https://doi.org/10.1007/BF00219461
    Bøe, A. G., Dahl, S. O., Lie, Ø., et al., 2006. Holocene River Floods in the Upper Glomma Catchment, Southern Norway: A High-Resolution Multiproxy Record from Lacustrine Sediments. The Holocene, 16(3): 445–455. https://doi.org/10.1191/0959683606hl940rp
    Boës, X., Rydberg, J., Martinez-Cortizas, A., et al., 2011. Evaluation of Conservative Lithogenic Elements (Ti, Zr, Al, and Rb) to Study Anthropogenic Element Enrichments in Lake Sediments. Journal of Paleolimnology, 46(1): 75–87. https://doi.org/10.1007/s10933-011-9515-z
    Chen, F. H., Chen, J., Huang, W., 2021. Weakened East Asian Summer Monsoon Triggers Increased Precipitation in Northwest China. Science China Earth Sciences, 64(5): 835–837. https://doi.org/10.1007/s11430-020-9731-7
    Chen, J. A., Wan, G. J., Zhang, D. D., et al., 2004. Environmental Records of Lacustrine Sediments in Different Time Scales: Sediment Grain Size as an Example. Science in China Series D: Earth Sciences, 47(10): 954–960. https://doi.org/10.1360/03yd0160
    Chen, J. H., Chen, F. H., Feng, S., et al., 2015. Hydroclimatic Changes in China and Surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial Patterns and Possible Mechanisms. Quaternary Science Reviews, 107: 98–111. https://doi.org/10.1016/j.quascirev.2014.10.012
    Christensen, J. H., 2014. Climate Phenomena and Their Relevance for Future Regional Climate Change. In: Stocker, T. F., Qin, D., Plattner, G. K., eds., Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge
    Cui, A. N., Ma, C. M., Zhao, L., et al., 2018. Pollen Records of the Little Ice Age Humidity Flip in the Middle Yangtze River Catchment. Quaternary Science Reviews, 193: 43–53. https://doi.org/10.1016/j.quascirev.2018.06.015
    Duan, S. Q., 2018. Lake Evolution in the Qaidam Basin during 1976–2015 and Their Changes in Response to Climate and Anthropogenic Factors. Journal of Lake Science, 30(1): 256–265 (in Chinese with English Abstract) doi: 10.18307/2018.0125
    Fouinat, L., Sabatier, P., Poulenard, J., et al., 2017. One Thousand Seven Hundred Years of Interaction between Glacial Activity and Flood Frequency in Proglacial Lake Muzelle (Western French Alps). Quaternary Research, 87(3): 407–422. https://doi.org/10.1017/qua.2017.18
    Gao, C. L., Yu, J. Q., Min, X. Y., et al., 2019. The Sedimentary Evolution of Da Qaidam Salt Lake in Qaidam Basin, Northern Tibetan Plateau: Implications for Hydro-Climate Change and the Formation of Pinnoite Deposit. Environmental Earth Sciences, 78(15): 463. https://doi.org/10.1007/s12665-019-8480-0
    Gilli, A., Anselmetti, F. S., Ariztegui, D., et al., 2003. A 600-Year Sedimentary Record of Flood Events from Two Sub-Alpine Lakes (Schwendiseen, Northeastern Switzerland). Lake Systems from the Ice Age to Industrial Time. Basel: Birkhäuser Basel: 49–58. https://doi.org/10.1007/978-3-0348-7992-7_7
    Griffiths, M. L., Kimbrough, A. K., Gagan, M. K., et al., 2016. Western Pacific Hydroclimate Linked to Global Climate Variability over the Past Two Millennia. Nature Communications, 7: 11719. https://doi.org/10.1038/ncomms11719
    Haberzettl, T., Fey, M., Lücke, A., et al., 2005. Climatically Induced Lake Level Changes during the last Two Millennia as Reflected in Sediments of Laguna Potrok Aike, Southern Patagonia (Santa Cruz, Argentina). Journal of Paleolimnology, 33(3): 283–302. https://doi.org/10.1007/s10933-004-5331-z
    Han, L., Li, Y., Liu, X. Q., et al., 2020. Paleoclimatic Reconstruction and the Response of Carbonate Minerals during the Past 8000 Years over the Northeast Tibetan Plateau. Quaternary International, 553: 94–103. https://doi.org/10.1016/j.quaint.2020.06.009
    Haug, G. H., Hughen, K. A., Sigman, D. M., et al., 2001. Southward Migration of the Intertropical Convergence Zone through the Holocene. Science, 293(5533): 1304–1308. https://doi.org/10.1126/science.1059725
    Henderson, A. C. G., Holmes, J. A., 2009. Palaeolimnological Evidence for Environmental Change over the Past Millennium from Lake Qinghai Sediments: A Review and Future Research Prospective. Quaternary International, 194(1/2): 134–147. https://doi.org/10.1016/j.quaint.2008.09.008
    Ji, J. F., Shen, J., Balsam, W., et al., 2005. Asian Monsoon Oscillations in the Northeastern Qinghai-Tibet Plateau since the Late Glacial as Interpreted from Visible Reflectance of Qinghai Lake Sediments. Earth and Planetary Science Letters, 233(1/2): 61–70. https://doi.org/10.1016/j.epsl.2005.02.025
    Ji, K. J., Zhu, E. L., Chu, G. Q., et al., 2021. A Record of Late Holocene Precipitation on the Central Tibetan Plateau Inferred from Varved Lake Sediments. Journal of Paleolimnology, 66(4): 439–452. https://doi.org/10.1007/s10933-021-00215-8
    Jones, P. D., Osborn, T. J., Briffa, K. R., 2001. The Evolution of Climate over the last Millennium. Science, 292(5517): 662–667. https://doi.org/10.1126/science.1059126
    Lan, J. H., Cheng, J., Chawchai, S., et al., 2023. Fundamental Shift from Summer to Winter of Holocene Rainfall Regime in the Tropics. Geophysical Research Letters, 50(13): e2023GL102909. https://doi.org/10.1029/2023gl102909
    Lan, J. H., Wang, T. L., Chawchai, S., et al., 2020. Time Marker of 137Cs Fallout Maximum in Lake Sediments of Northwest China. Quaternary Science Reviews, 241: 106413. https://doi.org/10.1016/j.quascirev.2020.106413
    Lan, J. H., Xu, H., Sheng, E. G., et al., 2018. Climate Changes Reconstructed from a Glacial Lake in High Central Asia over the Past Two Millennia. Quaternary International, 487: 43–53. https://doi.org/10.1016/j.quaint.2017.10.035
    Li, X. M., Fan, B. W., Hou, J. Z., et al., 2022. Characteristics of Compositions of Organic Matter δ13C in Lake Sediments from Dagze Co in Tibetan Plateau and Its Paleoclimatic and Paleoenvironmental Significance. Earth Science, 47(6): 2275-2286 (in Chinese with English Abstract)
    Ling, Y., Dai, X. Q., Zheng, M. P., et al., 2018. High-Resolution Geochemical Record for the Last 1100 Yr from Lake Toson, Northeastern Tibetan Plateau, and Its Climatic Implications. Quaternary International, 487: 61–70. https://doi.org/10.1016/j.quaint.2017.03.067
    Liu, X. Q., Dong, H. L., Rech, J. A., et al., 2008. Evolution of Chaka Salt Lake in NW China in Response to Climatic Change during the Latest Pleistocene–Holocene. Quaternary Science Reviews, 27(7/8): 867–879. https://doi.org/10.1016/j.quascirev.2007.12.006
    Liu, X. X., Wen, Z. H., Shu, L. C., et al., 2014. Analysis of Surface Area Changes of Keluke and Tuosu Lakes over Past 40 Years and Influencing Factors. Water Resources Protection, 30(1): 28–33, 63 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/periodical/szybh201401006
    Liu, Z. H., Henderson, A. C. G., Huang, Y. S., 2006. Alkenone-Based Reconstruction of Late-Holocene Surface Temperature and Salinity Changes in Lake Qinghai, China. Geophysical Research Letters, 33(9): 370–386. https://doi.org/10.1029/2006gl026151
    Lu, H. Y., An, Z. S., 1997. Pretreatment Methods in Loess-Palaeosol Granulometry. Chinese Science Bulletin, 42: 237–240. https://doi.org/10.1007/BF02898920
    Metcalfe, S. E., Jones, M. D., Davies, S. J., et al., 2010. Climate Variability over the Last Two Millennia in the North American Monsoon Region, Recorded in Laminated Lake Sediments from Laguna de Juanacatlán, Mexico. The Holocene, 20(8): 1195–1206. https://doi.org/10.1177/0959683610371994
    Moberg, A., Sonechkin, D. M., Holmgren, K., et al., 2005. Highly Variable Northern Hemisphere Temperatures Reconstructed from Low- and High-Resolution Proxy Data. Nature, 433(7026): 613–617. https://doi.org/10.1038/nature03265
    Moreno, A., Valero-Garcés, B. L., González-Sampériz, P., et al., 2008. Flood Response to Rainfall Variability during the Last 2000 Years Inferred from the Taravilla Lake Record (Central Iberian Range, Spain). Journal of Paleolimnology, 40(3): 943–961. https://doi.org/10.1007/s10933-008-9209-3
    Muller, J., Kylander, M., Martinez-Cortizas, A., et al., 2008. The Use of Principle Component Analyses in Characterising Trace and Major Elemental Distribution in a 55kyr Peat Deposit in Tropical Australia: Implications to Paleoclimate. Geochimica et Cosmochimica Acta, 72(2): 449–463. https://doi.org/10.1016/j.gca.2007.09.028
    Muscheler, R., Joos, F., Beer, J., et al., 2007. Solar Activity during the last 1000yr Inferred from Radionuclide Records. Quaternary Science Reviews, 26(1/2): 82–97. https://doi.org/10.1016/j.quascirev.2006.07.012
    PAGES 2k Consortium, 2013. Continental-Scale Temperature Variability during the Past Two Millennia. Nature Geoscience, 6: 339–346. https://doi.org/10.1038/ngeo1797
    PAGES 2k Consortium, 2019. Consistent Multi-Decadal Variability in Global Temperature Reconstructions and Simulations over the Common Era. Nature Geoscience, 12(8): 643–649. https://doi.org/10.1038/s41561-019-0400-0
    Rapuc, W., Jacq, K., Develle, A. L., et al., 2020. XRF and Hyperspectral Analyses as an Automatic Way to Detect Flood Events in Sediment Cores. Sedimentary Geology, 409: 105776. https://doi.org/10.1016/j.sedgeo.2020.105776
    Shala, S., Helmens, K. F., Jansson, K. N., et al., 2014. Palaeoenvironmental Record of Glacial Lake Evolution during the Early Holocene at Sokli, NE Finland. Boreas, 43(2): 362–376. https://doi.org/10.1111/bor.12043
    Shao, X. M., Liang, E. Y., Huang, L., et al., 2005. A 1437-Year Precipitation History from Qilian Juniper in the Northeastern Qinghai-Tibetan Plateau. PAGES News, 13(2): 14–15. https://doi.org/10.22498/pages.13.2.14
    Shen, J., Liu, X. Q., Wang, S. M., et al., 2005. Palaeoclimatic Changes in the Qinghai Lake Area during the last 18, 000 Years. Quaternary International, 136(1): 131–140. https://doi.org/10.1016/j.quaint.2004.11.014
    Stansell, N. D., Rodbell, D. T., Abbott, M. B., et al., 2013. Proglacial Lake Sediment Records of Holocene Climate Change in the Western Cordillera of Peru. Quaternary Science Reviews, 70: 1–14. https://doi.org/10.1016/j.quascirev.2013.03.003
    Støren, E. N., Dahl, S. O., Nesje, A., et al., 2010. Identifying the Sedimentary Imprint of High-Frequency Holocene River Floods in Lake Sediments: Development and Application of a New Method. Quaternary Science Reviews, 29(23/24): 3021–3033. https://doi.org/10.1016/j.quascirev.2010.06.038
    Thompson, L. G., Mosley-Thompson, E., Davis, M. E., et al., 1995. A 1000 Year Climate Ice-Core Record from the Guliya Ice Cap, China: Its Relationship to Global Climate Variability. Annals of Glaciology, 21: 175–181. https://doi.org/10.3189/s0260305500015780
    Wang, X. H., Wang, L. S., Hu, S. Y., et al., 2021. Indian Summer Monsoon Variability over Last 2000 Years Inferred from Sediment Magnetic Characteristics in Lugu Lake, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 578(3): 110581. https://doi.org/10.1016/j.palaeo.2021.110581
    Wang, Y. J., Cheng, H. Y., Edwards, R. L., et al., 2005. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308(5723): 854–857. https://doi.org/10.1126/science.1106296
    Wilhelm, B., Arnaud, F., Enters, D., et al., 2012. Does Global Warming Favour the Occurrence of Extreme Floods in European Alps? First Evidences from a NW Alps Proglacial Lake Sediment Record. Climatic Change, 113(3): 563–581. https://doi.org/10.1007/s10584-011-0376-2
    Yan, H., Sun, L. G., Oppo, D. W., et al., 2011. South China Sea Hydrological Changes and Pacific Walker Circulation Variations over the Last Millennium. Nature Communications, 2: 293. https://doi.org/10.1038/ncomms1297
    Yan, H., Wei, W., Soon, W., et al., 2015. Dynamics of the Intertropical Convergence Zone over the Western Pacific during the Little Ice Age. Nature Geoscience, 8: 315–320. https://doi.org/10.1038/ngeo2375
    Yang, B., Qin, C., Wang, J. L., et al., 2014. A 3500-Year Tree-Ring Record of Annual Precipitation on the Northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 111(8): 2903–2908. https://doi.org/10.1073/pnas.1319238111
    Yang, G. F., Chen, Z. H., Wu, F. D., et al., 2016. Climate Variability over the Last 2000 Years Inferred from Glycerol Dialkyl Glycerol Tetraethers (GDGTS) in Alkaline Nalin Lake of Inner Mongolia, China. Environmental Earth Sciences, 75(8): 634. https://doi.org/10.1007/s12665-016-5363-5
    Yu, J. Q., Kelts, K. R., 2002. Abrupt Changes in Climatic Conditions across the Late-Glacial/Holocene Transition on the N. E. Tibet-Qinghai Plateau: Evidence from Lake Qinghai, China. Journal of Paleolimnology, 28(2): 195–206. https://doi.org/10.1023/A: 1021635715857 doi: 10.1023/A:1021635715857
    Zhang, P. Z., Cheng, H., Edwards, R. L., et al., 2008. A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 322(5903): 940–942. https://doi.org/10.1126/science.1163965
    Zhao, C., Yu, Z. C., Zhao, Y., et al., 2010. Holocene Millennial-Scale Climate Variations Documented by Multiple Lake-Level Proxies in Sediment Cores from Hurleg Lake, Northwest China. Journal of Paleolimnology, 44(4): 995–1008. https://doi.org/10.1007/s10933-010-9469-6
    Zhao, Y., Yu, Z. C., Chen, F. H., et al., 2007. Holocene Vegetation and Climate History at Hurleg Lake in the Qaidam Basin, Northwest China. Review of Palaeobotany and Palynology, 145(3/4): 275–288. https://doi.org/10.1016/j.revpalbo.2006.12.002
    Zhou, W. J., Liu, T. B., Wang, H., et al., 2016. Geological Record of Meltwater Events at Qinghai Lake, China from the Past 40 ka. Quaternary Science Reviews, 149: 279–287. https://doi.org/10.1016/j.quascirev.2016.08.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(10) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return