Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Mohamed Abd El Monsef, Hassan Z. Harraz. Genetic Model for Beryl/Emerald-Related Schist in Egypt: Clues of Metasomatism. Journal of Earth Science, 2025, 36(6): 2498-2512. doi: 10.1007/s12583-024-0087-z
Citation: Mohamed Abd El Monsef, Hassan Z. Harraz. Genetic Model for Beryl/Emerald-Related Schist in Egypt: Clues of Metasomatism. Journal of Earth Science, 2025, 36(6): 2498-2512. doi: 10.1007/s12583-024-0087-z

Genetic Model for Beryl/Emerald-Related Schist in Egypt: Clues of Metasomatism

doi: 10.1007/s12583-024-0087-z
More Information
  • Corresponding author: Mohamed Abd El Monsef, monsef_egy@science.tanta.edu.eg
  • Received Date: 20 Jun 2024
  • Accepted Date: 07 Oct 2024
  • Issue Publish Date: 30 Dec 2025
  • Um Solimate emerald deposit is a unique example for the well-known beryl-related schist type. Where, the Be-mineralization is restricted to NNE-trending quartz veins/lenses and as disseminated emerald grains within the altered-metasomatic zones of phlogopite- and graphite-schists. The study of fluid inclusions for the mineralized quartz vein revealed three major groups: (ⅰ) aqueous (H2O-NaCl), (ⅱ) aqueous-carbonic (H2O-CO2-[CH4]-NaCl), and (ⅲ) aqueous-hydrocarbonic (H2O-CH4) FIs. They have been further classified into five types (namely: types 1, 2, 3, 4 and 5) according to number of phases at the room temperature (20 ℃) as well as microthermometric measurements. Based upon the study of fluid inclusions, the initial-ore forming fluid was supposed to be of magmatic nature, characterized by a relatively high temperature of homogenization (Th, tot: 269–485 ℃) and higher salinity (8.4 wt.%–9.6 wt.% NaCl equiv.), followed by development of aqueous-carbonic inclusions at lower temperature (Th, tot: 241–355 ℃) and lower salinity (3.3 wt.%–4.9 wt.% NaCl equiv.) through metamorphic dehydration/decarbonation. Methane-rich FIs were suggested to be formed as a result of local re-equilibration of graphite in reduced environment at the contact aureole of the felsic intrusion. The P-T conditions of ore formation were estimated as modal temperature between (330–370 ℃) and fluid pressures of about 200 MPa, corresponding to an estimated depth ranges from 7 to10 km. The formation of emerald is closely associated with multiple events through the ore evolution, the deposition is ascribed to destabilization process of continuous metasomatic interactions and elemental substitutions between felsic-derived Be-bearing fluids with the adjacent mafic-ultramafic rocks at the zone of mineralization.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abdalla, H. M., El-Sayet, A., El-Afandy, A. H., 2001. Geochemical and Mineralogical Investigation of Wadi Ghazala Beryl Occurrence, SE Sinai, Egypt an Example of Thiysal Be Pegmatites Egypt. Journal of Geology, 45: 151–168
    Abdalla, H. M., Mohamed, F. H., 1999. Mineralogical and Geochemical Investigation of Emerald and Beryl Mineralisation, Pan-African Belt of Egypt: Genetic and Exploration Aspects. Journal of African Earth Sciences, 28(3): 581–598. https://doi.org/10.1016/s0899-5362(99)00033-0
    Abdel Gawad, A. E., Ene, A., Skublov, S. G., et al., 2022. Trace Element Geochemistry and Genesis of Beryl from Wadi Nugrus, South Eastern Desert, Egypt. Minerals, 12(2): 206. https://doi.org/10.3390/min12020206
    Bakker, R. J., 2003. Package Fluids 1 Computer Programmes for Analysis of Fluid Inclusion Data and for Modelling Bulk Fluid Properties. Chemical Geology, 194: 3–23. https://doi.org/10.1016/s0009-2541(02)00268-1
    Basta, E. Z., Zaki M., 1961. Geology and Mineralization of Wadi Sikait Area, South-Eastern Desert, Egypt. Journal of Geology, UAR, 15: 1–38
    Beus, A. A., 1966. Geochemistry of Beryllium and Genetic Types of Beryllium Deposits. W. H. Freeman, London. 401
    Beyth, M., Stern, R. J., Altherr, R., et al., 1994. The Late Precambrian Timna Igneous Complex, Southern Israel: Evidence for Comagmatic-Type Sanukitoid Monzodiorite and Alkali Granite Magma. Lithos, 31(3/4): 103–124. https://doi.org/10.1016/0024-4937(94)90003-5
    Cole, A., Wilkinson, J. J., Halls, C., et al., 2000. Geological Characteristics, Tectonic Setting and Preliminary Interpretations of the Jilau Gold-Quartz Vein Deposit, Tajikistan. Mineralium Deposita, 35(7): 600–618. https://doi.org/10.1007/s001260050266
    Collins, P. L. F., 1979. Gas Hydrates in CO2 -Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 74(6): 1435–1444. https://doi.org/10.2113/gsecongeo.74.6.1435
    El-Aassy, I. E., Botros, N. H., Ibrahim, M. E., et al., 1993. A New Beryl Occurrence in Sinai. Egyptian Mineralogy, 5: 1–10
    El Dougdoug, A., Takla, M. A., Surour, A. A., et al., 1997. Mineralogy and Origin of Wadi Sikait Emerald, South Eastern Desert, Egypt. The 3rd Conference Geochemistry, Alexandria University. 221–239
    El Gaby, S., List, F. X., Tehrani, R., 1988. Geology, Evolution and Metallogenesis of the Pan-African Belt in Egypt. In: El Gaby, S., Greiling, R. O., eds., The Pan African Belt of Northeast Africa and Adjacent Areas. Tectonic Evolution and Economic Aspects of a Late Proterozoic Orogen. Earth Evolution Sciences. Frieder Vieweg and Sohn, Braunschweing/Wiesbaden. 17–68
    El-Bayoumi, R. M. A., Greiling, R. O., 1984. Tectonic Evolution of a Pan-African Plate Margin in Southeastern Egypt—A Suture Zone Overprinted by Low Angle Thrusting. In: Klerkx, J., Michot, J., eds., African Geology. Tervuren Belg. 47–56
    El-Ramly, M. F., Greiling, R. O., Kroner, A., et al., 1984. On the Tectonic Evolution of the Wadi Hafafit Area and Environs EDE. Bulletin Faculty Earth Science King Abdulaziz University, 6: 113–126
    El-Sharkawy, M. F., Harraz, H. Z., 2001. Progressive Boron Metasomatism next a Pegmatite at Wadi Sikait Area, South Eastern Desert, Egypt. The 5th International Conference on Geochemistry, 1: 25–51
    Eyal, M., Litvinovsky, B., Jahn, B. M., et al., 2010. Origin and Evolution of Post-Collisional Magmatism: Coeval Neoproterozoic Calc-Alkaline and Alkaline Suites of the Sinai Peninsula. Chemical Geology, 269(3/4): 153–179. https://doi.org/10.1016/j.chemgeo.2009.09.010
    Fowler, A. R., El Kalioubi, B., 2002. The Migif-Hafafit Gneissic Complex of the Egyptian Eastern Desert: Fold Interference Patterns Involving Multiply Deformed Sheath Folds. Tectonophysics, 346(3/4): 247–275. https://doi.org/10.1016/s0040-1951(01)00259-1
    Fritz, H., Abdelsalam, M., Ali, K. A., et al., 2013. Orogen Styles in the East African Orogen: A Review of the Neoproterozoic to Cambrian Tectonic Evolution. Journal of African Earth Sciences, 86: 65–106. https://doi.org/10.1016/j.jafrearsci.2013.06.004
    Giuliani, G., Groat, L. A., Marshall, D., et al., 2019. Emerald Deposits: A Review and Enhanced Classification. Minerals, 9(2): 105. https://doi.org/10.3390/min9020105
    Greiling, R. O., Kroner, A., El Ramly, M. F., et al., 1988. Structural Relationships between the Southern and the Central Parts of the Eastern Desert of Egypt: Details of a Fold and Thrust Belt. In: El Gaby, S., Greiling, R., eds., The Pan-African Belt of NE Africa and the Adjacent Areas-Tectonic Evolution and Economic Aspects of a Late Proterozoic Orogen. Wiesbaden. 121–145
    Groat, L. A., Giuliani, G., Marshall, D. D., et al., 2008. Emerald Deposits and Occurrences: A Review. Ore Geology Reviews, 34(1/2): 87–112. https://doi.org/10.1016/j.oregeorev.2007.09.003
    Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., et al., 1998. Orogenic Gold Deposits: A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types. Ore Geology Reviews, 13(1/2/3/4/5): 7–27. https://doi.org/10.1016/s0169-1368(97)00012-7
    Grubessi, O., Aurisicchio, C., Castiglioni, A., 1990. The Pharaohs' Forgotten Emerald Mines. The Journal of Gemmology, 22(3): 164–177. https://doi.org/10.15506/jog.1990.22.3.164
    Grundmann, G., Morteani, G., 1989. Emerald Mineralization during Regional Metamorphism; The Habachtal (Austria) and Leydsdorp (Transvaal, South Africa) Deposits. Economic Geology, 84(7): 1835–1849. https://doi.org/10.2113/gsecongeo.84.7.1835
    Grundmann, G., Morteani, G., 2008. Multi-Stage Emerald Formation during Pan-African Regional Metamorphism: The Zabara, Sikait, Umm Kabo Deposits, South Eastern Desert of Egypt. Journal of African Earth Sciences, 50(2/3/4): 168–187. https://doi.org/10.1016/j.jafrearsci.2007.09.009
    Grundmann, G., Morteani, G., 2017. Emerald Formation during Regional Metamorphism: The Zabara, Sikeit and Umm Kabo Deposits (Eastern Desert, Egypt). Geoscientific Research in Northeast Africa. CRC Press, Boca Raton. 495–498. https://doi.org/10.1201/9780203753392-90 doi: 10.1201/9780203753392-90
    Hamimi, Z., Abd El-Wahed, M. A., Gahlan, H. A., et al., 2019. Tectonics of the Eastern Desert of Egypt: Key to Understanding the Neoproterozoic Evolution of the Arabian-Nubian Shield (East African Orogen). The Geology of the Arab World—An Overview. Springer International Publishing, Cham. 1–81. https://doi.org/10.1007/978-3-319-96794-3_1
    Harraz, H. Z., Hassan, A. M., Furuyama, K., 2005. The Wadi Sikait Complex: A Fertile-Post-Collisional Granite-Pegmatite Suite, Eastern Desert, Egypt. Annals of the Geologic Survey of Egypt, XXVIII: 1–35
    Harrell, J. A., 2004. Archeological Geology of the World's First Emerald Mine. Geoscience Canada, 31(2): 69–76
    Heyen, G., Ramboz, C., Dubessy, J., 1982. Modelling of Phase Equilibria in the System CO2-CH4 below 50 ºC and 100 bar. Application to Inclusion Fluids. Comptes Rendus Academy of Science, Paris, 294: 203–206 (in French)
    Ho, S. E., Groves, D. I., Phillips, G. N., 1985. Fluid Inclusions as Indicators of the Nature and Source of Ore Fluids and Ore Depositional Conditions for Archaean Gold Deposits of the Yilgarn Lock, Western Australia. Transactions Geological Society South Africa, 88: 149–158
    Holloway, J. R., 1984. Graphite-CH4-CO2-H2O Equilibria in the Earth'S Upper Crust. Geology, 12: 455–458
    Johnson, P. R., Andresen, A., Collins, A. S., et al., 2011. Late Cryogenian–Ediacaran History of the Arabian-Nubian Shield: A Review of Depositional, Plutonic, Structural, and Tectonic Events in the Closing Stages of the Northern East African Orogen. Journal of African Earth Sciences, 61(3): 167–232. https://doi.org/10.1016/j.jafrearsci.2011.07.003
    Kesler, S. E., 2005. Ore-Forming Fluid. Elements, 1: 13–18
    Khedr, M. Z., Saleh, G. M., Abdelfadil, K. M., et al., 2024. The Geology and Mineral Chemistry of Beryl Mineralization, South Eastern Desert, Egypt: A Deeper Insight into Genesis and Distribution. Minerals, 14(5): 465. https://doi.org/10.3390/min14050465
    Khaleal, F. M., El Bialy, M. Z., Ibrahim, W. S., et al., 2019. The Geology, Geochemistry and Mineralogy of Beryl Mineralization in Zabara Area, South Eastern Desert, Egypt. International Journal of Mining Science, 5: 18–34
    Khaleal, F. M., Lentz, D. R., Hall, D. C., 2022. Mineral Chemistry and Genesis of Emerald and Beryl Mineralization in the South Eastern Desert of Egypt. Egyptian Journal of Chemistry, 65: 601–623. https://doi.org/10.21608/ejchem.2022.113700.5166
    MacAlister, D. A., 1900. The Emerald Mines of Northern Etbai. The Geographical Journal, 16(5): 537. https://doi.org/10.2307/1774868
    Martin-Izard, A., Paniagua, A., Moreiras, D., et al., 1995. Metasomatism at a Granitic Pegmatite-Dunite Contact in Galicia: The Franqueira Occurrence of Chrysoberyl (Alexandrite), Emerald, and Phenakite. Canadian Mineralogist, 33: 775–792
    Marshall, D., Downes, P. J., Ellis, S., et al., 2016. Pressure-Temperature-Fluid Constraints for the Poona Emerald Deposits, Western Australia: Fluid Inclusion and Stable Isotope Studies. Minerals, 6(4): 130. https://doi.org/10.3390/min6040130
    Mohamed, F. H., Hassanen, M. A., 1997. Geochemistry and Petrogenesis of Sikait Leucogranite, Egypt: An Example of S-Type Granite in a Metapelitic Sequence. Geologische Rundschau, 86(1): 81–92. https://doi.org/10.1007/s005310050123
    Moroz, I., Vapnik, Y., Eliezri, I., et al., 2001. Mineral and Fluid Inclusion Study of Emeralds from the Lake Manyara and Sumbawanga Deposits, Tanzania. Journal of African Earth Sciences, 33(2): 377–390. https://doi.org/10.1016/s0899-5362(01)80070-1
    Omar, S. A. M., 2016. Mineralogical and Fluid Inclusions Evidence for the Genesis of Umm Addebbaa-Umm Kabu Beryl Belt, South Eastern Desert. Nuclear Sciences Scientific Journal, 5: 1–14
    Potter, R. W., Clynne, M. A., Brown, D. L., 1978. Freezing Point Depression of Aqueous Sodium Chloride Solutions. Economic Geology, 73(2): 284–285. https://doi.org/10.2113/gsecongeo.73.2.284
    Roedder, E., 1984. Fluid Inclusions. Reviews Mineralogy, 12: 644
    Roedder, E., Bodnar, R. J., 1980. Geologic Pressure Determinations from Fluid Inclusion Studies. Annual Review of Earth and Planetary Sciences, 8: 263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. 1–64. https://doi.org/10.1016/b0-08-043751-6/03016-4 doi: 10.1016/b0-08-043751-6/03016-4
    Santiago, J. S., Souza, V. D. S., Filgueiras, B. D. C., et al., 2018. Emerald from the Fazenda Bonfim Deposit, Northeastern Brazil: Chemical, Fluid Inclusions and Oxygen Isotope Data. Brazilian Journal of Geology, 48(3): 457–472. https://doi.org/10.1590/2317-4889201820170130
    Schwarz, D., Giuliani, G., Grundmann, G., et al., 2002. The Origin of Emerald. In: Emeralds of the World. extraLapis English No. 2. 18–23
    Shackleton, R. M., Ries, A. C., Graham, R. H., et al., 1980. Late Precambrian Ophiolitic Mélange in the Eastern Desert of Egypt. Nature, 285(5765): 472–474. https://doi.org/10.1038/285472a0
    Sharaky, A. M., 2009. Emerald Mineralization in Africa: A Case Study from Marsa Alam District, Egypt. In: Second International Conference of Natural Resources in Africa, Cairo University, Cairo
    Shepherd, T. J., Rankin, A. H., Alderton, D. H., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie and Sons, Glasgow. 239
    Shepherd, T. J., Bottrell, S. H., Miller, M. F., 1991. Fluid Inclusion Volatiles as an Exploration Guide to Black Shale-Hosted Gold Deposits, Dolgellau Gold Belt, North Wales, UK. Journal of Geochemical Exploration, 42(1): 5–24. https://doi.org/10.1016/0375-6742(91)90058-3
    Sherif, H. M., Abd El-Aaty, M. A., Lasheen, T. A., et al., 2005. New Beryl Occurrence of Wadi Sedri, South Western Sinai, Egypt. Fourth International Conference Geology of Africa, Assuit, Egypt. 471–477
    Sinkankas, J., 1981. Emerald and Other Beryls: Radnor. Chilton Book Co, Pennsylvania. 665
    Stern, R., 1994. Arc-Assembly and Continental Collision in the Neoproterozoic African Orogen: Implications for the Consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences, 22: 319–351. https://doi.org/10.1146/annurev.earth.22.1.319
    Stern, R. J., 2002. Crustal Evolution in the East African Orogen: A Neodymium Isotopic Perspective. Journal of African Earth Sciences, 34(3/4): 109–117. https://doi.org/10.1016/s0899-5362(02)00012-x
    Surour, A. A., Omar, S. A. M., 2020. Historiography and FTIR Spectral Signatures of Beryl Crystals from Some Ancient Roman Sites in the Eastern Desert of Egypt. Environmental Earth Sciences, 79(23): 520. https://doi.org/10.1007/s12665-020-09260-4
    Surour, A. A., Takla, M. A., Omar, S. A. M., 2002. EPR Spectra and Age Determination of Beryl from the Eastern Desert of Egypt. Annals of the Geologic Survey of Egypt, 25: 389–400
    Takla, M. A., Surour, A. A., Omar, S. A. M., 2003. Mapping Source of Beryllium and Genesis of Some Beryl Occurrences in the Eastern Desert of Egypt. Annals of the Geologic Survey of Egypt, 76: 153–182
    Uher, P. A. V. E. L., Bacík, P., Fridrichova, F., 2019. Beryllium Silicate Minerals in Granite-Pegmatite Suites: Tracers of Magmatic to Hydrothermal and Tectonic Evolution (Examples from Western Carpathians). Geologica Carpathica, 70: 9–11
    Vityk, M. O., Bodnar, R. J., 1995. Do Fluid Inclusions in High-Grade Metamorphic Terranes Preserve Peak Metamorphic Density during Retrograde Decompression? American Mineralogist, 80(5/6): 641–644
    Wilkinson, J. J., 2001. Fluid Inclusions in Hydrothermal Ore Deposits. Lithos, 55(1/2/3/4): 229–272. https://doi.org/10.1016/s0024-4937(00)00047-5
    Wilkinson, J. J., Johnston, J. D., 1996. Pressure Fluctuations, Phase Separation, and Gold Precipitation during Seismic Fracture Propagation. Geology, 24(5): 395. https://doi.org/10.1130/0091-7613(1996)0240395:pfpsag>2.3.co;2 doi: 10.1130/0091-7613(1996)0240395:pfpsag>2.3.co;2
    Zachariáš, J., Žáček, V., Pudilová, M., et al., 2005. Fluid Inclusions and Stable Isotope Study of Quartz-Tourmaline Veins Associated with Beryl and Emerald Mineralization, Kafubu Area, Zambia. Chemical Geology, 223(1/2/3): 136–152. https://doi.org/10.1016/j.chemgeo.2004.12.023
    Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaClKClCaCl2H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3/4): 335–350. https://doi.org/10.1016/0009-2541(87)90012-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(26) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return