Citation: | Zongchao Li, Zhiwei Ji, Jize Sun, Hiroe Miyake, Yanna Zhao, Hongjun Si, Mengtan Gao, Yi Ding. High-Probability Ground Motion Simulation in Maduo County for the Maduo MS7.4 Earthquake in 2021: A Possible Supershear Earthquake. Journal of Earth Science, 2025, 36(2): 781-800. doi: 10.1007/s12583-024-0092-2 |
On May 22, 2021, an
Bai, Y. Z., Xu, C., 2023. Qualitative Analyses of Correlations between Strong Ground Motions of the Three Large Earthquakes and Landslide Distributions. Journal of Earth Science, 34(2): 369–380. https://doi.org/10.1007/s12583-021-1496-x |
Boore, D. M., Stewart, J. P., Seyhan, E., et al., 2014. NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra, 30(3): 1057–1085. https://doi.org/10.1193/070113eqs184m |
Bouchon, M., Bouin, M. P., Karabulut, H., et al., 2001. How Fast is Rupture during an Earthquake? New Insights from the 1999 Turkey Earthquakes. Geophysical Research Letters, 28(14): 2723–2726. https://doi.org/10.1029/2001gl013112 |
Bouchon, M., Karabulut, H., 2008. The Aftershock Signature of Supershear Earthquakes. Science, 320(5881): 1323–1325. https://doi.org/10.1126/science.1155030 |
Brad, T. A., Thomas, H. H., 2004. Near-Source Ground Motions from Simulations of Sustained Intersonic and Supersonic Fault Ruptures. Bulletin of the Seismological Society of America, 94(6): 2064–2078. https://doi.org/10.1785/0120030249 |
Cao, Z. L., Tao, X. X., Tao, Z. R., 2021. Simulation of Three-Component Near-Fault Ground Motions during the 2021 Maduo M7.4 Earthquake. World Earthquake Engineering, 4: 1–11 (in Chinese with English Abstract) |
Chen, K. J., Avouac, J. P., Geng, J. H., et al., 2022. The 2021 Mw7.4 Madoi Earthquake: An Archetype Bilateral Slip-Pulse Rupture Arrested at a Splay Fault. Geophysical Research Letters, 49(2): e2021GL095243. https://doi.org/10.1029/2021gl095243 |
Chen, W. K., Wang, D., Zhang, C., et al., 2022. Estimating Seismic Intensity Maps of the 2021 Mw7.3 Madoi, Qinghai and Mw6.1 Yangbi, Yunnan, China Earthquakes. Journal of Earth Science, 33(4): 839–846. https://doi.org/10.1007/s12583-021-1586-9 |
Cheng, C., Wang, D., Yao, Q., et al., 2023. The 2021 Mw7.3 Madoi, China Earthquake: Transient Supershear Ruptures on a Presumed Immature Strike-Slip Fault. Journal of Geophysical Research (Solid Earth), 128(2): e2022JB024641. https://doi.org/10.1029/2022jb024641 |
China Earthquake Administration. National Standards of the People's Republic of China-The Chinese Seismic Intensity Scale, 2021, GB 17742-2020 (in Chinese) |
China Earthquake Administration, 2015. National Standards of the People's Republic of China-Seismic Ground Motion Parameter Zonation Map 2015, GB 18306-2015 (in Chinese) |
Chu, R. S., Zhu, L. P., Ding, Z. F., 2019. Upper-Mantle Velocity Structures beneath the Tibetan Plateau and surrounding Areas Inferred from Triplicated P Waveforms. Earth and Planetary Physics, 3(5): 444–458. https://doi.org/10.26464/epp2019045 |
Eric, K., Nathan, H., Erqi, W., et al., 2007. Slip Rate Gradients along the Eastern Kunlun Fault. Tectonics, 26: TC2010. https://doi.org/10.1029/2006tc002033 |
Eric, M. D., Ralph, J. A., 2004. Evidence for a Supershear Transient during the 2002 Denali Fault Earthquake. Bulletin of the Seismological Society of America, 94(6B): S256–S268. https://doi.org/10.1785/0120040616 |
Gai, H. L., Yao, S. H., Yang, L. P., et al., 2021. Characteristics and Causes of Coseismic Surface Rupture Triggered by the "5.22" MS7.4 Earthquake in Maduo, Qinghai, and Their Significance. Journal of Geomechanics, 27(6): 899–912. http://doi.org/10.12090/j.issn.1006-6616.2021.27.06.073 |
George, P. M., Christopher, M. S., 2013. Finite-Fault Simulation of Broadband Strong Ground Motion from the 2010 Mw7.0 Haiti Earthquake. Bulletin of the Seismological Society of America, 103(5): 2557–2576. https://doi.org/10.1785/0120120212 |
Gold, R. D., Cowgill, E., Arrowsmith, J. R., et al., 2009. Riser diachroneity, Lateral Erosion, and Uncertainty in Rates of Strike-Slip Faulting: A Case Study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research: Solid Earth, 114(B4): B04401. https://doi.org/10.1029/2008jb005913 |
Ha, G. H., Liu, J. R., Ren, Z. K., et al., 2022. The Interpretation of Seismogenic Fault of the Maduo Mw7.3 Earthquake, Qinghai Based on Remote Sensing Images—A Branch of the East Kunlun Fault System. Journal of Earth Science, 33(4): 857–868. https://doi.org/10.1007/s12583-021-1556-2 |
Houseman, G., England, P., 1993. Crustal thickening Versus Lateral Expulsion in the Indian-Asian Continental Collision. Journal of Geophysical Research: Solid Earth, 98(B7): 12233–12249. https://doi.org/10.1029/93jb00443 |
Hu, J. J., Liu, M. J., Taymaz, T., et al., 2024. Characteristics of Strong Ground Motion from the 2023 Mw7.8 and Mw7.6 Kahramanmaraş Earthquake Sequence. Bulletin of Earthquake Engineering, Published Online. |
Hu, J. J., Xie, L. L., 2021. Review of the State-of-the-Art Researches on Earthquake Super Shear Rupture. Advance in Earth Science, 26(1): 39–47. http://doi.org/10.11867/j.issn.1001-8166.2011.01.0039 |
Hutchings, L., 1991. 'Prediction' of Strong Ground Motion for the 1989 Loma Prieta Earthquake Using Empirical Green's Functions. Bulletin of the Seismological Society of America, 81: 88–121. https://doi.org/10.1785/bssa0810051813 |
Idriss, I. M., 2014. An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra, 30(3): 1155–1177. https://doi.org/10.1193/070613eqs195m |
Irikura, K., 1986. Prediction of Strong Acceleration Motion Using Empirical Green's Function. Proceedings of the 7th Japan Earthquake Engineering Symposium. Architectural Institute of Japan, Tokyo, 151-156. |
Irikura, K., 1983. Semi-Empirical Estimation of Strong Ground Motion during Large Earthquake. Bulletin Disaster Prevention Research, 33: 151–156. https://www.researchgate.net/profile/Kojiro-Irikura https://www.researchgate.net/profile/Kojiro-Irikura |
Irikura, K., Kamae, K., 1994. Estimation of Strong Ground Motion in Broad-Frequency Band Based on a Seismic Source Scaling Model and an Empirical Green's Function Technique. Annals of Geophysics, 37(6): 1721–1743. https://doi.org/10.4401/ag-4137 |
Ji, Z. W., Li, Z. C., Sun J. Z., et al., 2023. Estimation of Broadband Ground Motion Characteristics Considering Source Parameter Uncertainty and Undetermined Site Condition in Densely Populated Areas of Pingwu. Fronters in Earth Science, 10: 1081542. https://doi.org/10.3389/feart.2022.1081542 |
Kanamori, H., 1977. The Energy Release in Great Earthquakes. Journal of Geophysical Research, 82(20): 2981–2987. https://doi.org/10.1029/jb082i020p02981 |
Kehoe, H. L., Kiser, E. D., 2020. Evidence of a Supershear Transition across a Fault Stepover. Geophysical Research Letters, 47(10): e87400. https://doi.org/10.1029/2020gl087400 |
Kirby, E., Harkins, N., 2013. Distributed Deformation around the Eastern Tip of the Kunlun Fault. International Journal of Earth Sciences, 102(7): 1759–1772. https://doi.org/10.1007/s00531-013-0872-x |
Li, C. G., Wang, H. W., Wen, R. Z., et al., 2021. Three-Component Ground Motion Simulations Based on the Stochastic Finite-Fault Method for the 2021 Maduo MS7.4 Earthquake, Qinghai Province. Seismology and Geology, 43(5): 1085–1100. https://doi.org/10.3969/j.issn.0253-4967.2021.05.004 |
Li, Z. C., Chen, X. L., Gao, M. T., et al., 2017. Simulating and Analyzing Engineering Parameters of Kyushu Earthquake, Japan, 1997, by Empirical Green Function Method. Journal of Seismology, 21(2): 367–384. https://doi.org/10.1007/s10950-016-9606-4 |
Li, Z. C., Gao, M. T., Sun, J. Z., et al., 2022d. Simulation of High-Frequency Ground Motions in the Subduction Zone of the Sea Area-Taking the Fukushima MS7.1 Earthquake on February 13, 2021 as an Example. Technology for Earthquake Disaster Prevention, 17(3): 516–528. https://doi.org/10.11899/zzfy20220311 |
Li, Z. C., Gao, M. T., Sun, J. Z., et al., 2021. Empirical Relationship of Stochastic Uncertainty of Source Parameters in Relative Local Area. Acta Seismologica Sinica, 43(4): 483–497. http://doi.org/10.11939/jass.20200153 |
Li, Z. C., Sun, J. Z., Fang, L. H., et al., 2022c. Reproducing the Spatial Characteristics of High-Frequency Ground Motions for the 1 850 M7.5 Xichang Earthquake. Seismological Research Letters, 93(1): 100–117. https://doi.org/10.1785/0220210076 |
Li, Z. C., Sun, J. Z., Gao, M. T., et al., 2022b. Evaluation of Horizontal Ground Motion Waveforms at Sedongpu Glacier during the 2017 M6.9 Mainling Earthquake Based on the Equivalent Green's Function. Engineering Geology, 306: 106743. https://doi.org/10.1016/j.enggeo.2022.106743 |
Li, Z. C., Sun, J. Z., Gao, M. T., et al., 2022a. Preliminary Judgment of Ground Motion Characteristics of Yematan Bridge in Qinghai Maduo M7.4 Earthquake. Reviews of Geophysics and Planetary Physics, 53(1): 101–106. https://doi.org/10.19975/j.dqyxx.2021-037 |
Liu, Y. J., Zhao, X. F., Wen, Z. P., et al., 2023. Broadband Ground Motion Simulation Using a Hybrid Approach of the May 21, 2021 M7.4 Earthquake in Maduo, Qinghai, China. Earthquake Science, 36(3): 175–199. https://doi.org/10.1016/j.eqs.2023.04.001 |
Miyake, H., 2003. Source Characterization for Broadband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area. The Bulletin of the Seismological Society of America, 93(6): 2531–2545. https://doi.org/10.1785/0120020183 |
Okuwaki, R., Yagi, Y., Taymaz, T., et al., 2023. Multi-Scale Rupture Growth with Alternating Directions in a Complex Fault Network during the 2023 South-Eastern Türkiye and Syria Earthquake Doublet. Geophysical Research Letters, 50(12): e2023GL103480. https://doi.org/10.1029/2023gl103480 |
Pan, J. W., Li, H. B., Chevalier, M. L., et al., 2022. Co-Seismic Rupture of the 2021, Mw7.4 Maduo Earthquake (Northern Tibet): Short-Cutting of the Kunlun Fault Big Bend. Earth and Planetary Science Letters, 594: 117703. https://doi.org/10.1016/j.epsl.2022.117703 |
Ren, C. M., Wang, Z. X., Taymaz, T., et al., 2024. Supershear Triggering and Cascading Fault Ruptures of the 2023 Kahramanmaraş, Türkiye, Earthquake Doublet. Science, 383(6680): 305–311. https://doi.org/10.1126/science.adi1519 |
Somerville, P., Irikura, K., Graves, R., et al., 1999. Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1): 59–80. https://doi.org/10.1785/gssrl.70.1.59 |
Tapponnier, P., Peltzer, G., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611–616. https://doi.org/10.1130/0091-7613(1982)102.0.co;2 |
Wang, D., Mori, J., 2012. The 2010 Qinghai, China, Earthquake: A Moderate Earthquake with Supershear Rupture. Bulletin of the Seismological Society of America, 102(1): 301–308. https://doi.org/10.1785/0120110034 |
Wang, D., Mori, J., Koketsu, K., 2016. Fast Rupture Propagation for Large Strike-Slip Earthquakes. Earth and Planetary Science Letters, 440: 115–126. https://doi.org/10.1016/j.epsl.2016.02.022 |
Wang, S. G., Yang, H., Wang, W. L., et al., 2021. Prompt Seismic Data Sharing for the 2021 Maduo Earthquake in Qinghai Province, China. Earthquake Science, 34(5): 465–469. https://doi.org/10.29382/eqs-2021-0027 |
Wang, W. L., Fang, L. H., Wu, J. P., et al., 2021. Aftershock Sequence Relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Science China Earth Sciences, 64(8): 1371–1380. https://doi.org/10.1007/s11430-021-9803-3 |
Wang, Z. J., Zhang, W. Q., Taymaz, T., et al., 2023. Dynamic Rupture Process of the 2023 Mw7.8 Kahramanmaraş Earthquake (SE Türkiye): Variable Rupture Speed and Implications for Seismic Hazard. Geophysical Research Letters, 50(15): e2023GL104787. https://doi.org/10.1029/2023gl104787 |
Wei, G. G., Chen, K. J., Lyu, M. Z., et al., 2023. Complex Strike-Slip Faulting during the 2021 Mw7.4 Maduo Earthquake. Communications Earth & Environment, 4: 319. https://doi.org/10.1038/s43247-023-00980-6 |
Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw6.2 Earthquake: an Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4): 853–866. https://doi.org/10.1007/s12583-020-1297-7 |
Xu, Y. R., Zhang, Y. B., Liu, R. C., et al., 2022. Preliminary Analyses of Landslides and Sand Liquefaction Triggered by 22 May, 2021, Maduo Mw7.3 Earthquake on Northern Tibetan Plateau, China. Landslides, 19: 155–164. https://doi.org/10.1007/s10346-021-01811-5 |
Yang, J. Y., Sun, W. K., Hong, S. Y., et al., 2021. Coseismic Deformation Analysis of the 2021 Qinghai Madoi M7.4 Earthquake. Chinese Journal of Geophysics, 64(8): 2671–2683. https://doi.org/10.6038/cjg2021p0416 |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211–280. https://doi.org/10.1146/annurev.earth.28.1.211 |
Yue, H., Shen, Z. K., Zhao, Z. Y., et al., 2022. Rupture Process of the 2021 M7.4 Maduo Earthquake and Implication for Deformation Mode of the Songpan-Ganzi Terrane in Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 119(23): e2116445119. https://doi.org/10.1073/pnas.2116445119 |
Zhan, Y., Liang, M. J., Sun, X. Y., et al., 2021. Deep Structure and Seismogenic Pattern of the 2021.5. 22 Madoi (Qinghai) MS7.4 Earthquake. Chinese Journal of Geophysics (in Chinese), 64(7): 2232–2252. https://doi.org/10.6038/cjg2021o0521 |
Zhang, J. H., Hao, J. L., Zhao, X., et al., 2016. Restoration of Clipped Seismic Waveforms Using Projection onto Convex Sets Method. Scientific Reports, 2016: 39056. https://doi.org/10.1038/srep39056 |
Zhang, J. Y., Wang, X., Chen. L., Liu, J., 2022. Seismotectonics and Fault Geometries of the Qinghai Madoi MS7.4 Earthquake Sequence: Insight from Aftershock Relocations and Focal Mechanism Solutions. Chinese Journal of Geophysics, 65(2): 552–562. https://doi.org/10.6038/cjg2022p0516 |
Zhang, X., Feng, W. P., Du, H. L., et al., 2022. Supershear Rupture during the 2021 Mw7.4 Maduo, China, Earthquake. Geophysical Research Letters, 49(6): e2022GL097984. https://doi.org/10.1029/2022gl097984 |
Zhang, Y. M., Li, M. F., Meng, Y. Q., et al., 1996. Research on Fault Activities and Their Seismogeological Implication in Bayankala Mountain Area. Seismological Press, Beijing. 154–171 (in Chinese) |
Zheng, A., Yu, X. W., Qian, J. Q., et al., 2023. Cascading Rupture Process of the 2021 Maduo, China Earthquake Revealed by the Joint Inversion of Seismic and Geodetic Data. Tectonophysics, 849: 229732. https://doi.org/10.1016/j.tecto.2023.229732 |
Zhou, H. F., Ye, F., Fu, W. X., et al., 2024. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221–234. https://doi.org/10.1007/s12583-022-1806-y |