| Citation: | Jingjing Zhang, Lingxin Kong, Long Ma, Majid Gulayozov, Anvar Kodirov, Jilili Abuduwaili. Spatiotemporal Variation of Water Cycle Intensity in the Pamir Plateau from 1980 to 2019 and Its Climatic Drivers. Journal of Earth Science, 2025, 36(6): 2748-2762. doi: 10.1007/s12583-024-0094-0 |
A comprehensive understanding of the hydrological cycle is essential for Earth system science and climate change research. The Water Cycle Intensity (WCI) is defined as the sum of precipitation and actual evapotranspiration within a landscape unit. It is a widely used metric to quantify the impact of climate change on the global distribution of water resources. The WCI in the Pamir Plateau, located at the heart of Asian Water Towers, has received little attention. Understanding this aspect is crucial for assessing the impact of climate change on the hydrological cycle and devising strategies to adapt to these changes. Our study assessed the spatiotemporal variation in WCI on the Pamir Plateau from 1980 to 2019 using the WCI framework. Additionally, we explored the teleconnection mechanisms linking the WCI with the Indian Ocean Dipole Mode Index (DMI), canonical El Niño-Southern Oscillation (ENSO), and El Niño Modoki (EMI) using the wavelet analysis method. The findings showed that the WCI of the Pamir Plateau experienced a statistically insignificant increase from 1980 to 2019, particularly after 2003. Spatially, the eastern Pamir Plateau WCI increased significantly, whereas the western region showed a non-significant downward trend. This study found that the WCI in the Pamir Plateau is significantly influenced by atmospheric circulation patterns, and the variation in the WCI in the Pamir Plateau is mainly affected by the canonical ENSO, as well as by the coupling effect of canonical ENSO, and EMI. In addition, based on the characteristics of the regional hydrological cycle, we developed water resource management policies targeting flood risks in the northern Pamir Plateau and drought trends in the southwestern region. These insights not only deepen our understanding of changes in terrestrial hydrological cycles and their underlying mechanisms under climate change but also provide important references for water resource management in the mountainous regions of Central Asia.
| Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., et al., 2018. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Scientific Data, 5: 170191. https://doi.org/10.1038/sdata.2017.19 |
| Ashok, K., Behera, S. K., Rao, S. A., et al., 2007. El Niño Modoki and Its Possible Teleconnection. Journal of Geophysical Research: Oceans, 112(C11): C11007. https://doi.org/10.1029/2006jc003798 |
| Asif, Z., Chen, Z., Sadiq, R., et al., 2023. Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America. Water Resources Management, 37(6): 2771–2786. https://doi.org/10.1007/s11269-023-03474-4 |
|
Behera, S., Yamagata, T., 2018. Climate Dynamics of ENSO Modoki Phenomena. In: Oxford Research Encyclopedia of Climate Science. |
| Bin, L. L., Xu, K., Yang, Z. W., et al., 2024. Water Cycle Evolution in the Haihe River Basin and Its Relationship with Landscape Pattern Changes. Ecological Indicators, 159: 111681. https://doi.org/10.1016/j.ecolind.2024.111681 |
| Brun, P., Zimmermann, N. E., Hari, C., et al., 2022. Global Climate-Related Predictors at Kilometer Resolution for the Past and Future. Earth System Science Data, 14(12): 5573–5603. https://doi.org/10.5194/essd-14-5573-2022 |
| Chen, F., Chen, Y. P., Bakhtiyorov, Z., et al., 2020. Central Asian River Streamflows have not Continued to Increase during the Recent Warming Hiatus. Atmospheric Research, 246: 105124. https://doi.org/10.1016/j.atmosres.2020.105124 |
| Ding, Y., Huang, H. F., Chen, W., et al., 2022. Background Levels of OCPs, PCBS, and PAHs in Soils from the Eastern Pamirs, China, an Alpine Region Influenced by Westerly Atmospheric Transport. Journal of Environmental Sciences, 115: 453–464. https://doi.org/10.1016/j.jes.2020.11.022 |
| Dogar, M. M., Kucharski, F., Sato, T., et al., 2019. Towards Understanding the Global and Regional Climatic Impacts of Modoki Magnitude. Global and Planetary Change, 172: 223–241. https://doi.org/10.1016/j.gloplacha.2018.10.004 |
| Dong, Y. Y., Zhai, J. Q., Zhao, Y., et al., 2020. Teleconnection Patterns of Precipitation in the Three-River Headwaters Region, China. Environmental Research Letters, 15(10): 104050. https://doi.org/10.1088/1748-9326/aba8c0 |
| Duan, K. Q., Xu, B. Q., Wu, G. J., 2015. Snow Accumulation Variability at Altitude of 7 010 m a.s.l. in Muztag Ata Mountain in Pamir Plateau during 1958–2002. Journal of Hydrology, 531: 912–918. https://doi.org/10.1016/j.jhydrol.2015.10.013 |
| Feng, F., Zhao, Y., Huang, A. N., et al., 2022. Different Seasonal Precipitation Anomaly Patterns in Central Asia Associated with Two Types of El Niño during 1891–2016. Frontiers in Earth Science, 10: 771362. https://doi.org/10.3389/feart.2022.771362 |
| Gao, J., Yao, J. Q., Zhao, Y., et al., 2023. Dominant Modes and Mechanisms of the Interannual Variability of Atmospheric Water Vapor Content during Winter over Central Asia. Atmospheric Research, 295: 107015. https://doi.org/10.1016/j.atmosres.2023.107015 |
| Grinsted, A., Moore, J. C., Jevrejeva, S., 2004. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Processes in Geophysics, 11: 561–566. https://doi.org/10.5194/npg-11-561-2004 |
| Gu, X. F., Jamshidi, S., Sun, H. G., et al., 2021. Identifying Multivariate Controls of Soil Moisture Variations Using Multiple Wavelet Coherence in the U. S. Midwest. Journal of Hydrology, 602: 126755. https://doi.org/10.1016/j.jhydrol.2021.126755 |
| Guan, X. F., Yao, J. Q., Schneider, C., 2022. Variability of the Precipitation over the Tianshan Mountains, Central Asia. Part Ⅱ: Multi-Decadal Precipitation Trends and Their Association with Atmospheric Circulation in both the Winter and Summer Seasons. International Journal of Climatology, 42(1): 139–156. https://doi.org/10.1002/joc.7236 |
| Guan, X. D., Zhu, K. W., Huang, X. Q., et al., 2021. Precipitation Changes in Semi-Arid Regions in East Asia under Global Warming. Frontiers in Earth Science, 9: 762348. https://doi.org/10.3389/feart.2021.762348 |
| Guo, H., Bao, A. M., Liu, T., et al., 2018. Spatial and Temporal Characteristics of Droughts in Central Asia during 1966–2015. Science of The Total Environment, 624: 1523–1538. https://doi.org/10.1016/j.scitotenv.2017.12.120 |
| He, J. P., Duan, K. Q., Li, S. S., et al, 2024. Northward Shift of Indian Summer Monsoon and Intensifying Winter Westerlies Cause Stronger Precipitation Seasonality over Pamirs and Its Downstream Basins in the 21st Century. Science of the Total Environment, 926: 171891. https://doi.org/10.1016/j.scitotenv.2024.171891 |
| Hu, W., Si, B., 2021. Technical Note: Improved Partial Wavelet Coherency for Understanding Scale-Specific and Localized Bivariate Relationships in Geosciences. Hydrology and Earth System Sciences, 25(1): 321–331. https://doi.org/10.5194/hess-25-321-2021 |
| Hu, W., Si, B. C., 2016. Technical Note: Multiple Wavelet Coherence for Untangling Scale-Specific Andlocalized Multivariate Relationships in Geosciences. Hydrology and Earth System Sciences, 20(8): 3183–3191. https://doi.org/10.5194/hess-20-3183-2016 |
| Huang, J. H., Su, F. G., Yao, T. D., et al., 2022. Runoff Regime, Change, and Attribution in the Upper Syr Darya and Amu Darya, Central Asia. Journal of Hydrometeorology, 23(10): 1563–1585. https://doi.org/10.1175/jhm-d-22-0036.1 |
| Huntington, T. G., Weiskel, P. K., Wolock, D. M., et al., 2018. A New Indicator Framework for Quantifying the Intensity of the Terrestrial Water Cycle. Journal of Hydrology, 559: 361–372. https://doi.org/10.1016/j.jhydrol.2018.02.048 |
| Immerzeel, W. W., Van Beek, L. P. H., Bierkens, M. F. P., 2010. Climate Change will Affect the Asian Water Towers. Science, 328(5984): 1382–1385. https://doi.org/10.1126/science.1183188 |
| Jamshadali, V. H., Reji, M. J. K., Varikoden, H., et al., 2021. Spatial Variability of South Asian Summer Monsoon Extreme Rainfall Events and Their Association with Global Climate Indices. Journal of Atmospheric and Solar-Terrestrial Physics, 221: 105708. https://doi.org/10.1016/j.jastp.2021.105708 |
| Kabala, C., Chachulski, Ł., Gądek, B., et al., 2021. Soil Development and Spatial Differentiation in a Glacial River Valley under Cold and Extremely Arid Climate of East Pamir Mountains. Science of the Total Environment, 758: 144308. https://doi.org/10.1016/j.scitotenv.2020.144308 |
| Kang, Y., Guo, E. L., Wang, Y. F., et al., 2022. Characterisation of Compound Dry and Hot Events in Inner Mongolia and Their Relationship with Large-Scale Circulation Patterns. Journal of Hydrology, 612: 128296. https://doi.org/10.1016/j.jhydrol.2022.128296 |
| Karger, D. N., Conrad, O., Böhner, J., et al., 2017. Climatologies at High Resolution for the Earth's Land Surface Areas. Scientific Data, 4: 170122. https://doi.org/10.1038/sdata.2017.122 |
| Karger, D. N., Lange, S., Hari, C., et al., 2022. CHELSA-W5E5: Daily 1 km Meteorological Forcing Data for Climate Impact Studies. ESSD—Atmosphere/Meteorology. Earth System Science Data, 15: 2445–2464. https://doi.org/10.5194/essd-2022-367 |
| Kong, L. X., Ma, L., Li, Y. Z., et al., 2024. Assessing the Intensity of the Water Cycle Utilizing a Bayesian Estimator Algorithm and Wavelet Coherence Analysis in the Issyk-Kul Basin of Central Asia. Journal of Hydrology: Regional Studies, 52: 101680. https://doi.org/10.1016/j.ejrh.2024.101680 |
| Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. D., et al., 2021. Climate Change Decisive for Asia's Snow Meltwater Supply. Nature Climate Change, 11(7): 591–597. https://doi.org/10.1038/s41558-021-01074-x |
| Li, Z. B., Sun, Y., Li, T., et al., 2019. Future Changes in East Asian Summer Monsoon Circulation and Precipitation under 1.5 to 5 ℃ of Warming. Earth's Future, 7(12): 1391–1406. https://doi.org/10.1029/2019ef001276 |
| Liu, Y., Shan, F. Z., Yue, H., et al., 2023. Global Analysis of the Correlation and Propagation among Meteorological, Agricultural, Surface Water, and Groundwater Droughts. Journal of Environmental Management, 333: 117460. https://doi.org/10.1016/j.jenvman.2023.117460 |
| Lu, Z., Li, K., Zhang, J. L., et al., 2023. Mechanisms Influencing Changes in Water Cycle Processes in the Changing Environment of the Songnen Plain, China. Science of The Total Environment, 905: 166916. https://doi.org/10.1016/j.scitotenv.2023.166916 |
| Luo, Y., Wang, X. L., Piao, S. L., et al., 2018. Contrasting Streamflow Regimes Induced by Melting Glaciers across the Tien Shan-Pamir-North Karakoram. Scientific Reports, 8: 16470. https://doi.org/10.1038/s41598-018-34829-2 |
| Ma, Q. R., Zhang, J., Game, A. T., et al., 2020. Spatiotemporal Variability of Summer Precipitation and Precipitation Extremes and Associated Large-Scale Mechanisms in Central Asia during 1979–2018. Journal of Hydrology X, 8: 100061. https://doi.org/10.1016/j.hydroa.2020.100061 |
| Ma, X. T., Huang, S. Y., Huang, Y., et al., 2024. Evaporation from the Hypersaline Aral Sea in Central Asia. Science of the Total Environment, 908: 168412. https://doi.org/10.1016/j.scitotenv.2023.168412 |
| Mao, X. L., Xing, L., Shang, W., et al., 2024. Moisture Sources for Precipitation over the Pamirs Plateau in Winter and Spring. Quarterly Journal of the Royal Meteorological Society, 150(759): 820–833. https://doi.org/10.1002/qj.4624 |
|
Masson-Delmotte, V., Zhai, P., Pirani, A., et al., 2021. Annex Ⅸ: Contributors to the IPCC Working Group Ⅰ Sixth Assessment Report. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. 2267–2286. |
| Militino, A. F., Moradi, M., Ugarte, M. D., 2020. On the Performances of Trend and Change-Point Detection Methods for Remote Sensing Data. Remote Sensing, 12(6): 1008. https://doi.org/10.3390/rs12061008 |
| Nalley, D., Adamowski, J., Biswas, A., et al., 2019. A Multiscale and Multivariate Analysis of Precipitation and Streamflow Variability in Relation to ENSO, NAO and PDO. Journal of Hydrology, 574: 288–307. https://doi.org/10.1016/j.jhydrol.2019.04.024 |
| Opała-Owczarek, M., 2019. Warm-Season Temperature Reconstruction from High-Elevation Juniper Tree Rings over the Past Millennium in the Pamir Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 532: 109248. https://doi.org/10.1016/j.palaeo.2019.109248 |
| Padrón, R. S., Gudmundsson, L., Decharme, B., et al., 2020. Observed Changes in Dry-Season Water Availability Attributed to Human-Induced Climate Change. Nature Geoscience, 13(7): 477–481. https://doi.org/10.1038/s41561-020-0594-1 |
|
Perlwitz, J., Knutson, T., Kossin, J. P., et al., 2017. Large-Scale Circulation and Climate Variability. In: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., et al., eds., Climate Science Special Report: Fourth National Climate Assessment, Volume I. U. S. Global Change Research Program. Washington, DC, USA. 161–184. |
| Roderick, M. L., Sun, F., Lim, W. H., et al., 2014. A General Framework for Understanding the Response of the Water Cycle to Global Warming over Land and Ocean. Hydrology and Earth System Sciences, 18(5): 1575–1589. https://doi.org/10.5194/hess-18-1575-2014 |
| Saji, N. H., Goswami, B. N., Vinayachandran, P. N., et al., 1999. A Dipole Mode in the Tropical Indian Ocean. Nature, 401(6751): 360–363. https://doi.org/10.1038/43854 |
| Sen, P. K., 1968. Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379–1389. https://doi.org/10.1080/01621459.1968.10480934 |
| Shen, L. C., Wen, J. H., Zhang, Y. Q., et al., 2022. Changes in Population Exposure to Extreme Precipitation in the Yangtze River Delta, China. Climate Services, 27: 100317. https://doi.org/10.1016/j.cliser.2022.100317 |
| Si, Y. J., Jin, F. M., Yang, W. C., et al., 2023. Change and Teleconnections of Climate on the Tibetan Plateau. Stochastic Environmental Research and Risk Assessment, 37(10): 4013–4027. https://doi.org/10.1007/s00477-023-02492-3 |
| Sidle, R., Caiserman, A., Khojazoda, Z., et al., 2022. Dynamics in the Water Towers of the Pamir and Downstream Consequences. Research Square. https://doi.org/10.21203/rs.3.rs-1752606/v1 |
| Smith, T., Bookhagen, B., 2018. Changes in Seasonal Snow Water Equivalent Distribution in High Mountain Asia (1987 to 2009). Science Advances, 4(1): e1701550. https://doi.org/10.1126/sciadv.1701550 |
| Snethlage, M. A., Geschke, J., Ranipeta, A., et al., 2022. A Hierarchical Inventory of the World's Mountains for Global Comparative Mountain Science. Scientific Data, 9: 149. https://doi.org/10.1038/s41597-022-01256-y |
| Song, X. H., Chen, H., Chen, T., et al., 2024. GRACE-Based Groundwater Drought in the Indochina Peninsula during 1979–2020: Changing Properties and Possible Teleconnection Mechanisms. Science of the Total Environment, 908: 168423. https://doi.org/10.1016/j.scitotenv.2023.168423 |
| Song, X. M., Zhang, C. H., Zhang, J. Y., et al., 2020. Potential Linkages of Precipitation Extremes in Beijing-Tianjin-Hebei Region, China, with Large-Scale Climate Patterns Using Wavelet-Based Approaches. Theoretical and Applied Climatology, 141(3): 1251–1269. https://doi.org/10.1007/s00704-020-03247-8 |
| Stübner, K., Gadoev, M., Rugel, G., et al., 2024. Three Pleistocene Glacial Advances and a Warm Episode during MIS-3: Towards a More Complete Glacial History of the Pamir Mountains. Quaternary Science Advances, 13: 100135. https://doi.org/10.1016/j.qsa.2023.100135 |
| Stübner, K., Grin, E., Hidy, A. J., et al., 2017. Middle and Late Pleistocene Glaciations in the Southwestern Pamir and Their Effects on Topography. Earth and Planetary Science Letters, 466: 181–194. https://doi.org/10.1016/j.epsl.2017.03.012 |
| Su, L., Miao, C. Y., Duan, Q. Y., et al., 2019. Multiple-Wavelet Coherence of World's Large Rivers with Meteorological Factors and Ocean Signals. Journal of Geophysical Research: Atmospheres, 124(9): 4932–4954. https://doi.org/10.1029/2018jd029842 |
| Tilahun, Z. A., Bizuneh, Y. K., Mekonnen, A. G., 2023. The Impacts of Climate Change on Hydrological Processes of Gilgel Gibe Catchment, Southwest Ethiopia. PLoS One, 18(6): e0287314. https://doi.org/10.1371/journal.pone.0287314 |
| Torrence, C., Compo, G. P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1): 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 doi: 10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 |
| Trenberth, K. E., Dai, A. G., Van der Schrier, G., et al., 2014. Global Warming and Changes in Drought. Nature Climate Change, 4(1): 17–22. https://doi.org/10.1038/nclimate2067 |
| Trenberth, K. E., Jones, P. D., Ambenje, P., et al., 2007. Observations. Surface and Atmospheric Climate Change. In: Solomon, S., Qin, D. H., Manning, M., et al., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York |
| Vargas Godoy, M. R., Markonis, Y., 2023. Water Cycle Changes in Reanalyses: A Complementary Framework. Scientific Reports, 13: 4795. https://doi.org/10.1038/s41598-023-31873-5 |
| Vargas Godoy, M. R., Markonis, Y., Hanel, M., et al., 2021. The Global Water Cycle Budget: A Chronological Review. Surveys in Geophysics, 42(5): 1075–1107. https://doi.org/10.1007/s10712-021-09652-6 |
| Wang, H. J., He, S. P., 2012. Weakening Relationship between East Asian Winter Monsoon and ENSO after Mid-1970s. Chinese Science Bulletin, 57(27): 3535–3540. https://doi.org/10.1007/s11434-012-5285-x |
| Wang, T., Song, C., Chen, X. H., 2023. Clarifying the Relationship between Annual Maximum Daily Precipitation and Climate Variables by Wavelet Analysis. Atmospheric Research, 295: 106981. https://doi.org/10.1016/j.atmosres.2023.106981 |
| Wang, Y., Meili, N., Fatichi, S., 2023. Evidence and Controls of the Acceleration of the Hydrological Cycle Over Land. Water Resources Research, 59(8): e2022WR033970. https://doi.org/10.1029/2022wr033970 |
| Wang, X. X., Chen, Y. N., Li, Z., et al., 2020. Development and Utilization of Water Resources and Assessment of Water Security in Central Asia. Agricultural Water Management, 240: 106297. https://doi.org/10.1016/j.agwat.2020.106297 |
| Wei, W., Zou, S., Duan, W. L., et al., 2023. Spatiotemporal Variability in Extreme Precipitation and Associated Large-Scale Climate Mechanisms in Central Asia from 1950 to 2019. Journal of Hydrology, 620: 129417. https://doi.org/10.1016/j.jhydrol.2023.129417 |
| Yan, R., Wang, J., Ju, W. M., et al., 2023. Interactive Effects of the El Niño-Southern Oscillation and Indian Ocean Dipole on the Tropical Net Ecosystem Productivity. Agricultural and Forest Meteorology, 336: 109472. https://doi.org/10.1016/j.agrformet.2023.109472 |
| Yang, T., Li, Q., Zou, Q., et al., 2023. Quantifying the Snowfall Variations in the Third Pole Region from 1980 to 2020. Atmospheric Research, 295: 106985. https://doi.org/10.1016/j.atmosres.2023.106985 |
| Yao, J. Q., Chen, Y. N., Zhao, Y., et al., 2020. Climatic and Associated Atmospheric Water Cycle Changes over the Xinjiang, China. Journal of Hydrology, 585: 124823. https://doi.org/10.1016/j.jhydrol.2020.124823 |
| Yin, Y. Z., Xia, R., Chen, Y., et al., 2023. Non-Steady State Fluctuations in Water Levels Exacerbate Long-Term and Seasonal Degradation of Water Quality in River-Connected Lakes. Water Research, 242: 120247. https://doi.org/10.1016/j.watres.2023.120247 |
| Yoon, J. H., Wang, S. S., Gillies, R. R., et al., 2015. Increasing Water Cycle Extremes in California and in Relation to ENSO Cycle under Global Warming. Nature Communications, 6: 8657. https://doi.org/10.1038/ncomms9657 |
| Zhai, X. B., Li, Y. P., Wang, H., et al., 2023. Assessment of the Potential Impacts of Climate Changes on Syr Darya Watershed: A Hybrid Ensemble Analysis Method. Journal of Hydrology: Regional Studies, 47: 101415. https://doi.org/10.1016/j.ejrh.2023.101415 |
| Zhang, J., He, P., Hu, X. P., et al., 2023. The Spatio-Temporal Patterns of Glacier Activities in the Eastern Pamir Plateau Investigated by Time Series Sub-Pixel Offsets from Sentinel-2 Optical Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 1256–1268. https://doi.org/10.1109/jstars.2023.3235792 |
| Zhang, J. J., Xu, B., Gu, Z. Y., et al., 2023. Coupling of River Discharges and Alpine Glaciers in Arid Central Asia. Quaternary International, 667: 19–28. https://doi.org/10.1016/j.quaint.2023.06.002 |
| Zhang, X. Q., Chen, Y. N., Fang, G. H., et al., 2022a. Observed Changes in Extreme Precipitation over the Tienshan Mountains and Associated Large-Scale Climate Teleconnections. Journal of Hydrology, 606: 127457. https://doi.org/10.1016/j.jhydrol.2022.127457 |
| Zhang, X. Q., Chen, Y. N., Xia, Q. Q., et al., 2022b. Application of Bias Corrected FGOALS-G3 Model Products for Detecting Changes in Extreme Precipitation in the Tienshan Mountains, Central Asia. Atmospheric Research, 280: 106455. https://doi.org/10.1016/j.atmosres.2022.106455 |
| Zhang, Y. J., Niu, H. S., Yu, Q., 2021. Impacts of Climate Change and Increasing Carbon Dioxide Levels on Yield Changes of Major Crops in Suitable Planting Areas in China by the 2050s. Ecological Indicators, 125: 107588. https://doi.org/10.1016/j.ecolind.2021.107588 |
| Zhang, Z. P., Ding, J. L., Zhu, C. M., et al., 2023. Exploring the Inter-Decadal Variability of Soil Organic Carbon in China. CATENA, 230: 107242. https://doi.org/10.1016/j.catena.2023.107242 |
| Zhao, G., Li, Y., Zhou, L. M., et al., 2022. Evaporative Water Loss of 1.42 Million Global Lakes. Nature Communications, 13: 3686. https://doi.org/10.1038/s41467-022-31125-6 |
| Zhao, K. G., Wulder, M. A., Hu, T. X., et al., 2019. Detecting Change-Point, Trend, and Seasonality in Satellite Time Series Data to Track Abrupt Changes and Nonlinear Dynamics: A Bayesian Ensemble Algorithm. Remote Sensing of Environment, 232: 111181. https://doi.org/10.1016/j.rse.2019.04.034 |
| Zheng, G. X., Allen, S. K., Bao, A. M., et al., 2021. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nature Climate Change, 11(5): 411–417. https://doi.org/10.1038/s41558-021-01028-3 |
| Zou, S., Abuduwaili, J., Duan, W. L., et al., 2021. Attribution of Changes in the Trend and Temporal Non-Uniformity of Extreme Precipitation Events in Central Asia. Scientific Reports, 11: 15032. https://doi.org/10.1038/s41598-021-94486-w |
| Zowam, F. J., Milewski, A. M., Richards IV, D. F., 2023. A Satellite-Based Approach for Quantifying Terrestrial Water Cycle Intensity. Remote Sensing, 15(14): 3632. https://doi.org/10.3390/rs15143632 |