Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Jingjing Zhang, Lingxin Kong, Long Ma, Majid Gulayozov, Anvar Kodirov, Jilili Abuduwaili. Spatiotemporal Variation of Water Cycle Intensity in the Pamir Plateau from 1980 to 2019 and Its Climatic Drivers. Journal of Earth Science, 2025, 36(6): 2748-2762. doi: 10.1007/s12583-024-0094-0
Citation: Jingjing Zhang, Lingxin Kong, Long Ma, Majid Gulayozov, Anvar Kodirov, Jilili Abuduwaili. Spatiotemporal Variation of Water Cycle Intensity in the Pamir Plateau from 1980 to 2019 and Its Climatic Drivers. Journal of Earth Science, 2025, 36(6): 2748-2762. doi: 10.1007/s12583-024-0094-0

Spatiotemporal Variation of Water Cycle Intensity in the Pamir Plateau from 1980 to 2019 and Its Climatic Drivers

doi: 10.1007/s12583-024-0094-0
More Information
  • Corresponding author: Long Ma, malong@ms.xjb.ac.cn
  • Received Date: 19 Jun 2024
  • Accepted Date: 17 Oct 2024
  • Issue Publish Date: 30 Dec 2025
  • A comprehensive understanding of the hydrological cycle is essential for Earth system science and climate change research. The Water Cycle Intensity (WCI) is defined as the sum of precipitation and actual evapotranspiration within a landscape unit. It is a widely used metric to quantify the impact of climate change on the global distribution of water resources. The WCI in the Pamir Plateau, located at the heart of Asian Water Towers, has received little attention. Understanding this aspect is crucial for assessing the impact of climate change on the hydrological cycle and devising strategies to adapt to these changes. Our study assessed the spatiotemporal variation in WCI on the Pamir Plateau from 1980 to 2019 using the WCI framework. Additionally, we explored the teleconnection mechanisms linking the WCI with the Indian Ocean Dipole Mode Index (DMI), canonical El Niño-Southern Oscillation (ENSO), and El Niño Modoki (EMI) using the wavelet analysis method. The findings showed that the WCI of the Pamir Plateau experienced a statistically insignificant increase from 1980 to 2019, particularly after 2003. Spatially, the eastern Pamir Plateau WCI increased significantly, whereas the western region showed a non-significant downward trend. This study found that the WCI in the Pamir Plateau is significantly influenced by atmospheric circulation patterns, and the variation in the WCI in the Pamir Plateau is mainly affected by the canonical ENSO, as well as by the coupling effect of canonical ENSO, and EMI. In addition, based on the characteristics of the regional hydrological cycle, we developed water resource management policies targeting flood risks in the northern Pamir Plateau and drought trends in the southwestern region. These insights not only deepen our understanding of changes in terrestrial hydrological cycles and their underlying mechanisms under climate change but also provide important references for water resource management in the mountainous regions of Central Asia.

     

  • Electronic Supplementary Materials: Supplementary materials (Text S1–S3, Figures S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0094-0.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
  • loading
  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., et al., 2018. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Scientific Data, 5: 170191. https://doi.org/10.1038/sdata.2017.19
    Ashok, K., Behera, S. K., Rao, S. A., et al., 2007. El Niño Modoki and Its Possible Teleconnection. Journal of Geophysical Research: Oceans, 112(C11): C11007. https://doi.org/10.1029/2006jc003798
    Asif, Z., Chen, Z., Sadiq, R., et al., 2023. Climate Change Impacts on Water Resources and Sustainable Water Management Strategies in North America. Water Resources Management, 37(6): 2771–2786. https://doi.org/10.1007/s11269-023-03474-4
    Behera, S., Yamagata, T., 2018. Climate Dynamics of ENSO Modoki Phenomena. In: Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.612
    Bin, L. L., Xu, K., Yang, Z. W., et al., 2024. Water Cycle Evolution in the Haihe River Basin and Its Relationship with Landscape Pattern Changes. Ecological Indicators, 159: 111681. https://doi.org/10.1016/j.ecolind.2024.111681
    Brun, P., Zimmermann, N. E., Hari, C., et al., 2022. Global Climate-Related Predictors at Kilometer Resolution for the Past and Future. Earth System Science Data, 14(12): 5573–5603. https://doi.org/10.5194/essd-14-5573-2022
    Chen, F., Chen, Y. P., Bakhtiyorov, Z., et al., 2020. Central Asian River Streamflows have not Continued to Increase during the Recent Warming Hiatus. Atmospheric Research, 246: 105124. https://doi.org/10.1016/j.atmosres.2020.105124
    Ding, Y., Huang, H. F., Chen, W., et al., 2022. Background Levels of OCPs, PCBS, and PAHs in Soils from the Eastern Pamirs, China, an Alpine Region Influenced by Westerly Atmospheric Transport. Journal of Environmental Sciences, 115: 453–464. https://doi.org/10.1016/j.jes.2020.11.022
    Dogar, M. M., Kucharski, F., Sato, T., et al., 2019. Towards Understanding the Global and Regional Climatic Impacts of Modoki Magnitude. Global and Planetary Change, 172: 223–241. https://doi.org/10.1016/j.gloplacha.2018.10.004
    Dong, Y. Y., Zhai, J. Q., Zhao, Y., et al., 2020. Teleconnection Patterns of Precipitation in the Three-River Headwaters Region, China. Environmental Research Letters, 15(10): 104050. https://doi.org/10.1088/1748-9326/aba8c0
    Duan, K. Q., Xu, B. Q., Wu, G. J., 2015. Snow Accumulation Variability at Altitude of 7 010 m a.s.l. in Muztag Ata Mountain in Pamir Plateau during 1958–2002. Journal of Hydrology, 531: 912–918. https://doi.org/10.1016/j.jhydrol.2015.10.013
    Feng, F., Zhao, Y., Huang, A. N., et al., 2022. Different Seasonal Precipitation Anomaly Patterns in Central Asia Associated with Two Types of El Niño during 1891–2016. Frontiers in Earth Science, 10: 771362. https://doi.org/10.3389/feart.2022.771362
    Gao, J., Yao, J. Q., Zhao, Y., et al., 2023. Dominant Modes and Mechanisms of the Interannual Variability of Atmospheric Water Vapor Content during Winter over Central Asia. Atmospheric Research, 295: 107015. https://doi.org/10.1016/j.atmosres.2023.107015
    Grinsted, A., Moore, J. C., Jevrejeva, S., 2004. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Processes in Geophysics, 11: 561–566. https://doi.org/10.5194/npg-11-561-2004
    Gu, X. F., Jamshidi, S., Sun, H. G., et al., 2021. Identifying Multivariate Controls of Soil Moisture Variations Using Multiple Wavelet Coherence in the U. S. Midwest. Journal of Hydrology, 602: 126755. https://doi.org/10.1016/j.jhydrol.2021.126755
    Guan, X. F., Yao, J. Q., Schneider, C., 2022. Variability of the Precipitation over the Tianshan Mountains, Central Asia. Part Ⅱ: Multi-Decadal Precipitation Trends and Their Association with Atmospheric Circulation in both the Winter and Summer Seasons. International Journal of Climatology, 42(1): 139–156. https://doi.org/10.1002/joc.7236
    Guan, X. D., Zhu, K. W., Huang, X. Q., et al., 2021. Precipitation Changes in Semi-Arid Regions in East Asia under Global Warming. Frontiers in Earth Science, 9: 762348. https://doi.org/10.3389/feart.2021.762348
    Guo, H., Bao, A. M., Liu, T., et al., 2018. Spatial and Temporal Characteristics of Droughts in Central Asia during 1966–2015. Science of The Total Environment, 624: 1523–1538. https://doi.org/10.1016/j.scitotenv.2017.12.120
    He, J. P., Duan, K. Q., Li, S. S., et al, 2024. Northward Shift of Indian Summer Monsoon and Intensifying Winter Westerlies Cause Stronger Precipitation Seasonality over Pamirs and Its Downstream Basins in the 21st Century. Science of the Total Environment, 926: 171891. https://doi.org/10.1016/j.scitotenv.2024.171891
    Hu, W., Si, B., 2021. Technical Note: Improved Partial Wavelet Coherency for Understanding Scale-Specific and Localized Bivariate Relationships in Geosciences. Hydrology and Earth System Sciences, 25(1): 321–331. https://doi.org/10.5194/hess-25-321-2021
    Hu, W., Si, B. C., 2016. Technical Note: Multiple Wavelet Coherence for Untangling Scale-Specific Andlocalized Multivariate Relationships in Geosciences. Hydrology and Earth System Sciences, 20(8): 3183–3191. https://doi.org/10.5194/hess-20-3183-2016
    Huang, J. H., Su, F. G., Yao, T. D., et al., 2022. Runoff Regime, Change, and Attribution in the Upper Syr Darya and Amu Darya, Central Asia. Journal of Hydrometeorology, 23(10): 1563–1585. https://doi.org/10.1175/jhm-d-22-0036.1
    Huntington, T. G., Weiskel, P. K., Wolock, D. M., et al., 2018. A New Indicator Framework for Quantifying the Intensity of the Terrestrial Water Cycle. Journal of Hydrology, 559: 361–372. https://doi.org/10.1016/j.jhydrol.2018.02.048
    Immerzeel, W. W., Van Beek, L. P. H., Bierkens, M. F. P., 2010. Climate Change will Affect the Asian Water Towers. Science, 328(5984): 1382–1385. https://doi.org/10.1126/science.1183188
    Jamshadali, V. H., Reji, M. J. K., Varikoden, H., et al., 2021. Spatial Variability of South Asian Summer Monsoon Extreme Rainfall Events and Their Association with Global Climate Indices. Journal of Atmospheric and Solar-Terrestrial Physics, 221: 105708. https://doi.org/10.1016/j.jastp.2021.105708
    Kabala, C., Chachulski, Ł., Gądek, B., et al., 2021. Soil Development and Spatial Differentiation in a Glacial River Valley under Cold and Extremely Arid Climate of East Pamir Mountains. Science of the Total Environment, 758: 144308. https://doi.org/10.1016/j.scitotenv.2020.144308
    Kang, Y., Guo, E. L., Wang, Y. F., et al., 2022. Characterisation of Compound Dry and Hot Events in Inner Mongolia and Their Relationship with Large-Scale Circulation Patterns. Journal of Hydrology, 612: 128296. https://doi.org/10.1016/j.jhydrol.2022.128296
    Karger, D. N., Conrad, O., Böhner, J., et al., 2017. Climatologies at High Resolution for the Earth's Land Surface Areas. Scientific Data, 4: 170122. https://doi.org/10.1038/sdata.2017.122
    Karger, D. N., Lange, S., Hari, C., et al., 2022. CHELSA-W5E5: Daily 1 km Meteorological Forcing Data for Climate Impact Studies. ESSD—Atmosphere/Meteorology. Earth System Science Data, 15: 2445–2464. https://doi.org/10.5194/essd-2022-367
    Kong, L. X., Ma, L., Li, Y. Z., et al., 2024. Assessing the Intensity of the Water Cycle Utilizing a Bayesian Estimator Algorithm and Wavelet Coherence Analysis in the Issyk-Kul Basin of Central Asia. Journal of Hydrology: Regional Studies, 52: 101680. https://doi.org/10.1016/j.ejrh.2024.101680
    Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. D., et al., 2021. Climate Change Decisive for Asia's Snow Meltwater Supply. Nature Climate Change, 11(7): 591–597. https://doi.org/10.1038/s41558-021-01074-x
    Li, Z. B., Sun, Y., Li, T., et al., 2019. Future Changes in East Asian Summer Monsoon Circulation and Precipitation under 1.5 to 5 ℃ of Warming. Earth's Future, 7(12): 1391–1406. https://doi.org/10.1029/2019ef001276
    Liu, Y., Shan, F. Z., Yue, H., et al., 2023. Global Analysis of the Correlation and Propagation among Meteorological, Agricultural, Surface Water, and Groundwater Droughts. Journal of Environmental Management, 333: 117460. https://doi.org/10.1016/j.jenvman.2023.117460
    Lu, Z., Li, K., Zhang, J. L., et al., 2023. Mechanisms Influencing Changes in Water Cycle Processes in the Changing Environment of the Songnen Plain, China. Science of The Total Environment, 905: 166916. https://doi.org/10.1016/j.scitotenv.2023.166916
    Luo, Y., Wang, X. L., Piao, S. L., et al., 2018. Contrasting Streamflow Regimes Induced by Melting Glaciers across the Tien Shan-Pamir-North Karakoram. Scientific Reports, 8: 16470. https://doi.org/10.1038/s41598-018-34829-2
    Ma, Q. R., Zhang, J., Game, A. T., et al., 2020. Spatiotemporal Variability of Summer Precipitation and Precipitation Extremes and Associated Large-Scale Mechanisms in Central Asia during 1979–2018. Journal of Hydrology X, 8: 100061. https://doi.org/10.1016/j.hydroa.2020.100061
    Ma, X. T., Huang, S. Y., Huang, Y., et al., 2024. Evaporation from the Hypersaline Aral Sea in Central Asia. Science of the Total Environment, 908: 168412. https://doi.org/10.1016/j.scitotenv.2023.168412
    Mao, X. L., Xing, L., Shang, W., et al., 2024. Moisture Sources for Precipitation over the Pamirs Plateau in Winter and Spring. Quarterly Journal of the Royal Meteorological Society, 150(759): 820–833. https://doi.org/10.1002/qj.4624
    Masson-Delmotte, V., Zhai, P., Pirani, A., et al., 2021. Annex Ⅸ: Contributors to the IPCC Working Group Ⅰ Sixth Assessment Report. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. 2267–2286. https://doi.org/10.1017/9781009157896.001
    Militino, A. F., Moradi, M., Ugarte, M. D., 2020. On the Performances of Trend and Change-Point Detection Methods for Remote Sensing Data. Remote Sensing, 12(6): 1008. https://doi.org/10.3390/rs12061008
    Nalley, D., Adamowski, J., Biswas, A., et al., 2019. A Multiscale and Multivariate Analysis of Precipitation and Streamflow Variability in Relation to ENSO, NAO and PDO. Journal of Hydrology, 574: 288–307. https://doi.org/10.1016/j.jhydrol.2019.04.024
    Opała-Owczarek, M., 2019. Warm-Season Temperature Reconstruction from High-Elevation Juniper Tree Rings over the Past Millennium in the Pamir Region. Palaeogeography, Palaeoclimatology, Palaeoecology, 532: 109248. https://doi.org/10.1016/j.palaeo.2019.109248
    Padrón, R. S., Gudmundsson, L., Decharme, B., et al., 2020. Observed Changes in Dry-Season Water Availability Attributed to Human-Induced Climate Change. Nature Geoscience, 13(7): 477–481. https://doi.org/10.1038/s41561-020-0594-1
    Perlwitz, J., Knutson, T., Kossin, J. P., et al., 2017. Large-Scale Circulation and Climate Variability. In: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., et al., eds., Climate Science Special Report: Fourth National Climate Assessment, Volume I. U. S. Global Change Research Program. Washington, DC, USA. 161–184. https://doi.org/10.7930/j0rv0kvq
    Roderick, M. L., Sun, F., Lim, W. H., et al., 2014. A General Framework for Understanding the Response of the Water Cycle to Global Warming over Land and Ocean. Hydrology and Earth System Sciences, 18(5): 1575–1589. https://doi.org/10.5194/hess-18-1575-2014
    Saji, N. H., Goswami, B. N., Vinayachandran, P. N., et al., 1999. A Dipole Mode in the Tropical Indian Ocean. Nature, 401(6751): 360–363. https://doi.org/10.1038/43854
    Sen, P. K., 1968. Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
    Shen, L. C., Wen, J. H., Zhang, Y. Q., et al., 2022. Changes in Population Exposure to Extreme Precipitation in the Yangtze River Delta, China. Climate Services, 27: 100317. https://doi.org/10.1016/j.cliser.2022.100317
    Si, Y. J., Jin, F. M., Yang, W. C., et al., 2023. Change and Teleconnections of Climate on the Tibetan Plateau. Stochastic Environmental Research and Risk Assessment, 37(10): 4013–4027. https://doi.org/10.1007/s00477-023-02492-3
    Sidle, R., Caiserman, A., Khojazoda, Z., et al., 2022. Dynamics in the Water Towers of the Pamir and Downstream Consequences. Research Square. https://doi.org/10.21203/rs.3.rs-1752606/v1
    Smith, T., Bookhagen, B., 2018. Changes in Seasonal Snow Water Equivalent Distribution in High Mountain Asia (1987 to 2009). Science Advances, 4(1): e1701550. https://doi.org/10.1126/sciadv.1701550
    Snethlage, M. A., Geschke, J., Ranipeta, A., et al., 2022. A Hierarchical Inventory of the World's Mountains for Global Comparative Mountain Science. Scientific Data, 9: 149. https://doi.org/10.1038/s41597-022-01256-y
    Song, X. H., Chen, H., Chen, T., et al., 2024. GRACE-Based Groundwater Drought in the Indochina Peninsula during 1979–2020: Changing Properties and Possible Teleconnection Mechanisms. Science of the Total Environment, 908: 168423. https://doi.org/10.1016/j.scitotenv.2023.168423
    Song, X. M., Zhang, C. H., Zhang, J. Y., et al., 2020. Potential Linkages of Precipitation Extremes in Beijing-Tianjin-Hebei Region, China, with Large-Scale Climate Patterns Using Wavelet-Based Approaches. Theoretical and Applied Climatology, 141(3): 1251–1269. https://doi.org/10.1007/s00704-020-03247-8
    Stübner, K., Gadoev, M., Rugel, G., et al., 2024. Three Pleistocene Glacial Advances and a Warm Episode during MIS-3: Towards a More Complete Glacial History of the Pamir Mountains. Quaternary Science Advances, 13: 100135. https://doi.org/10.1016/j.qsa.2023.100135
    Stübner, K., Grin, E., Hidy, A. J., et al., 2017. Middle and Late Pleistocene Glaciations in the Southwestern Pamir and Their Effects on Topography. Earth and Planetary Science Letters, 466: 181–194. https://doi.org/10.1016/j.epsl.2017.03.012
    Su, L., Miao, C. Y., Duan, Q. Y., et al., 2019. Multiple-Wavelet Coherence of World's Large Rivers with Meteorological Factors and Ocean Signals. Journal of Geophysical Research: Atmospheres, 124(9): 4932–4954. https://doi.org/10.1029/2018jd029842
    Tilahun, Z. A., Bizuneh, Y. K., Mekonnen, A. G., 2023. The Impacts of Climate Change on Hydrological Processes of Gilgel Gibe Catchment, Southwest Ethiopia. PLoS One, 18(6): e0287314. https://doi.org/10.1371/journal.pone.0287314
    Torrence, C., Compo, G. P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1): 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 doi: 10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
    Trenberth, K. E., Dai, A. G., Van der Schrier, G., et al., 2014. Global Warming and Changes in Drought. Nature Climate Change, 4(1): 17–22. https://doi.org/10.1038/nclimate2067
    Trenberth, K. E., Jones, P. D., Ambenje, P., et al., 2007. Observations. Surface and Atmospheric Climate Change. In: Solomon, S., Qin, D. H., Manning, M., et al., eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
    Vargas Godoy, M. R., Markonis, Y., 2023. Water Cycle Changes in Reanalyses: A Complementary Framework. Scientific Reports, 13: 4795. https://doi.org/10.1038/s41598-023-31873-5
    Vargas Godoy, M. R., Markonis, Y., Hanel, M., et al., 2021. The Global Water Cycle Budget: A Chronological Review. Surveys in Geophysics, 42(5): 1075–1107. https://doi.org/10.1007/s10712-021-09652-6
    Wang, H. J., He, S. P., 2012. Weakening Relationship between East Asian Winter Monsoon and ENSO after Mid-1970s. Chinese Science Bulletin, 57(27): 3535–3540. https://doi.org/10.1007/s11434-012-5285-x
    Wang, T., Song, C., Chen, X. H., 2023. Clarifying the Relationship between Annual Maximum Daily Precipitation and Climate Variables by Wavelet Analysis. Atmospheric Research, 295: 106981. https://doi.org/10.1016/j.atmosres.2023.106981
    Wang, Y., Meili, N., Fatichi, S., 2023. Evidence and Controls of the Acceleration of the Hydrological Cycle Over Land. Water Resources Research, 59(8): e2022WR033970. https://doi.org/10.1029/2022wr033970
    Wang, X. X., Chen, Y. N., Li, Z., et al., 2020. Development and Utilization of Water Resources and Assessment of Water Security in Central Asia. Agricultural Water Management, 240: 106297. https://doi.org/10.1016/j.agwat.2020.106297
    Wei, W., Zou, S., Duan, W. L., et al., 2023. Spatiotemporal Variability in Extreme Precipitation and Associated Large-Scale Climate Mechanisms in Central Asia from 1950 to 2019. Journal of Hydrology, 620: 129417. https://doi.org/10.1016/j.jhydrol.2023.129417
    Yan, R., Wang, J., Ju, W. M., et al., 2023. Interactive Effects of the El Niño-Southern Oscillation and Indian Ocean Dipole on the Tropical Net Ecosystem Productivity. Agricultural and Forest Meteorology, 336: 109472. https://doi.org/10.1016/j.agrformet.2023.109472
    Yang, T., Li, Q., Zou, Q., et al., 2023. Quantifying the Snowfall Variations in the Third Pole Region from 1980 to 2020. Atmospheric Research, 295: 106985. https://doi.org/10.1016/j.atmosres.2023.106985
    Yao, J. Q., Chen, Y. N., Zhao, Y., et al., 2020. Climatic and Associated Atmospheric Water Cycle Changes over the Xinjiang, China. Journal of Hydrology, 585: 124823. https://doi.org/10.1016/j.jhydrol.2020.124823
    Yin, Y. Z., Xia, R., Chen, Y., et al., 2023. Non-Steady State Fluctuations in Water Levels Exacerbate Long-Term and Seasonal Degradation of Water Quality in River-Connected Lakes. Water Research, 242: 120247. https://doi.org/10.1016/j.watres.2023.120247
    Yoon, J. H., Wang, S. S., Gillies, R. R., et al., 2015. Increasing Water Cycle Extremes in California and in Relation to ENSO Cycle under Global Warming. Nature Communications, 6: 8657. https://doi.org/10.1038/ncomms9657
    Zhai, X. B., Li, Y. P., Wang, H., et al., 2023. Assessment of the Potential Impacts of Climate Changes on Syr Darya Watershed: A Hybrid Ensemble Analysis Method. Journal of Hydrology: Regional Studies, 47: 101415. https://doi.org/10.1016/j.ejrh.2023.101415
    Zhang, J., He, P., Hu, X. P., et al., 2023. The Spatio-Temporal Patterns of Glacier Activities in the Eastern Pamir Plateau Investigated by Time Series Sub-Pixel Offsets from Sentinel-2 Optical Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16: 1256–1268. https://doi.org/10.1109/jstars.2023.3235792
    Zhang, J. J., Xu, B., Gu, Z. Y., et al., 2023. Coupling of River Discharges and Alpine Glaciers in Arid Central Asia. Quaternary International, 667: 19–28. https://doi.org/10.1016/j.quaint.2023.06.002
    Zhang, X. Q., Chen, Y. N., Fang, G. H., et al., 2022a. Observed Changes in Extreme Precipitation over the Tienshan Mountains and Associated Large-Scale Climate Teleconnections. Journal of Hydrology, 606: 127457. https://doi.org/10.1016/j.jhydrol.2022.127457
    Zhang, X. Q., Chen, Y. N., Xia, Q. Q., et al., 2022b. Application of Bias Corrected FGOALS-G3 Model Products for Detecting Changes in Extreme Precipitation in the Tienshan Mountains, Central Asia. Atmospheric Research, 280: 106455. https://doi.org/10.1016/j.atmosres.2022.106455
    Zhang, Y. J., Niu, H. S., Yu, Q., 2021. Impacts of Climate Change and Increasing Carbon Dioxide Levels on Yield Changes of Major Crops in Suitable Planting Areas in China by the 2050s. Ecological Indicators, 125: 107588. https://doi.org/10.1016/j.ecolind.2021.107588
    Zhang, Z. P., Ding, J. L., Zhu, C. M., et al., 2023. Exploring the Inter-Decadal Variability of Soil Organic Carbon in China. CATENA, 230: 107242. https://doi.org/10.1016/j.catena.2023.107242
    Zhao, G., Li, Y., Zhou, L. M., et al., 2022. Evaporative Water Loss of 1.42 Million Global Lakes. Nature Communications, 13: 3686. https://doi.org/10.1038/s41467-022-31125-6
    Zhao, K. G., Wulder, M. A., Hu, T. X., et al., 2019. Detecting Change-Point, Trend, and Seasonality in Satellite Time Series Data to Track Abrupt Changes and Nonlinear Dynamics: A Bayesian Ensemble Algorithm. Remote Sensing of Environment, 232: 111181. https://doi.org/10.1016/j.rse.2019.04.034
    Zheng, G. X., Allen, S. K., Bao, A. M., et al., 2021. Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation. Nature Climate Change, 11(5): 411–417. https://doi.org/10.1038/s41558-021-01028-3
    Zou, S., Abuduwaili, J., Duan, W. L., et al., 2021. Attribution of Changes in the Trend and Temporal Non-Uniformity of Extreme Precipitation Events in Central Asia. Scientific Reports, 11: 15032. https://doi.org/10.1038/s41598-021-94486-w
    Zowam, F. J., Milewski, A. M., Richards IV, D. F., 2023. A Satellite-Based Approach for Quantifying Terrestrial Water Cycle Intensity. Remote Sensing, 15(14): 3632. https://doi.org/10.3390/rs15143632
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(21) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return