Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 6
Dec 2025
Turn off MathJax
Article Contents
Yongqin Liu, Baiqing Xu, Mukan Ji, Zhongwei Huang, Siyu Chen, Jiming Li, Guannan Mao. Statistical Models Reveal the Effects of Atmospheric Black Carbon on Glacial Bacterial Abundance on the Tibetan Plateau. Journal of Earth Science, 2025, 36(6): 2720-2729. doi: 10.1007/s12583-024-0095-z
Citation: Yongqin Liu, Baiqing Xu, Mukan Ji, Zhongwei Huang, Siyu Chen, Jiming Li, Guannan Mao. Statistical Models Reveal the Effects of Atmospheric Black Carbon on Glacial Bacterial Abundance on the Tibetan Plateau. Journal of Earth Science, 2025, 36(6): 2720-2729. doi: 10.1007/s12583-024-0095-z

Statistical Models Reveal the Effects of Atmospheric Black Carbon on Glacial Bacterial Abundance on the Tibetan Plateau

doi: 10.1007/s12583-024-0095-z
More Information
  • Corresponding author: Guannan Mao, maogn@itpcas.ac.cn
  • Received Date: 10 Apr 2024
  • Accepted Date: 29 Jun 2024
  • Issue Publish Date: 30 Dec 2025
  • Ice cores play an important role in the reconstruction of historical atmospheric information. The glacier of the Tibetan Plateau is influenced by the Indian monsoon and westerly winds, which divide the Tibetan Plateau into monsoon- and westly influenced regions. These atmospheric circulations bring distinct microbial communities to glaciers, with the microbial dispersal process being also influenced by atmospheric factors. However, the potential influence of between bacterial abundance and atmospheric factors is not well known. To reveal potential mechanisms controlling bacterial abundance between two regions, we obtained bacterial abundance and atmospheric records for the past 46 years from two ice cores located within these regions. Statistical regression models were constructed to fit the relationship between bacterial abundance and atmospheric factors. Generalized additive model (GAM) was superior in modeling bacterial abundance compared with linear models and showed that the key factors affecting bacterial abundance were different in the monsoon- and westerly-dominated regions. Specifically, atmospheric dust and black carbon were the key factors for the monsoon-dominated region, and westerly index was the key factor for the westerly-dominated region. The model outputs confirm that atmospheric black carbon plays an important role in affecting bacterial abundance for the glacier located within the monsoon-dominated region, particularly in recent decades. The model also predicted that bacterial abundance will increase by 27% with a doubled black carbon deposition. We quantify and model for the first time that relationship between bacterial abundance and atmospheric black carbon in Tibetan glaciers change over time based on GAM models.

     

  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S3) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0095-z.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abyzov, S. S., Mitskevich, I. N., Poglazova, M. N., 1998. Microflora of the Deep Glacier Horizons of Central Antarctica. Microbiology, 67(4): 451–458
    Bottos, E. M., Woo, A. C., Zawar-Reza, P., et al., 2014. Airborne Bacterial Populations above Desert Soils of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 67(1): 120–128. https://doi.org/10.1007/s00248-013-0296-y
    Cao, S. N., Zhang, F., He, J. F., et al., 2020. Water Masses Influence Bacterioplankton Community Structure in Summer Kongsfjorden. Extremophiles, 24(1): 107–120. https://doi.org/10.1007/s00792-019-01139-y
    Chen, Y., Li, X. K., Si, J., et al., 2016. Changes of the Bacterial Abundance and Communities in Shallow Ice Cores from Dunde and Muztagata Glaciers, Western China. Frontiers in Microbiology, 7: 1716. https://doi.org/10.3389/fmicb.2016.01716
    Chen, B. Z., Liu, H. B., Xiao, W. P., et al., 2020. A Machine-Learning Approach to Modeling Picophytoplankton Abundances in the South China Sea. Progress in Oceanography, 189: 102456. https://doi.org/10.1016/j.pocean.2020.102456
    Chi, H. F., Yin, X. F., Zhang, X. F., et al., 2025. Influence of Interspecies Interactions on Bacterial Community Assembly in the Active and Permafrost Layers on the Qinghai-Tibet Plateau. Journal of Earth Science, 36(2): 395–407. https://doi.org/10.1007/s12583-024-0046-8
    Christner, B. C., Cai, R. M., Morris, C. E., et al., 2008. Geographic, Seasonal, and Precipitation Chemistry Influence on the Abundance and Activity of Biological Ice Nucleators in Rain and Snow. Proceedings of the National Academy of Sciences of the United States of America, 105(48): 18854–18859. https://doi.org/10.1073/pnas.0809816105
    Christner, B. C., Mikucki, J. A., Foreman, C. M., et al., 2005. Glacial Ice Cores: A Model System for Developing Extraterrestrial Decontamination Protocols. Icarus, 174(2): 572–584. https://doi.org/10.1016/j.icarus.2004.10.027
    Christner, B. C., Mosley-Thompson, E., Thompson, L. G., et al., 2000. Recovery and Identification of Viable Bacteria Immured in Glacial Ice. Icarus, 144(2): 479–485. https://doi.org/10.1006/icar.1999.6288
    De'ath, G., 2007. Boosted Trees for Ecological Modeling and Prediction. Ecology, 88(1): 243–251. https://doi.org/10.1890/0012-9658(2007)88[243:btfema]2.0.co;2
    Dey, D., Döös, K., 2021. Tracing the Origin of the South Asian Summer Monsoon Precipitation and Its Variability Using a Novel Lagrangian Framework. Journal of Climate, 34(21): 8655–8668. https://doi.org/10.1175/jcli-d-20-0967.1
    Fu, P. Q., Kawamura, K., Seki, O., et al., 2016. Historical Trends of Biogenic SOA Tracers in an Ice Core from Kamchatka Peninsula. Environmental Science & Technology Letters, 3(10): 351–358. https://doi.org/10.1021/acs.estlett.6b00275
    Gong, P., Wang, X. P., Xue, Y. G., et al., 2015. Influence of Atmospheric Circulation on the Long-Range Transport of Organochlorine Pesticides to the Western Tibetan Plateau. Atmospheric Research, 166: 157–164. https://doi.org/10.1016/j.atmosres.2015.07.006
    Goswami, B. N., Krishnamurthy, V., Annmalai, H., 1999. A Broad-Scale Circulation Index for the Interannual Variability of the Indian Summer Monsoon. Quarterly Journal of the Royal Meteorological Society, 125(554): 611–633. https://doi.org/10.1002/qj.49712555412
    Guisan, A., Edwards, T. C., Hastie, T., 2002. Generalized Linear and Generalized Additive Models in Studies of Species Distributions: Setting the Scene. Ecological Modelling, 157(2/3): 89–100. https://doi.org/10.1016/s0304-3800(02)00204-1
    Hu, C. Q., Xu, J., Li, X. F., et al., 2021. Environmental Regulations on Bacterial Abundance in the South China Sea Inferred from Regression Models. Science of the Total Environment, 774: 146315. https://doi.org/10.1016/j.scitotenv.2021.146315
    Imai, C., Hashizume, M., 2015. A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases. Tropical Medicine and Health, 43(1): 1–9. https://doi.org/10.2149/tmh.2014-21
    Immerzeel, W. W., van Beek, L. P. H., Bierkens, M. F. P., 2010. Climate Change Will Affect the Asian Water Towers. Science, 328(5984): 1382–1385. https://doi.org/10.1126/science.1183188
    Jones, P. D., Mann, M. E., 2004. Climate over Past Millennia. Reviews of Geophysics, 42(2): 2003RG000143. https://doi.org/10.1029/2003rg000143
    Junker, C., Liousse, C., 2008. A Global Emission Inventory of Carbonaceous Aerosol from Historic Records of Fossil Fuel and Biofuel Consumption for the Period 1860–1997. Atmospheric Chemistry and Physics, 8(5): 1195–1207. https://doi.org/10.5194/acp-8-1195-2008
    Legrand, M., Mayewski, P., 1997. Glaciochemistry of Polar Ice Cores: A Review. Reviews of Geophysics, 35(3): 219–243. https://doi.org/10.1029/96rg03527
    Li, W. L., Wang, K. L., Fu, S. M., et al., 2008. The Interrelationship between Regional Westerly Index and the Water Vapor Budget in Northwest China. Journal of Glaciology and Geocryology, 30(1): 28–34. https://doi.org/10.3724/sp.j.1047.2008.00014
    Li, X. Y., Chen, H. X., Yao, M. S., 2020. Microbial Emission Levels and Diversities from Different Land Use Types. Environment International, 143: 105988. https://doi.org/10.1016/j.envint.2020.105988
    Liu, Y. Q., Yao, T. D., Xu, B. Q., et al., 2013. Bacterial Abundance Vary in Muztagata Ice Core and Respond to Climate and Environment Change in the Past Hundred Years. Quaternary Sciences, 33(1): 19–25. https://doi.org/10.3969/j.issn.1001-7410.2013.01.02
    Liu, Y. Q., Priscu, J. C., Yao, T. D., et al., 2016. Bacterial Responses to Environmental Change on the Tibetan Plateau over the Past Half Century. Environmental Microbiology, 18(6): 1930–1941. https://doi.org/10.1111/1462-2920.13115
    Liu, K., Wang, C. M., Hou, S. G., et al., 2023. A High-Resolution Refractory Black Carbon (rBC) Record since 1932 Deduced from the Chongce Ice Core, Tibetan Plateau. Atmospheric Environment, 294: 119480. https://doi.org/10.1016/j.atmosenv.2022.119480
    Mao, G. N., Ji, M. K., Xu, B. Q., et al., 2022. Variation of High and Low Nucleic Acid-Content Bacteria in Tibetan Ice Cores and Their Relationship to Black Carbon. Frontiers in Microbiology, 13: 844432. https://doi.org/10.3389/fmicb.2022.844432
    Mao, G. N., Ji, M. K., Jiao, N. Z., et al., 2023. Monsoon Affects the Distribution of Antibiotic Resistome in Tibetan Glaciers. Environmental Pollution, 317: 120809. https://doi.org/10.1016/j.envpol.2022.120809
    McConnell, J. R., Edwards, R., Kok, G. L., et al., 2007. 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing. Science, 317(5843): 1381–1384. https://doi.org/10.1126/science.1144856
    Miteva, V., Teacher, C., Sowers, T., et al., 2009. Comparison of the Microbial Diversity at Different Depths of the GISP2 Greenland Ice Core in Relationship to Deposition Climates. Environmental Microbiology, 11(3): 640–656. https://doi.org/10.1111/j.1462-2920.2008.01835.x
    Pan, Y. L., Kalume, A., Wang, C. J., et al., 2021. Atmospheric Aging Processes of Bioaerosols under Laboratory-Controlled Conditions: A Review. Journal of Aerosol Science, 155: 105767. https://doi.org/10.1016/j.jaerosci.2021.105767
    Pearce, D. A., Alekhina, I. A., Terauds, A., et al., 2016. Aerobiology over Antarctica—A New Initiative for Atmospheric Ecology. Frontiers in Microbiology, 7: 16. https://doi.org/10.3389/fmicb.2016.00016
    Qi, J., Huang, Z. W., Maki, T., et al., 2021. Airborne Bacterial Communities over the Tibetan and Mongolian Plateaus: Variations and Their Possible Sources. Atmospheric Research, 247: 105215. https://doi.org/10.1016/j.atmosres.2020.105215
    Qi, J., Ji, M. K., Wang, W. Q., et al., 2022. Effect of Indian Monsoon on the Glacial Airborne Bacteria over the Tibetan Plateau. Science of the Total Environment, 831: 154980. https://doi.org/10.1016/j.scitotenv.2022.154980
    Sannino, C., Borruso, L., Mezzasoma, A., et al., 2021. Abiotic Factors Affecting the Bacterial and Fungal Diversity of Permafrost in a Rock Glacier in the Stelvio Pass (Italian Central Alps). Applied Soil Ecology, 166: 104079. https://doi.org/10.1016/j.apsoil.2021.104079
    Streets, D. G., Bond, T. C., Lee, T., et al., 2004. On the Future of Carbonaceous Aerosol Emissions. Journal of Geophysical Research: Atmospheres, 109(D24): 2004JD004902. https://doi.org/10.1029/2004jd004902
    Wang, M., Xu, B. Q., Kaspari, S. D., et al., 2015. Century-Long Record of Black Carbon in an Ice Core from the Eastern Pamirs: Estimated Contributions from Biomass Burning. Atmospheric Environment, 115: 79–88. https://doi.org/10.1016/j.atmosenv.2015.05.034
    Wang, Y., Huang, Y. J., 2022. Impact of Foreign Direct Investment on the Carbon Dioxide Emissions of East Asian Countries Based on a Panel ARDL Method. Frontiers in Environmental Science, 10: 937837. https://doi.org/10.3389/fenvs.2022.937837
    Wood, S. N., 2017. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC. https://doi.org/10.1201/9781315370279
    Wu, G. J., Yao, T. D., Xu, B. Q., et al., 2010. Dust Concentration and Flux in Ice Cores from the Tibetan Plateau over the Past Few Decades. Tellus B: Chemical and Physical Meteorology, 62(3): 197–206. https://doi.org/10.1111/j.1600-0889.2010.00457.x
    Xiang, S. R., Shang, T. C., Chen, Y., et al., 2009. Deposition and Postdeposition Mechanisms as Possible Drivers of Microbial Population Variability in Glacier Ice. FEMS Microbiology Ecology, 70(2): 165–176. https://doi.org/10.1111/j.1574-6941.2009.00759.x
    Xu, B. Q., Cao, J. J., Hansen, J., et al., 2009. Black Soot and the Survival of Tibetan Glaciers. Proceedings of the National Academy of Sciences of the United States of America, 106(52): 22114–22118. https://doi.org/10.1073/pnas.0910444106
    Xu, J. Z., Hou, S. G., Chen, F. K., et al., 2009. Tracing the Sources of Particles in the East Rongbuk Ice Core from Mt. Qomolangma. Chinese Science Bulletin, 54(10): 1781–1785. https://doi.org/10.1007/s11434-009-0050-5
    Yang, D. D., Yao, T. D., Wu, G. J., et al., 2022. Different Patterns and Origins between Northwestern and Southeastern Tibetan Ice Core Glaciochemical Records over the Past Century. Science of the Total Environment, 819: 153195. https://doi.org/10.1016/j.scitotenv.2022.153195
    Yang, Y. F., Yi, Y. J., Wang, W. J., et al., 2020. Generalized Additive Models for Biomass Simulation of Submerged Macrophytes in a Shallow Lake. Science of the Total Environment, 711: 135108. https://doi.org/10.1016/j.scitotenv.2019.135108
    Yao, T. D., Liu, Y. Q., Kang, S. C., et al., 2008. Bacteria Variabilities in a Tibetan Ice Core and Their Relations with Climate Change. Global Biogeochemical Cycles, 22(4): 2007GB003140. https://doi.org/10.1029/2007gb003140
    Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663–667. https://doi.org/10.1038/nclimate1580
    Yao, T. D., Zhou, H., Yang, X. X., 2009. Indian Monsoon Influences Altitude Effect of δ18O in Precipitation/River Water on the Tibetan Plateau. Chinese Science Bulletin, 54(16): 2724–2731. https://doi.org/10.1007/s11434-009-0497-4
    Yao, T. D., Wu, G. J., Pu, J. C., et al., 2004. Relationship between Calcium and Atmospheric Dust Recorded in Guliya Ice Core. Chinese Science Bulletin, 49(7): 706–710. https://doi.org/10.1007/bf03184269
    Yao, T. D., Xiang, S. R., Zhang, X. J., et al., 2006. Microorganisms in the Malan Ice Core and Their Relation to Climatic and Environmental Changes. Global Biogeochemical Cycles, 20(1): 2004GB002424. https://doi.org/10.1029/2004gb002424
    Zhang, S., Hou, S., Ma, X., et al., 2007. Culturable Bacteria in Himalayan Glacial Ice in Response to Atmospheric Circulation. Biogeosciences, 4(1): 1–9. https://doi.org/10.5194/bg-4-1-2007
    Zhang, Z. H., Qi, J., Liu, Y. Q., et al., 2024. Anthropogenic Impact on Airborne Bacteria of the Tibetan Plateau. Environment International, 183: 108370. https://doi.org/10.1016/j.envint.2023.108370
    Zhang, R., Yin, Q. Z., Nai, W. H., et al., 2023. Orbital and Millennial-Scale Climate Variability over the Past 76 ka in the Western Tarim Basin, Northwest China. Journal of Earth Science, 34(1): 173–180. https://doi.org/10.1007/s12583-020-1115-2
    Zhao, H. B., Xu, B. Q., Yao, T. D., et al., 2011. Records of Sulfate and Nitrate in an Ice Core from Mount Muztagata, Central Asia. Journal of Geophysical Research: Atmospheres, 116(D13): D13304. https://doi.org/10.1029/2011jd015735
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(18) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return