| Citation: | Hong Du, Sidong Zeng, Yongyue Ji, Jun Xia. Evapotranspiration and Its Components Partitioning Based on an Improved Hydrological Model: Historical Attributions and Future Projections. Journal of Earth Science, 2025, 36(6): 2689-2707. doi: 10.1007/s12583-024-0097-x |
Estimation and attribution of evapotranspiration (
| Abiodun, O. O., Guan, H. D., Post, V. E. A., et al., 2018. Comparison of MODIS and SWAT Evapotranspiration over a Complex Terrain at Different Spatial Scales. Hydrology and Earth System Sciences, 22(5): 2775–2794. https://doi.org/10.5194/hess-22-2775-2018 |
| Agam, N., Evett, S. R., Tolk, J. A., et al., 2012. Evaporative Loss from Irrigated Interrows in a Highly Advective Semi-Arid Agricultural Area. Advances in Water Resources, 50: 20–30. https://doi.org/10.1016/j.advwatres.2012.07.010 |
| Ajjur, S. B., Al-Ghamdi, S. G., 2021. Evapotranspiration and Water Availability Response to Climate Change in the Middle East and North Africa. Climatic Change, 166(3): 28. https://doi.org/10.1007/s10584-021-03122-z |
| Balugani, E., Lubczynski, M. W., van der Tol, C., et al., 2018. Testing Three Approaches to Estimate Soil Evaporation through a Dry Soil Layer in a Semi-Arid Area. Journal of Hydrology, 567: 405–419. https://doi.org/10.1016/j.jhydrol.2018.10.018 |
| Cheng, L., Zhang, L., Wang, Y. P., et al., 2014. Impacts of Elevated CO2, Climate Change and Their Interactions on Water Budgets in Four Different Catchments in Australia. Journal of Hydrology, 519: 1350–1361. https://doi.org/10.1016/j.jhydrol.2014.09.020 |
| Daamen, C. C., 1997. Two Source Model of Surface Fluxes for Millet Fields in Niger. Agricultural and Forest Meteorology, 83(3/4): 205–230. https://doi.org/10.1016/s0168-1923(96)02356-8 |
| Dai, X., Wang, L. C., Cao, Q., et al., 2025. Assessing the Hydrological and Social Effects of Three Gorges Reservoir Using a Modified SWAT Model. Journal of Earth Science, 36(4): 1793–1807. https://doi.org/10.1007/s12583-024-0108-y |
| De Pury, D. G. G., Farquhar, G. D., 1997. Simple Scaling of Photosynthesis from Leaves to Canopies without the Errors of Big-Leaf Models. Plant, Cell & Environment, 20(5): 537–557. https://doi.org/10.1111/j.1365-3040.1997.00094.x |
| Elfarkh, J., Simonneaux, V., Jarlan, L., et al., 2022. Evapotranspiration Estimates in a Traditional Irrigated Area in Semi-Arid Mediterranean. Comparison of Four Remote Sensing-Based Models. Agricultural Water Management, 270: 107728. https://doi.org/10.1016/j.agwat.2022.107728 |
| Feng, X. M., Fu, B. J., Piao, S. L., et al., 2016. Revegetation in China's Loess Plateau is Approaching Sustainable Water Resource Limits. Nature Climate Change, 6(11): 1019–1022. https://doi.org/10.1038/nclimate3092 |
| Fisher, J. B., Tu, K. P., Baldocchi, D. D., 2008. Global Estimates of the Land-Atmosphere Water Flux Based on Monthly AVHRR and ISLSCP-Ⅱ Data, Validated at 16 FLUXNET Sites. Remote Sensing of Environment, 112(3): 901–919. https://doi.org/10.1016/j.rse.2007.06.025 |
| Griffis, T. J., 2013. Tracing the Flow of Carbon Dioxide and Water Vapor between the Biosphere and Atmosphere: A Review of Optical Isotope Techniques and Their Application. Agricultural and Forest Meteorology, 174/175: 85–109. https://doi.org/10.1016/j.agrformet.2013.02.009 |
| Hattermann, F. F., Vetter, T., Breuer, L., et al., 2018. Sources of Uncertainty in Hydrological Climate Impact Assessment: A Cross-Scale Study. Environmental Research Letters, 13(1): 015006. https://doi.org/10.1088/1748-9326/aa9938 |
| Helbig, M., Waddington, J. M., Alekseychik, P., et al., 2020. Increasing Contribution of Peatlands to Boreal Evapotranspiration in a Warming Climate. Nature Climate Change, 10(6): 555–560. https://doi.org/10.1038/s41558-020-0763-7 |
| Hoelscher, M. T., Kern, M. A., Wessolek, G., et al., 2018. A New Consistent Sap Flow Baseline-Correction Approach for the Stem Heat Balance Method Using Nocturnal Water Vapour Pressure Deficits and Its Application in the Measurements of Urban Climbing Plant Transpiration. Agricultural and Forest Meteorology, 248: 169–176. https://doi.org/10.1016/j.agrformet.2017.09.014 |
| Hua, R. X., Zhang, Y. Y., Zhang, S. Y., et al., 2023. Future Change Projections of Extreme Floods at Catchment Scale and Hydrodynamic Response of Its Downstream Lake Based on Catchment-Waterbody Relationship Simulation. Journal of Geophysical Research: Atmospheres, 128(14): e2022JD037972. https://doi.org/10.1029/2022jd037972 |
| Jiao, L., Lu, N., Fang, W. W., et al., 2019. Determining the Independent Impact of Soil Water on Forest Transpiration: A Case Study of a Black Locust Plantation in the Loess Plateau, China. Journal of Hydrology, 572: 671–681. https://doi.org/10.1016/j.jhydrol.2019.03.045 |
| Kool, D., Agam, N., Lazarovitch, N., et al., 2014. A Review of Approaches for Evapotranspiration Partitioning. Agricultural and Forest Meteorology, 184: 56–70. https://doi.org/10.1016/j.agrformet.2013.09.003 |
| Lascano, R. J., van Bavel, C. H. M., Hatfield, J. L., et al., 1987. Energy and Water Balance of a Sparse Crop: Simulated and Measured Soil and Crop Evaporation. Soil Science Society of America Journal, 51(5): 1113–1121. https://doi.org/10.2136/sssaj1987.03615995005100050004x |
| Li, L. J., Song, X. Y., Xia, L., et al., 2020. Modelling the Effects of Climate Change on Transpiration and Evaporation in Natural and Constructed Grasslands in the Semi-Arid Loess Plateau, China. Agriculture, Ecosystems & Environment, 302: 107077. https://doi.org/10.1016/j.agee.2020.107077 |
| Li, S. J., Wang, G. J., Sun, S. L., et al., 2021. Long-Term Changes in Evapotranspiration over China and Attribution to Climatic Drivers during 1980–2010. Journal of Hydrology, 595: 126037. https://doi.org/10.1016/j.jhydrol.2021.126037 |
| Li, X., Gentine, P., Lin, C. J., et al., 2019. A Simple and Objective Method to Partition Evapotranspiration into Transpiration and Evaporation at Eddy-Covariance Sites. Agricultural and Forest Meteorology, 265: 171–182. https://doi.org/10.1016/j.agrformet.2018.11.017 |
| Liu, X. Y., Mo, X. G., Liu, S. X., et al., 2024. Spatiotemporal Distribution and Influencing Factors of Impervious Surface Evaporation in the Baiyangdian Catchment from 1980 to 2020. Hydrological Processes, 38(1): e15059. https://doi.org/10.1002/hyp.15059 |
| Liu, Z. F., Yao, Z. J., Wang, R., 2019. Simulation and Evaluation of Actual Evapotranspiration Based on Inverse Hydrological Modeling at a Basin Scale. CATENA, 180: 160–168. https://doi.org/10.1016/j.catena.2019.03.039 |
| Lu, J., Wang, G. J., Li, S. J., et al., 2021. Projected Land Evaporation and Its Response to Vegetation Greening over China under Multiple Scenarios in the CMIP6 Models. Journal of Geophysical Research: Biogeosciences, 126(9): e2021JG006327. https://doi.org/10.1029/2021jg006327 |
| Ma, T., Wang, T. H., Yang, D. W., et al., 2023. Impacts of Vegetation Restoration on Water Resources and Carbon Sequestration in the Mountainous Area of Haihe River Basin, China. Science of the Total Environment, 869: 161724. https://doi.org/10.1016/j.scitotenv.2023.161724 |
| Martens, B., Miralles, D. G., Lievens, H., et al., 2017. GLEAM V3: Satellite-Based Land Evaporation and Root-Zone Soil Moisture. Geoscientific Model Development, 10(5): 1903–1925. https://doi.org/10.5194/gmd-10-1903-2017 |
| Massmann, A., Gentine, P., Lin, C. J., 2019. When Does Vapor Pressure Deficit Drive or Reduce Evapotranspiration? Journal of Advances in Modeling Earth Systems, 11(10): 3305–3320. https://doi.org/10.1029/2019ms001790 |
| Michel, D., Jiménez, C., Miralles, D. G., et al., 2016. The WACMOS-ET Project—Part 1: Tower-Scale Evaluation of Four Remote-Sensing-Based Evapotranspiration Algorithms. Hydrology and Earth System Sciences, 20(2): 803–822. https://doi.org/10.5194/hess-20-803-2016 |
| Montaldo, N., Curreli, M., Corona, R., et al., 2020. Fixed and Variable Components of Evapotranspiration in a Mediterranean Wild-Olive—Grass Landscape Mosaic. Agricultural and Forest Meteorology, 280: 107769. https://doi.org/10.1016/j.agrformet.2019.107769 |
| Mu, Q. Z., Zhao, M. S., Running, S. W., 2011. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sensing of Environment, 115(8): 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 |
| Mushimiyimana, C., Liu, L. L., Yang, Y. H., et al., 2023. Drivers of Evapotranspiration Increase in the Baiyangdian Catchment. Chinese Journal of Eco-Agriculture, 31(4): 598–607. https://doi.org/10.12357/cjea.20220121 |
| Oki, T., Kanae, S., 2006. Global Hydrological Cycles and World Water Resources. Science, 313(5790): 1068–1072. https://doi.org/10.1126/science.1128845 |
| Senatore, A., Fuoco, D., Maiolo, M., et al., 2022. Evaluating the Uncertainty of Climate Model Structure and Bias Correction on the Hydrological Impact of Projected Climate Change in a Mediterranean Catchment. Journal of Hydrology: Regional Studies, 42: 101120. https://doi.org/10.1016/j.ejrh.2022.101120 |
| Shan, N., Ju, W. M., Migliavacca, M., et al., 2019. Modeling Canopy Conductance and Transpiration from Solar-Induced Chlorophyll Fluorescence. Agricultural and Forest Meteorology, 268: 189–201. https://doi.org/10.1016/j.agrformet.2019.01.031 |
| Shuttleworth, W. J., Wallace, J. S., 1985. Evaporation from Sparse Crops—An Energy Combination Theory. Quarterly Journal of the Royal Meteorological Society, 111(469): 839–855. https://doi.org/10.1002/qj.49711146910 |
| Tausz-Posch, S., Dempsey, R. W., Seneweera, S., et al., 2015. Does a Freely Tillering Wheat Cultivar Benefit More from Elevated CO2 than a Restricted Tillering Cultivar in a Water-Limited Environment? European Journal of Agronomy, 64: 21–28. https://doi.org/10.1016/j.eja.2014.12.009 |
| Tong, Y., Gao, X. J., Han, Z. Y., et al., 2021. Bias Correction of Temperature and Precipitation over China for RCM Simulations Using the QM and QDM Methods. Climate Dynamics, 57(5): 1425–1443. https://doi.org/10.1007/s00382-020-05447-4 |
| Vicente-Serrano, S. M., Miralles, D. G., McDowell, N., et al., 2022. The Uncertain Role of Rising Atmospheric CO2 on Global Plant Transpiration. Earth-Science Reviews, 230: 104055. https://doi.org/10.1016/j.earscirev.2022.104055 |
| Wang, H. N., Lv, X. Z., Zhang, M. Y., 2021. Sensitivity and Attribution Analysis of Vegetation Changes on Evapotranspiration with the Budyko Framework in the Baiyangdian Catchment, China. Ecological Indicators, 120: 106963. https://doi.org/10.1016/j.ecolind.2020.106963 |
| Wang, Y. P., Leuning, R., 1998. A Two-Leaf Model for Canopy Conductance, Photosynthesis and Partitioning of Available Energy I. Agricultural and Forest Meteorology, 91(1/2): 89–111. https://doi.org/10.1016/S0168-1923(98)00061-6 |
| Wang, Y. W., Wild, M., 2016. A New Look at Solar Dimming and Brightening in China. Geophysical Research Letters, 43(22): 11777–11785. https://doi.org/10.1002/2016gl071009 |
| Wen, X. F., Yang, B., Sun, X. M., et al., 2016. Evapotranspiration Partitioning through in-situ Oxygen Isotope Measurements in an Oasis Cropland. Agricultural and Forest Meteorology, 230/231: 89–96. https://doi.org/10.1016/j.agrformet.2015.12.003 |
| Xia, J., Wang, G. S., Tan, G., et al., 2005. Development of Distributed Time-Variant Gain Model for Nonlinear Hydrological Systems. Science in China Series D: Earth Sciences, 48(6): 713–723. https://doi.org/10.1360/03yd0183 |
| Xu, Z. W., Zhu, Z. L., Liu, S. M., et al., 2021. Evapotranspiration Partitioning for Multiple Ecosystems within a Dryland Watershed: Seasonal Variations and Controlling Factors. Journal of Hydrology, 598: 126483. https://doi.org/10.1016/j.jhydrol.2021.126483 |
| Yang, D. W., Sun, F. B., Liu, Z. Y., et al., 2006. Interpreting the Complementary Relationship in Non-Humid Environments Based on the Budyko and Penman Hypotheses. Geophysical Research Letters, 33(18): 2006GL027657. https://doi.org/10.1029/2006gl027657 |
| Yang, L. S., Feng, Q., Zhu, M., et al., 2022. Variation in Actual Evapotranspiration and Its Ties to Climate Change and Vegetation Dynamics in Northwest China. Journal of Hydrology, 607: 127533. https://doi.org/10.1016/j.jhydrol.2022.127533 |
| Yang, P., Xu, F., Xia, J., et al., 2025. Agricultural Drought Vulnerability in the Middle Reaches of Yangtze River Basin under Environmental Change. Journal of Earth Science, 36(1): 184–196. https://doi.org/10.1007/s12583-023-1865-8 |
| Ye, L. Y., Cheng, L., Liu, P., et al., 2021. Management of Vegetative Land for More Water Yield under Future Climate Conditions in the Over-Utilized Water Resources Regions: a Case Study in the Xiongan New Area. Journal of Hydrology, 600: 126563. https://doi.org/10.1016/j.jhydrol.2021.126563 |
| Yu, L. Y., Zhou, S., Zhao, X. N., et al., 2022. Evapotranspiration Partitioning Based on Leaf and Ecosystem Water Use Efficiency. Water Resources Research, 58(9): e2021WR030629. https://doi.org/10.1029/2021wr030629 |
| Yu, Y. H., Zhou, Y. Y., Xiao, W. H., et al., 2021. Impacts of Climate and Vegetation on Actual Evapotranspiration in Typical Arid Mountainous Regions Using a Budyko-Based Framework. Hydrology Research, 52(1): 212–228. https://doi.org/10.2166/nh.2020.051 |
| Yuan, R. Q., Chang, L. L., Niu, G. Y., 2021. Annual Variations of T/ET in a Semi-Arid Region: Implications of Plant Water Use Strategies. Journal of Hydrology, 603: 126884. https://doi.org/10.1016/j.jhydrol.2021.126884 |
| Zeggaf, A. T., Takeuchi, S., Dehghanisanij, H., et al., 2008. A Bowen Ratio Technique for Partitioning Energy Fluxes between Maize Transpiration and Soil Surface Evaporation. Agronomy Journal, 100(4): 988–996. https://doi.org/10.2134/agronj2007.0201 |
| Zeng, S. D., Du, H., Xia, J., et al., 2022. Attributions of Evapotranspiration and Gross Primary Production Changes in Semi-Arid Region: A Case Study in the Water Source Area of the Xiongan New Area in North China. Remote Sensing, 14(5): 1187. https://doi.org/10.3390/rs14051187 |
| Zeng, S. D., Xia, J., Chen, X. D., et al., 2020. Integrated Land-Surface Hydrological and Biogeochemical Processes in Simulating Water, Energy and Carbon Fluxes over Two Different Ecosystems. Journal of Hydrology, 582: 124390. https://doi.org/10.1016/j.jhydrol.2019.124390 |
| Zhang, D., Liu, X. M., Zhang, L., et al., 2020. Attribution of Evapotranspiration Changes in Humid Regions of China from 1982 to 2016. Journal of Geophysical Research: Atmospheres, 125(13): e2020JD032404. https://doi.org/10.1029/2020jd032404 |
| Zhao, L. L., Xia, J., Xu, C. Y., et al., 2013. Evapotranspiration Estimation Methods in Hydrological Models. Journal of Geographical Sciences, 23(2): 359–369. https://doi.org/10.1007/s11442-013-1015-9 |
| Zhou, S., Yu, B. F., Zhang, Y., et al., 2016. Partitioning Evapotranspiration Based on the Concept of Underlying Water Use Efficiency. Water Resources Research, 52(2): 1160–1175. https://doi.org/10.1002/2015wr017766 |