Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Zi-Bo Li, Gaojun Li, Jonathan M. Adams, Dong-Xing Guan, Liang Zhao, Rongjun Bian, Qing Hu, Xiancai Lu, Junfeng Ji, Jun Chen. Atmospheric CO2 Removal Efficiency through Enhanced Silicate Weathering in Croplands: A Review with Emphasis on the Contribution of Fungi. Journal of Earth Science, 2025, 36(1): 197-211. doi: 10.1007/s12583-024-0101-5
Citation: Zi-Bo Li, Gaojun Li, Jonathan M. Adams, Dong-Xing Guan, Liang Zhao, Rongjun Bian, Qing Hu, Xiancai Lu, Junfeng Ji, Jun Chen. Atmospheric CO2 Removal Efficiency through Enhanced Silicate Weathering in Croplands: A Review with Emphasis on the Contribution of Fungi. Journal of Earth Science, 2025, 36(1): 197-211. doi: 10.1007/s12583-024-0101-5

Atmospheric CO2 Removal Efficiency through Enhanced Silicate Weathering in Croplands: A Review with Emphasis on the Contribution of Fungi

doi: 10.1007/s12583-024-0101-5
More Information
  • Corresponding author: Zi-Bo Li, zbli@nigpas.ac.cn
  • Received Date: 30 Aug 2024
  • Accepted Date: 28 Oct 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Enhanced silicate weathering (ESW) is a geoengineering method aimed at accelerating carbon dioxide (CO2) removal (CDR) from atmosphere by increasing the weathering flux of silicate rocks and minerals. It has emerged as a promising strategy for CDR. Theoretical studies underscore ESW's substantial potential for CDR and its diverse benefits for crops when applied to croplands. However, the well-known significant discrepancies in silicate weathering rates between laboratory and field conditions introduce uncertainty in CDR through ESW. By compiling data from recent literature, we calculated and compared CDR efficiency (t CO2 tsilicate-1 ha-1 y-1) observed in mesocosm experiments and field trials. The findings indicate that CDR efficiencies in field trials are comparable to or exceeding that observed in mesocosm experiments by 1-3 orders of magnitude, particularly evident with wollastonite application. The hierarchy of CDR efficiency among silicates suitable for ESW is ranked as follows: olivine ≥ wollastonite > basalt > albite ≥ anorthite. We suggest the potential role of biota, especially fungi, in contributing to higher CDR efficiencies observed in field trials compared to mesocosm experiments. We further emphasize introducing fungi known for their effectiveness in silicate weathering could potentially enhance CDR efficiency through ESW in croplands. But before implementing fungal-facilitated ESW, three key questions need addressing: (ⅰ) How does the community of introduced fungi evolve over time? (ⅱ) What is the long-term trajectory of CDR efficiency following fungal introduction? and (ⅲ) Could fungal introduction lead to organic matter oxidation, resulting in elevated CO2 emissions? These investigations are crucial for optimizing the efficiency and sustainability of fungal-facilitated ESW strategy.

     

  • Electronic Supplementary Material: Supplementary material (Table S1) is available in the online version of this article at https://doi.org/10.1007/s12583-024-0101-5.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abdalqadir, M., Hughes, D., Rezaei Gomari, S., et al., 2024. A State of the Art of Review on Factors Affecting the Enhanced Weathering in Agricultural Soil: Strategies for Carbon Sequestration and Climate Mitigation. Environmental Science and Pollution Research, 31(13): 19047–19070. https://doi.org/10.1007/s11356-024-32498-5
    Ahmed, E., Holmström, S. J. M., 2015. Microbe-Mineral Interactions: The Impact of Surface Attachment on Mineral Weathering and Element Selectivity by Microorganisms. Chemical Geology, 403: 13–23. https://doi.org/10.1016/j.chemgeo.2015.03.009
    Almaraz, M., Bingham, N. L., Holzer, I. O., et al., 2022. Methods for Determining the CO2 Removal Capacity of Enhanced Weathering in Agronomic Settings. Frontiers in Climate, 4: 970429. https://doi.org/10.3389/fclim.2022.970429
    Amann, T., Hartmann, J., Struyf, E., et al., 2020. Enhanced Weathering and Related Element Fluxes—A Cropland Mesocosm Approach. Biogeosciences, 17(1): 103–119. https://doi.org/10.5194/bg-17-103-2020
    Anda, M., Shamshuddin, J., Fauziah, C. I., 2015. Improving Chemical Properties of a Highly Weathered Soil Using Finely Ground Basalt Rocks. Catena, 124: 147–161. https://doi.org/10.1016/j.catena.2014.09.012
    Azeem, M., Raza, S., Li, G., et al., 2022. Soil Inorganic Carbon Sequestration through Alkalinity Regeneration Using Biologically Induced Weathering of Rock Powder and Biochar. Soil Ecology Letters, 4(4): 293–306. https://doi.org/10.1007/s42832-022-0136-4
    Baek, S. H., Kanzaki, Y., Lora, J. M., et al., 2023. Impact of Climate on the Global Capacity for Enhanced Rock Weathering on Croplands. Earth's Future, 11(8): B43K–2707. https://doi.org/10.1029/2023ef003698
    Bahram, M., Hildebrand, F., Forslund, S. K., et al., 2018. Structure and Function of the Global Topsoil Microbiome. Nature, 560(7717): 233–237. https://doi.org/10.1038/s41586-018-0386-6
    Balogh-Brunstad, Z., Kent Keller, C., Thomas Dickinson, J., et al., 2008a. Biotite Weathering and Nutrient Uptake by Ectomycorrhizal Fungus, Suillus Tomentosus, in Liquid-Culture Experiments. Geochimica et Cosmochimica Acta, 72(11): 2601–2618. https://doi.org/10.1016/j.gca.2008.04.003
    Balogh-Brunstad, Z., Keller, C. K., Gill, R. A., et al., 2008b. The Effect of Bacteria and Fungi on Chemical Weathering and Chemical Denudation Fluxes in Pine Growth Experiments. Biogeochemistry, 88(2): 153–167. https://doi.org/10.1007/s10533-008-9202-y
    Balogh-Brunstad, Z., Kent Keller, C., Shi, Z. Q., et al., 2017. Ectomycorrhizal Fungi and Mineral Interactions in the Rhizosphere of Scots and Red Pine Seedlings. Soils, 1(1): 5. https://doi.org/10.3390/soils1010005
    Banfield, J. F., Nealson, K. H., 1997. Geomicrobiology: Interactions between Microbes and Minerals. Mineralogical Society of America, Virginia. 448
    Barker, W. W., Welch, S. A., Chu, S., et al., 1998. Experimental Observations of the Effects of Bacteria on Aluminosilicate Weathering. American Mineralogist, 83(11/12): 1551–1563. https://doi.org/10.2138/am-1998-11-1243
    Bartnicki-Garcia, S., Lippman, E., 1969. Fungal Morphogenesis: Cell Wall Construction in Mucor Rouxii. Science, 165(3890): 302–304. https://doi.org/10.1126/science.165.3890.302
    Beerling, D. J., Epihov, D. Z., Kantola, I. B., et al., 2024. Enhanced Weathering in the US Corn Belt Delivers Carbon Removal with Agronomic Benefits. Proceedings of the National Academy of Sciences of the United States of America, 121(9): e2319436121. https://doi.org/10.1073/pnas.2319436121
    Beerling, D. J., Kantzas, E. P., Lomas, M. R., et al., 2020. Potential for Large-Scale CO2 Removal via Enhanced Rock Weathering with Croplands. Nature, 583(7815): 242–248. https://doi.org/10.1038/s41586-020-2448-9
    Beerling, D. J., Kantzas, E. P., Martin, M. V., et al., 2023. Transforming U. S. Agriculture with Crushed Rock for CO2 Sequestration and Increased Production. arXiv Preprint: 2308.04302. https://arxiv.org/abs/2308.04302v1
    Berner, R. A., 1992. Weathering, Plants, and the Long-Term Carbon Cycle. Geochimica et Cosmochimica Acta, 56(8): 3225–3231. https://doi.org/10.1016/0016-7037(92)90300-8
    Berner, R. A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science, 276(5312): 544–546. https://doi.org/10.1126/science.276.5312.544
    Berner, R. A., Cochran, M. F., 1998. Plant-Induced Weathering of Hawaiian Basalts. Journal of Sedimentary Research, 68(5): 723–726. https://doi.org/10.2110/jsr.68.723
    Berner, R. A., Lasaga, A. C., Garrels, R. M., 1983. The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 283(7): 641–683. https://doi.org/10.2475/ajs.283.7.641
    Blanc-Betes, E., Kantola, I. B., Gomez‐Casanovas, N., et al., 2021. In Silico Assessment of the Potential of Basalt Amendments to Reduce N2O Emissions from Bioenergy Crops. GCB Bioenergy, 13(1): 224-241. https://doi.org/10.1111/gcbb.12757
    Bonneville, S., Morgan, D. J., Schmalenberger, A., et al., 2011. Tree-Mycorrhiza Symbiosis Accelerate Mineral Weathering: Evidences from Nanometer-Scale Elemental Fluxes at the Hypha–Mineral Interface. Geochimica et Cosmochimica Acta, 75(22): 6988–7005. https://doi.org/10.1016/j.gca.2011.08.041
    Bonneville, S., Smits, M. M., Brown, A., et al., 2009. Plant-Driven Fungal Weathering: Early Stages of Mineral Alteration at the Nanometer Scale. Geology, 37(7): 615–618. https://doi.org/10.1130/g25699a.1
    Brady, P. V., 1991. The Effect of Silicate Weathering on Global Temperature and Atmospheric CO2. Journal of Geophysical Research: Solid Earth, 96(B11): 18101–18106. https://doi.org/10.1029/91JB01898
    Brady, P. V., Walther, J. V., 1989. Controls on Silicate Dissolution Rates in Neutral and Basic pH Solutions at 25 ℃. Geochimica et Cosmochimica Acta, 53(11): 2823–2830. https://doi.org/10.1016/0016-7037(89)90160-9
    Brantley, S. L., Kubicki, J. D., White, A. F., 2008. Kinetics of Mineral Dissolution. Springer. 151-210. https://doi.org/10.1007/978-0-387-73563-4
    Brantley, S. L., Shaughnessy, A., Lebedeva, M. I., et al., 2023. How Temperature-Dependent Silicate Weathering Acts as Earth's Geological Thermostat. Science, 379(6630): 382–389. https://doi.org/10.1126/science.add2922
    Buckingham, F. L., Henderson, G. M., Holdship, P., et al., 2022. Soil Core Study Indicates Limited CO2 Removal by Enhanced Weathering in Dry Croplands in the UK. Applied Geochemistry, 147: 105482. https://doi.org/10.1016/j.apgeochem.2022.105482
    Burford, E. P., Kierans, M., Gadd, G. M., 2003. Geomycology: Fungi in Mineral Substrata. Mycologist, 17(3): 98–107. https://doi.org/10.1017/S0269-915X(03)00311-2
    Burghelea, C. I., Dontsova, K., Zaharescu, D. G., et al., 2018. Trace Element Mobilization during Incipient Bioweathering of Four Rock Types. Geochimica et Cosmochimica Acta, 234: 98–114. https://doi.org/10.1016/j.gca.2018.05.011
    Chadwick, O. A., Gavenda, R. T., Kelly, E. F., et al., 2003. The Impact of Climate on the Biogeochemical Functioning of Volcanic Soils. Chemical Geology, 202(3/4): 195–223. https://doi.org/10.1016/j.chemgeo.2002.09.001
    Chen, A. Q., Chen, Z., Qiu, Z. T., et al., 2023. Experimentally-Calibrated Estimation of CO2 Removal Potentials of Enhanced Weathering. Science of the Total Environment, 900: 165766. https://doi.org/10.1016/j.scitotenv.2023.165766
    Clarkson, M. O., Larkin, C. S., Swoboda, P., et al., 2024. A Review of Measurement for Quantification of Carbon Dioxide Removal by Enhanced Weathering in Soil. Frontiers in Climate, 6: 1345224. https://doi.org/10.3389/fclim.2024.1345224
    Daghino, S., Martino, E., Vurro, E., et al., 2008. Bioweathering of Chrysotile by Fungi Isolated in Ophiolitic Sites. FEMS Microbiology Letters, 285(2): 242–249. https://doi.org/10.1111/j.1574-6968.2008.01239.x
    Das, I., Pradhan, M., 2016. Potassium-Solubilizing Microorganisms and Their Role in Enhancing Soil Fertility and Health. In: Meena, V. S., Maurya, B. R., Verma, J. P., et al., eds. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer India, New Delhi. 281–291. https://doi.org/10.1007/978-81-322-2776-2_20
    Daval, D., Bernard, S., Rémusat, L., et al., 2017. Dynamics of Altered Surface Layer Formation on Dissolving Silicates. Geochimica et Cosmochimica Acta, 209: 51–69. https://doi.org/10.1016/j.gca.2017.04.010
    Daval, D., Calvaruso, C., Guyot, F., et al., 2018. Time-Dependent Feldspar Dissolution Rates Resulting from Surface Passivation: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 498: 226–236. https://doi.org/10.1016/j.epsl.2018.06.035
    Daval, D., Hellmann, R., Saldi, G. D., et al., 2013. Linking Nm-Scale Measurements of the Anisotropy of Silicate Surface Reactivity to Macroscopic Dissolution Rate Laws: New Insights Based on Diopside. Geochimica et Cosmochimica Acta, 107: 121–134. https://doi.org/10.1016/j.gca.2012.12.045
    Delerce, S., Heřmanská, M., Bénézeth, P., et al., 2023. Experimental Determination of the Reactivity of Basalts as a Function of Their Degree of Alteration. Geochimica et Cosmochimica Acta, 360: 106–121. https://doi.org/10.1016/j.gca.2023.09.007
    Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., et al., 2018. A Global Atlas of the Dominant Bacteria Found in Soil. Science, 359(6373): 320–325. https://doi.org/10.1126/science.aap9516
    Deng, H., Sonnenthal, E., Arora, B., et al., 2023. The Environmental Controls on Efficiency of Enhanced Rock Weathering in Soils. Scientific Reports, 13(1): 9765. https://doi.org/10.1038/s41598-023-36113-4
    Deng, K., Yang, S. Y., Guo, Y. L., 2022. A Global Temperature Control of Silicate Weathering Intensity. Nature Communications, 13(1): 1781. https://doi.org/10.1038/s41467-022-29415-0
    Dontsova, K., Balogh‐Brunstad, Z., Chorover, J., 2020. Plants as Drivers of Rock Weathering. In: Dontsova, K., Balogh‐Brunstad, Z., Le Roux, G., eds., Biogeochemical Cycles: Ecological Drivers and Environmental Impact. 33-58. https://doi.org/10.1002/9781119413332.ch2
    Drever, J. I., Stillings, L. L., 1997. The Role of Organic Acids in Mineral Weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120(1/2/3): 167–181. https://doi.org/10.1016/S0927-7757(96)03720-X
    Ek, H., 1997. The Influence of Nitrogen Fertilization on the Carbon Economy of Paxillus Involutus in Ectomycorrhizal Association with Betula Pendula. New Phytologist, 135(1): 133–142. https://doi.org/10.1046/j.1469-8137.1997.00621.x
    Epihov, D. Z., Banwart, S. A., McGrath, S. P., et al., 2024. Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering. Environmental Science & Technology, 58(27): 11970–11987. https://doi.org/10.1021/acs.est.3c10146
    Frey, S. D., 2019. Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics. Annual Review of Ecology, Evolution, and Systematics, 50: 237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331
    Gadd, G. M., 2007. Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycological Research, 111(1): 3–49. https://doi.org/10.1016/j.mycres.2006.12.001
    Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1/2/3/4): 3–30. https://doi.org/10.1016/S0009-2541(99)00031-5
    Gazzè, S. A., Saccone, L., Vala Ragnarsdottir, K., et al., 2012. Nanoscale Channels on Ectomycorrhizal-Colonized Chlorite: Evidence for Plant-Driven Fungal Dissolution. Journal of Geophysical Research: Biogeosciences, 117(G3): G00N09. https://doi.org/10.1029/2012jg002016
    Gillman, G. P., Burkett, D. C., Coventry, R. J., 2002. Amending Highly Weathered Soils with Finely Ground Basalt Rock. Applied Geochemistry, 17(8): 987–1001. https://doi.org/10.1016/S0883-2927(02)00078-1
    Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., et al., 2011. An Experimental Study of Crystalline Basalt Dissolution from 2 ≤ pH ≤ 11 and Temperatures from 5 to 75 ℃. Geochimica et Cosmochimica Acta, 75(19): 5496–5509. https://doi.org/10.1016/j.gca.2011.06.035
    Guo, J. H., Liu, X. J., Zhang, Y., et al., 2010. Significant Acidification in Major Chinese Croplands. Science, 327(5968): 1008–1010. https://doi.org/10.1126/science.1182570
    Hangx, S. J. T., Spiers, C. J., 2009. Coastal Spreading of Olivine to Control Atmospheric CO2 Concentrations: A Critical Analysis of Viability. International Journal of Greenhouse Gas Control, 3(6): 757–767. https://doi.org/10.1016/j.ijggc.2009.07.001
    Haque, F., Santos, R. M., Chiang, Y. W., 2020a. CO2 Sequestration by Wollastonite-Amended Agricultural Soils—An Ontario Field Study. International Journal of Greenhouse Gas Control, 97: 103017. https://doi.org/10.1016/j.ijggc.2020.103017
    Haque, F., Santos, R. M., Chiang, Y. W., 2020b. Optimizing Inorganic Carbon Sequestration and Crop Yield with Wollastonite Soil Amendment in a Microplot Study. Frontiers in Plant Science, 11: 1012. https://doi.org/10.3389/fpls.2020.01012
    Haque, F., Santos, R. M., Dutta, A., et al., 2019. Co-Benefits of Wollastonite Weathering in Agriculture: CO2 Sequestration and Promoted Plant Growth. ACS Omega, 4(1): 1425–1433. https://doi.org/10.1021/acsomega.8b02477
    Hartmann, J., West, A. J., Renforth, P., et al., 2013. Enhanced Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification. Reviews of Geophysics, 51(2): 113–149. https://doi.org/10.1002/rog.20004
    Hellmann, R., Wirth, R., Daval, D., et al., 2012. Unifying Natural and Laboratory Chemical Weathering with Interfacial Dissolution-Reprecipitation: A Study Based on the Nanometer-Scale Chemistry of Fluid-Silicate Interfaces. Chemical Geology, 294: 203–216. https://doi.org/10.1016/j.chemgeo.2011.12.002
    Heřmanská, M., Voigt, M. J., Marieni, C., et al., 2022. A Comprehensive and Internally Consistent Mineral Dissolution Rate Database: Part Ⅰ: Primary Silicate Minerals and Glasses. Chemical Geology, 597: 120807. https://doi.org/10.1016/j.chemgeo.2022.120807
    Hider, R. C., Kong, X. L., 2010. Chemistry and Biology of Siderophores. Natural Product Reports, 27(5): 637–657. https://doi.org/10.1039/b906679a
    Hilton, R. G., 2023. Earth's Persistent Thermostat. Science, 379(6630): 329–330. https://doi.org/10.1126/science.adf3379
    Hinsinger, P., Fernandes Barros, O. N., Benedetti, M. F., et al., 2001. Plant-Induced Weathering of a Basaltic Rock: Experimental Evidence. Geochimica et Cosmochimica Acta, 65(1): 137–152. https://doi.org/10.1016/S0016-7037(00)00524-X
    Hobbie, E. A., 2006. Integrating Ectomycorrhizal Fungi into Quantitative Frameworks of Forest Carbon and Nitrogen Cycling. In: Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge. 98–128. https://doi.org/10.1017/cbo9780511550522.006
    Hoffland, E., Giesler, R., Jongmans, T., et al., 2002. Increasing Feldspar Tunneling by Fungi across a North Sweden Podzol Chronosequence. Ecosystems, 5(1): 11–22. https://doi.org/10.1007/s10021-001-0052-x
    Hoffland, E., Kuyper, T. W., Wallander, H., et al., 2004. The Role of Fungi in Weathering. Frontiers in Ecology and the Environment, 2(5): 258–264. https://doi.org/10.1890/1540-9295(2004)002[0258:TROFIW]2.0.CO;2
    Howard, R. J., Ferrari, M. A., Roach, D. H., et al., 1991. Penetration of Hard Substrates by a Fungus Employing Enormous Turgor Pressures. Proceedings of the National Academy of Sciences of the United States of America, 88(24): 11281–11284. https://doi.org/10.1073/pnas.88.24.11281
    Huang, X., Jin, M., Liang, X., et al., 2023. Riverine Water Chemistry and Rock Weathering Processes of Qingyi River Basin. Earth Science, 49(7): 2614-2626. https://doi.org/10.3799/dqkx.2023.005 (in Chinese with English Abstract)
    IPCC, 2018. Summary for Policymakers. In: Masson-Delmotte, V., Zhai, P., Pörtner, H. O., et al., eds., Global Warming of 1.5 ℃. An IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge University Press, Cambridge. 3–24. https://doi.org/10.1017/9781009157940.001.
    Jongmans, A. G., van Breemen, N., Lundström, U., et al., 1997. Rock-Eating Fungi. Nature, 389(6652): 682–683. https://doi.org/10.1038/39493
    Kandeler, E., Gebala, A., Boeddinghaus, R. S., et al., 2019. The Mineralosphere-Succession and Physiology of Bacteria and Fungi Colonising Pristine Minerals in Grassland Soils under Different Land-Use Intensities. Soil Biology and Biochemistry, 136: 107534. https://doi.org/10.1016/j.soilbio.2019.107534
    Kantola, I. B., Blanc-Betes, E., Masters, M. D., et al., 2023. Improved Net Carbon Budgets in the US Midwest through Direct Measured Impacts of Enhanced Weathering. Global Change Biology, 29(24): 7012–7028. https://doi.org/10.1111/gcb.16903
    Kelland, M. E., Wade, P. W., Lewis, A. L., et al., 2020. Increased Yield and CO2 Sequestration Potential with the C4 Cereal Sorghum Bicolor Cultivated in Basaltic Rock Dust-Amended Agricultural Soil. Global Change Biology, 26(6): 3658–3676. https://doi.org/10.1111/gcb.15089
    Knapp, W. J., Stevenson, E. I., Renforth, P., et al., 2023. Quantifying CO2 Removal at Enhanced Weathering Sites: A Multiproxy Approach. Environmental Science & Technology, 57(26): 9854–9864. https://doi.org/10.1021/acs.est.3c03757
    Köhler, P., Hartmann, J., Wolf-Gladrow, D. A., 2010. Geoengineering Potential of Artificially Enhanced Silicate Weathering of Olivine. Proceedings of the National Academy of Sciences of the United States of America, 107(47): 20228–20233. https://doi.org/10.1073/pnas.1000545107
    Larkin, C. S., Andrews, M. G., Pearce, C. R., et al., 2022. Quantification of CO2 Removal in a Large-Scale Enhanced Weathering Field Trial on an Oil Palm Plantation in Sabah, Malaysia. Frontiers in Climate, 4: 959229. https://doi.org/10.3389/fclim.2022.959229
    Lawrence, C., Harden, J., Maher, K., 2014. Modeling the Influence of Organic Acids on Soil Weathering. Geochimica et Cosmochimica Acta, 139: 487–507. https://doi.org/10.1016/j.gca.2014.05.003
    Leake, J. R., Duran, A. L., Hardy, K. E., et al., 2008. Biological Weathering in Soil: The Role of Symbiotic Root-Associated Fungi Biosensing Minerals and Directing Photosynthate-Energy into Grain-Scale Mineral Weathering. Mineralogical Magazine, 72(1): 85–89. https://doi.org/10.1180/minmag.2008.072.1.85
    Leake, J., Johnson, D., Donnelly, D., et al., 2004. Networks of Power and Influence: The Role of Mycorrhizal Mycelium in Controlling Plant Communities and Agroecosystem Functioning. Canadian Journal of Botany, 82(8): 1016–1045. https://doi.org/10.1139/b04-060
    Lefebvre, D., Goglio, P., Williams, A., et al., 2019. Assessing the Potential of Soil Carbonation and Enhanced Weathering through Life Cycle Assessment: A Case Study for Sao Paulo State, Brazil. Journal of Cleaner Production, 233: 468–481. https://doi.org/10.1016/j.jclepro.2019.06.099
    Lewis, A. L., Sarkar, B., Wade, P., et al., 2021. Effects of Mineralogy, Chemistry and Physical Properties of Basalts on Carbon Capture Potential and Plant-Nutrient Element Release via Enhanced Weathering. Applied Geochemistry, 132: 105023. https://doi.org/10.1016/j.apgeochem.2021.105023
    Li, G. J., Hartmann, J., Derry, L. A., et al., 2016a. Temperature Dependence of Basalt Weathering. Earth and Planetary Science Letters, 443: 59–69. https://doi.org/10.1016/j.epsl.2016.03.015
    Li, Z. B., Liu, L. W., Chen, J., et al., 2016b. Cellular Dissolution at Hypha- and Spore-Mineral Interfaces Revealing Unrecognized Mechanisms and Scales of Fungal Weathering. Geology, 44(4): 319–322. https://doi.org/10.1130/G37561.1
    Li, Z. B., Liu, L. W., Lu, X. C., et al., 2021a. Analysis of the Exometabolome Reveals the Complex Responses of the Fungus to Minerals. Geochimica et Cosmochimica Acta, 298: 70-86. https://doi.org/10.1016/j.gca.2021.01.036
    Li, Z. B., Liu, L. W., Lu, X. C., et al., 2021b. Mineral Foraging and Etching by the Fungus Talaromyces Flavus to Obtain Structurally Bound Iron. Chemical Geology, 586: 120592. https://doi.org/10.1016/j.chemgeo.2021.120592
    Li, Z. B., Liu, L. W., Lu, X. C., et al., 2022. Hyphal Tips Actively Develop Strong Adhesion with Nutrient-Bearing Silicate to Promote Mineral Weathering and Nutrient Acquisition. Geochimica et Cosmochimica Acta, 318: 55–69. https://doi.org/10.1016/j.gca.2021.11.017
    Li, Z. B., Lu, X. C., Teng, H., et al., 2024. Rate, Mechanism, and Geological and Geochemical Effects of Fungi Promoting Silicate Mineral Weathering. Geological Journal of China Universities, 30(3): 322-335. https://doi.org/10.16108/j.issn1006-7493.2024011 (in Chinese with English Abstract)
    Liermann, L. J., Kalinowski, B. E., Brantley, S. L., et al., 2000. Role of Bacterial Siderophores in Dissolution of Hornblende. Geochimica et Cosmochimica Acta, 64(4): 587–602. https://doi.org/10.1016/S0016-7037(99)00288-4
    Lindahl, B. D., Tunlid, A., 2015. Ectomycorrhizal Fungi-Potential Organic Matter Decomposers, yet Not Saprotrophs. New Phytologist, 205(4): 1443–1447. https://doi.org/10.1111/nph.13201
    Ma, J. F., Yamaji, N., 2006. Silicon Uptake and Accumulation in Higher Plants. Trends in Plant Science, 11(8): 392–397. https://doi.org/10.1016/j.tplants.2006.06.007
    Masson-Delmotte, V., Zhai, P., Pirani, S., et al., 2021. IPCC, 2021: Summary for Policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.001
    Mohammadi, K., Sohrabi, Y., 2012. Bacterial Biofertilizers for Sustainable Crop Production: A Review. Journal of Agricultural and Biological Science, 7(5): 307-316
    Moore, D., Robson, G. D., Trinci, A. P. J., 2011. 21st Century Guidebook to Fungi. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511977022
    Muthuraja, R., Muthukumar, T., 2021. Isolation and Characterization of Potassium Solubilizing Aspergillus Species Isolated from Saxum Habitats and Their Effect on Maize Growth in Different Soil Types. Geomicrobiology Journal, 38(8): 672–685 https://doi.org/10.1080/01490451.2021.1928800
    Nugent, M. A., Brantley, S. L., Pantano, C. G., et al., 1998. The Influence of Natural Mineral Coatings on Feldspar Weathering. Nature, 395(6702): 588–591. https://doi.org/10.1038/26951
    Oelkers, E., Gíslason, S., Matter, J., 2008. Mineral Carbonation of CO2. Elements, 4(5): 333–337. https://doi.org/10.2113/GSELEMENTS.4.5.333
    Perez-Fodich, A., Derry, L. A., 2019. Organic Acids and High Soil CO2 Drive Intense Chemical Weathering of Hawaiian Basalts: Insights from Reactive Transport Models. Geochimica et Cosmochimica Acta, 249: 173–198. https://doi.org/10.1016/j.gca.2019.01.027
    Qiu, L. X., Guan, D. X., Liu, Y. W., et al., 2024. Mechanisms of Arbuscular Mycorrhizal Fungi Increasing Silicon Uptake by Rice. Journal of Agricultural and Food Chemistry, 72(30): 16603–16613. https://doi.org/10.1021/acs.jafc.4c01487
    Quirk, J., Andrews, M. Y., Leake, J. R., et al., 2014. Ectomycorrhizal Fungi and Past High CO2 Atmospheres Enhance Mineral Weathering through Increased Below-Ground Carbon-Energy Fluxes. Biology Letters, 10(7): 20140375. https://doi.org/10.1098/rsbl.2014.0375
    Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006–1011. https://doi.org/10.1098/rsbl.2012.0503
    Reershemius, T., Kelland, M. E., Jordan, J. S., et al., 2023. Initial Validation of a Soil-Based Mass-Balance Approach for Empirical Monitoring of Enhanced Rock Weathering Rates. Environmental Science & Technology, 57(48): 19497–19507. https://doi.org/10.1021/acs.est.3c03609
    Renforth, P., 2012. The Potential of Enhanced Weathering in the UK. International Journal of Greenhouse Gas Control, 10: 229–243. https://doi.org/10.1016/j.ijggc.2012.06.011
    Renforth, P., Henderson, G., 2017. Assessing Ocean Alkalinity for Carbon Sequestration. Reviews of Geophysics, 55(3): 636–674. https://doi.org/10.1002/2016RG000533
    Renforth, P., Pogge von Strandmann, P. A. E., Henderson, G. M., 2015. The Dissolution of Olivine Added to Soil: Implications for Enhanced Weathering. Applied Geochemistry, 61: 109–118. https://doi.org/10.1016/j.apgeochem.2015.05.016
    Rieder, L., Amann, T., Hartmann, J., 2024. Soil Electrical Conductivity as a Proxy for Enhanced Weathering in Soils. Frontiers in Climate, 5: 1283107. https://doi.org/10.3389/fclim.2023.1283107
    Rinder, T., von Hagke, C., 2021. The Influence of Particle Size on the Potential of Enhanced Basalt Weathering for Carbon Dioxide Removal-Insights from a Regional Assessment. Journal of Cleaner Production, 315: 128178. https://doi.org/10.1016/j.jclepro.2021.128178
    Riquelme, M., 2013. Tip Growth in Filamentous Fungi: A Road Trip to the Apex. Annual Review of Microbiology, 67: 587–609. https://doi.org/10.1146/annurev-micro-092412-155652
    Rosenstock, N. P., 2009. Can Ectomycorrhizal Weathering Activity Respond to Host Nutrient Demands? Fungal Biology Reviews, 23(4): 107–114. https://doi.org/10.1016/j.fbr.2009.11.003
    Rosenstock, N. P., van Hees, P. A. W., Fransson, P. M. A., et al., 2019. Biological Enhancement of Mineral Weathering by Pinus Sylvestris Seedlings-Effects of Plants, Ectomycorrhizal Fungi, and Elevated CO2. Biogeosciences, 16(18): 3637–3649. https://doi.org/10.5194/bg-16-3637-2019
    Rosling, A., Lindahl, B. D., Taylor, A. F. S., et al., 2004. Mycelial Growth and Substrate Acidification of Ectomycorrhizal Fungi in Response to Different Minerals. FEMS Microbiology Ecology, 47(1): 31–37. https://doi.org/10.1016/s0168-6496(03)00222-8
    Ruiz-Agudo, E., King, H. E., Patiño-López, L. D., et al., 2016. Control of Silicate Weathering by Interface-Coupled Dissolution-Precipitation Processes at the Mineral-Solution Interface. Geology, 44(7): 567–570 https://doi.org/10.1130/G37856.1
    Saccone, L., Gazzè, S. A., Duran, A. L., et al., 2012. High Resolution Characterization of Ectomycorrhizal Fungal-Mineral Interactions in Axenic Microcosm Experiments. Biogeochemistry, 111(1): 411–425. https://doi.org/10.1007/s10533-011-9667-y
    Schnoor, J. L., 1990. Kinetics of Chemical Weathering: A Comparison of Laboratory and Field Weathering Rates. In: Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters. John Wiley and Sons, New York. 475–504
    Schott, J., Berner, R. A., 1985. Dissolution Mechanisms of Pyroxenes and Olivines during Weathering. In: The Chemistry of Weathering. Springer Netherlands, Dordrecht. 35–53. https://doi.org/10.1007/978-94-009-5333-8_3
    Schroder, J. L., Zhang, H. L., Girma, K., et al., 2011. Soil Acidification from Long-Term Use of Nitrogen Fertilizers on Winter Wheat. Soil Science Society of America Journal, 75(3): 957–964. https://doi.org/10.2136/sssaj2010.0187
    Schuiling, R. D., Krijgsman, P., 2006. Enhanced Weathering: An Effective and Cheap Tool to Sequester CO2. Climatic Change, 74(1): 349–354. https://doi.org/10.1007/s10584-005-3485-y
    Shah, F., Nicolás, C., Bentzer, J., et al., 2016. Ectomycorrhizal Fungi Decompose Soil Organic Matter Using Oxidative Mechanisms Adapted from Saprotrophic Ancestors. New Phytologist, 209(4): 1705–1719. https://doi.org/10.1111/nph.13722
    Simard, S. W., Jones, M. D., Durall, D. M., 2003. Carbon and Nutrient Fluxes within and between Mycorrhizal Plants. In: Ecological Studies. Springer. 33–74. https://doi.org/10.1007/978-3-540-38364-2_2
    Smits, M. M., 2009. Scale Matters? Exploring the Effect of Scale on Fungal–Mineral Interactions. Fungal Biology Reviews, 23(4): 132–137. https://doi.org/10.1016/j.fbr.2009.11.002
    Smits, M. M., Hoffland, E., Jongmans, A. G., et al., 2005. Contribution of Mineral Tunneling to Total Feldspar Weathering. Geoderma, 125(1/2): 59–69. https://doi.org/10.1016/j.geoderma.2004.06.005
    Smits, M., 2006. Mineral Tunnelling by Fungi. In: Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge. 311–327. https://doi.org/10.1017/cbo9780511550522.014
    Stefánsson, A., Gíslason, S. R., 2001. Chemical Weathering of Basalts, Southwest Iceland: Effect of Rock Crystallinity and Secondary Minerals on Chemical Fluxes to the Ocean. American Journal of Science, 301(6): 513–556. https://doi.org/10.2475/ajs.301.6.513
    Sterflinger, K., 2000. Fungi as Geologic Agents. Geomicrobiology Journal, 17(2): 97–124. https://doi.org/10.1080/01490450050023791
    Stillings, L. L., Drever, J. I., Brantley, S. L., et al., 1996. Rates of Feldspar Dissolution at pH 3–7 with 0–8 mM Oxalic Acid. Chemical Geology, 132(1/2/3/4): 79–89. https://doi.org/10.1016/S0009-2541(96)00043-5
    Strefler, J., Amann, T., Bauer, N., et al., 2018. Potential and Costs of Carbon Dioxide Removal by Enhanced Weathering of Rocks. Environmental Research Letters, 13(3): 034010. https://doi.org/10.1088/1748-9326/aaa9c4
    Taylor, L. L., Driscoll, C. T., Groffman, P. M., et al., 2021. Increased Carbon Capture by a Silicate-Treated Forested Watershed Affected by Acid Deposition. Biogeosciences, 18(1): 169–188. https://doi.org/10.5194/bg-18-169-2021
    Taylor, L. L., Leake, J. R., Quirk, J., et al., 2009. Biological Weathering and the Long-Term Carbon Cycle: Integrating Mycorrhizal Evolution and Function into the Current Paradigm. Geobiology, 7(2): 171–191. https://doi.org/10.1111/j.1472-4669.2009.00194.x
    Taylor, L. L., Quirk, J., Thorley, R. M. S., et al., 2016. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification. Nature Climate Change, 6(4): 402–406. https://doi.org/10.1038/nclimate2882
    te Pas, E. E. E. M., Hagens, M., Comans, R. N. J., 2023. Assessment of the Enhanced Weathering Potential of Different Silicate Minerals to Improve Soil Quality and Sequester CO2. Frontiers in Climate, 4: 954064. https://doi.org/10.3389/fclim.2022.954064
    ten Berge, H. F. M., van der Meer, H. G., Steenhuizen, J. W., et al., 2012. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium Perenne L.): A Pot Experiment. PLoS One, 7(8): e42098. https://doi.org/10.1371/journal.pone.0042098
    Thompson, L. R., Sanders, J. G., McDonald, D., et al., 2017. A Communal Catalogue Reveals Earth's Multiscale Microbial Diversity. Nature, 551(7681): 457–463. https://doi.org/10.1038/nature24621
    Urey, H. C., 1952. The Origin and Development of the Earth and Other Terrestrial Planets: A Correction. 2(5-6): 263-268. https://doi.org/10.1016/0016-7037(52)90010-0
    Uroz, S., Calvaruso, C., Turpault, M. P., et al., 2009. Mineral Weathering by Bacteria: Ecology, Actors and Mechanisms. Trends in Microbiology, 17(8): 378–387. https://doi.org/10.1016/j.tim.2009.05.004
    Uroz, S., Kelly, L. C., Turpault, M. P., et al., 2015. The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-Associated Bacterial Communities. Trends in Microbiology, 23(12): 751–762. https://doi.org/10.1016/j.tim.2015.10.004
    Van Hees, P. A. W., Jones, D. L., Jentschke, G., et al., 2004. Mobilization of Aluminium, Iron and Silicon by Picea abies and Ectomycorrhizas in a Forest Soil. European Journal of Soil Science, 55(1): 101–112. https://doi.org/10.1046/j.1365-2389.2003.00581.x
    van Schöll, L., Smits, M. M., Hoffland, E., 2006. Ectomycorrhizal Weathering of the Soil Minerals Muscovite and Hornblende. New Phytologist, 171(4): 805–813. https://doi.org/10.1111/j.1469-8137.2006.01790.x
    Velázquez, E., Silva, L. R., Ramírez-Bahena, M. H., et al., 2016. Diversity of Potassium-Solubilizing Microorganisms and Their Interactions with Plants. In: Meena, V. S., Maurya, B. R., Verma, J. P., et al., eds., Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer India, New Delhi. 99–110. https://doi.org/10.1007/978-81-322-2776-2_7
    Verbruggen, E., Struyf, E., Vicca, S., 2021. Can Arbuscular Mycorrhizal Fungi Speed up Carbon Sequestration by Enhanced Weathering? Plants, People, Planet, 3(5): 445–453. https://doi.org/10.1002/ppp3.10179
    Vicca, S., Goll, D. S., Hagens, M., et al., 2022. Is the Climate Change Mitigation Effect of Enhanced Silicate Weathering Governed by Biological Processes? Global Change Biology, 28(3): 711–726. https://doi.org/10.1111/gcb.15993
    Wang, F. N., Zhu, F. F., Liu, D. Z., et al., 2024. Wollastonite Powder Application Increases Rice Yield and CO2 Sequestration in a Paddy Field in Northeast China. Plant and Soil, 502(1): 589–603. https://doi.org/10.1007/s11104-024-06570-5
    Wei, Z., Kierans, M., Gadd, G. M., 2012. A Model Sheet Mineral System to Study Fungal Bioweathering of Mica. Geomicrobiology Journal, 29(4): 323–331. https://doi.org/10.1080/01490451.2011.558567
    Welch, S. A., Ullman, W. J., 1993. The Effect of Organic Acids on Plagioclase Dissolution Rates and Stoichiometry. Geochimica et Cosmochimica Acta, 57(12): 2725–2736. https://doi.org/10.1016/0016-7037(93)90386-B
    White, A. F., Brantley, S. L., 1995. Chapter 1. Chemical Weathering Rates of Silicate Minerals: An Overview. In: Chemical Weathering Rates of Silicate Minerals. De Gruyter. 1–22. https://doi.org/10.1515/9781501509650-003
    White, A. F., Brantley, S. L., 2003. The Effect of Time on the Weathering of Silicate Minerals: Why Do Weathering Rates Differ in the Laboratory and Field? Chemical Geology, 202(3/4): 479–506. https://doi.org/10.1016/j.chemgeo.2003.03.001
    Whitfield, J., 2007. Fungal Roles in Soil Ecology: Underground Networking. Nature, 449(7159): 136–138. https://doi.org/10.1038/449136a
    Wild, B., Gerrits, R., Bonneville, S., 2022. The Contribution of Living Organisms to Rock Weathering in the Critical Zone. NPJ Materials Degradation, 6(1): 98. https://doi.org/10.1038/s41529-022-00312-7
    Wild, B., Imfeld, G., Daval, D., 2021. Direct Measurement of Fungal Contribution to Silicate Weathering Rates in Soil. Geology, 49(9): 1055–1058. https://doi.org/10.1130/g48706.1
    Wild, B., Imfeld, G., Guyot, F., et al., 2018. Early Stages of Bacterial Community Adaptation to Silicate Aging. Geology, 46(6): 555–558. https://doi.org/10.1130/g40283.1
    Wilson, S. A., Raudsepp, M., Dipple, G. M., 2006. Verifying and Quantifying Carbon Fixation in Minerals from Serpentine-Rich Mine Tailings Using the Rietveld Method with X-Ray Powder Diffraction Data. American Mineralogist, 91(8/9): 1331–1341. https://doi.org/10.2138/am.2006.2058
    Wood, C., Harrison, A. L., Power, I. M., 2023. Impacts of Dissolved Phosphorus and Soil-Mineral-Fluid Interactions on CO2 Removal through Enhanced Weathering of Wollastonite in Soils. Applied Geochemistry, 148: 105511. https://doi.org/10.1016/j.apgeochem.2022.105511
    Wu, S. C., Cao, Z. H., Li, Z. G., et al., 2005. Effects of Biofertilizer Containing N-Fixer, P and K Solubilizers and AM Fungi on Maize Growth: A Greenhouse Trial. Geoderma, 125(1/2): 155–166. https://doi.org/10.1016/j.geoderma.2004.07.003
    Xue, J., Wang, J., Li, B., et al., 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47: 3648-3664. https://doi.org/10.3799/dqkx.2022.332 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(66) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return