Citation: | Xin Wang, Nan Qi, Xinyou Zhu, Xi-Heng He, Haowei Gu, Xiaohua Deng. Magmatic to Hydrothermal Evolution of Bianjiadayuan Ag-Pb-Zn-Sn Deposit, Northeast China: A Quartz Texture and Trace Elements Study. Journal of Earth Science, 2025, 36(4): 1493-1504. doi: 10.1007/s12583-024-0110-4 |
Quartz trace elements are extensively employed in studying magmatic evolution, fluid evolution, and metal enrichment. The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatic-hydrothermal system in northeastern China, however, studies on its complex magmatic-hydrothermal evolution are limited. This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence (CL) textures and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of quartz. Five types quartz (Q1 to Q5) were identified. From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins, the CL intensity and Ti content gradually decreases, and Ge, Ge/Ti, and Al/Ti ratios increase, indicating a temperature decline from magmatic to hydrothermal stages. The Sb content shows an opposite trend to Ti content, correlating positively with Ge content in quartz, suggesting that Sb content could also be temperature-dependent. These trace elements in quartz indicate cooling is critical for Ag mineralization. Furthermore, quartz phenocryst (Q1) from the quartz porphyry shows low Al/Ti (mostly < 4) and Ge/Ti ratios (< 0.04), suggesting a low degree of magmatic evolution. The Sb content in Q5 from Ag-Pb-Zn-quartz veins (> 1 ppm, mostly tens of ppm) is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins (< 1 ppm), suggesting that Sb contents can serve as an effective indicator of Ag mineralization.
Audétat, A., Garbe-Schönberg, D., Kronz, A., et al., 2015. Characterisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171–184. https://doi.org/10.1111/j.1751-908X.2014.00309.x |
Breiter, K., Ackerman, L., Svojtka, M., et al., 2013. Behavior of Trace Elements in Quartz from Plutons of Different Geochemical Signature: A Case Study from the Bohemian Massif, Czech Republic. Lithos, 175: 54–67. https://doi.org/10.1016/j.lithos.2013.04.023 |
Breiter, K., Jana, Ď., Dosbaba, M., 2017. Quartz Chemistry—A Step to Understanding Magmatic-Hydrothermal Processes in Ore-Bearing Granites: Cínovec/Zinnwald Sn-W-Li Deposit, Central Europe. Ore Geology Reviews, 90: 25–35. https://doi.org/10.1016/j.oregeorev.2017.10.013 |
Breiter, K., Müller, A., 2009. Evolution of Rare-Metal Granitic Magmas Documented by Quartz Chemistry. European Journal of Mineralogy, 21(2): 335–346. https://doi.org/10.1127/0935-1221/2009/0021-1907 |
Chen, S. J., Hu, X. Y., Liu, S., 2022. Application Study on High Precision Aeromagnetic Survey in Weilasituo, Inner Mongolia, China. Earth Science, 47(6): 2175–2189 (in Chinese with English Abstract) |
Chen, Y. J., Zhang, C., Wang, P., et al., 2017. The Mo Deposits of NorthEast China: A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81: 602–640. https://doi.org/10.1016/j.oregeorev.2016.04.017 |
Dennen, W. H., Blackburn, W. H., Quesada, A., 1970. Aluminum in Quartz as a Geothermometer. Contributions to Mineralogy and Petrology, 27(4): 332–342. https://doi.org/10.1007/BF00389817 |
Gao, S., Zou, X. Y., Hofstra, A. H., et al., 2022. Trace Elements in Quartz: Insights into Source and Fluid Evolution in Magmatic-Hydrothermal Systems. Economic Geology, 117(6): 1415–1428. https://doi.org/10.5382/econgeo.4943 |
Götte, T., Ramseyer, K., 2012. Trace Element Characteristics, Luminescence Properties and Real Structure of Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer Berlin Heidelberg, Berlin, Heidelberg. 71–118. |
Götze, J., Pan, Y. M., Müller, A., 2021. Mineralogy and Mineral Chemistry of Quartz: A Review. Mineralogical Magazine, 85(5): 639–664. https://doi.org/10.1180/mgm.2021.72 |
Götze, J., Plötze, M., Graupner, T., et al., 2004. Trace Element Incorporation into Quartz: A Combined Study by ICP-MS, Electron Spin Resonance, Cathodoluminescence, Capillary Ion Analysis, and Gas Chromatography. Geochimica et Cosmochimica Acta, 68(18): 3741–3759. https://doi.org/10.1016/j.gca.2004.01.003 |
Gu, Y. C., Chen, R. Y., Jia, B., et al., 2017. Zircon U-Pb Dating and Geochemistry of the Syenogranite from the Bianjiadayuan Pb-Zn-Ag Deposit of Inner Mongolia and Its Tectonic Implications. Geology in China, 44(1): 101–117. https://doi.org/10.12029/gc20170108 (in Chinese with English Abstract) |
Hong, W., Cooke, D. R., Zhang, L. J., et al., 2021. The Formation of Magmatic-Hydrothermal Features in Sn-Mineralized and Barren Tasmanian Intrusions, Southeast Australia: Insights from Quartz Textures, Trace Elements, and Microthermometry. Economic Geology, 116(8): 1917–1948. https://doi.org/10.5382/econgeo.4853 |
Huang, R. F., Audétat, A., 2012. The Titanium-in-Quartz (TitaniQ) Thermobarometer: A Critical Examination and Re-Calibration. Geochimica et Cosmochimica Acta, 84: 75–89. https://doi.org/10.1016/j.gca.2012.01.009 |
Jacamon, F., Larsen, R. B., 2009. Trace Element Evolution of Quartz in the Charnockitic Kleivan Granite, SW-Norway: The Ge/Ti Ratio of Quartz as an Index of Igneous Differentiation. Lithos, 107(3/4): 281–291. https://doi.org/10.1016/j.lithos.2008.10.016 |
Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73–100. https://doi.org/10.1144/gsl.sp.2004.226.01.05 |
Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Geological Society of America Special Papers, 350: 181–193. https://doi.org/10.1130/0-8137-2350-7.181 |
Jiang, H. Y., Zhao, Z. D., Zhu, X. Y., et al., 2020. Characteristics and Metallogenic Significance of Granite Porphyry and Pyroxene Diorite in the Bianjiadayuan Pb-Zn-Ag Polymetallic Deposit, Inner Mongolia. Geology in China, 47(2): 450–471. https://doi.org/10.12029/gc20200213 (in Chinese with English Abstract) |
Jiang, S. Y., Wang, W., 2022. What are the Super-Enrichment Mechanisms for Strategic Critical Metal Deposits?. Earth Science, 47(10): 3869–3871. https://doi.org/10.3799/dqkx.2022.844 (in Chinese with English Abstract) |
Lan, T. G., Hu, R. Z., Bi, X. W., et al., 2018. Metasomatized Asthenospheric Mantle Contributing to the Generation of Cu-Mo Deposits within an Intracontinental Setting: A Case Study of the ∼128 Ma Wangjiazhuang Cu-Mo Deposit, Eastern North China Craton. Journal of Asian Earth Sciences, 160: 460–489. https://doi.org/10.1016/j.jseaes.2017.07.014 |
Larsen, R. B., Henderson, I., Ihlen, P. M., et al., 2004. Distribution and Petrogenetic Behaviour of Trace Elements in Granitic Pegmatite Quartz from South Norway. Contributions to Mineralogy and Petrology, 147(5): 615–628. https://doi.org/10.1007/s00410-004-0580-4 |
Liu, H. J., Yang, Y. Q., Sun, Y. Q., et al., 2016. The Primary Halo Characteristics of Bianjiadayuan Pb-Zn-Ag Polymetallic Deposit in Inner Mongolia, China and Ore Prediction to Depth. Contributions to Geology and Mineral Resources Research, 31(2): 245–252 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK201602012.htm |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
Lowenstern, J. B., Sinclair, W. D., 1996. Exsolved Magmatic Fluid and Its Role in the Formation of Comb-Layered Quartz at the Cretaceous Logtung W-Mo Deposit, Yukon Territory, Canada. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 291–303. https://doi.org/10.1017/s0263593300006696 |
Mao, W., Rusk, B., Yang, F. C., et al., 2017. Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz. Economic Geology, 112(4): 889–918. https://doi.org/10.2113/econgeo.112.4.889 |
Müller, A., Herklotz, G., Giegling, H., 2018. Chemistry of Quartz Related to the Zinnwald/Cínovec Sn-W-Li Greisen-Type Deposit, Eastern Erzgebirge, Germany. Journal of Geochemical Exploration, 190: 357–373. https://doi.org/10.1016/j.gexplo.2018.04.009 |
Müller, A., Kronz, A., Breiter, K., 2002. Trace Elements and Growth Patterns in Quartz: A Fingerprint of the Evolution of the Subvolcanic Podlesí Granite System (Krušné Hory Mts., Czech Republic). Bulletin of Geosciences, 77(2): 135–145. |
Müller, A., Seltmann, R., Behr, H. J., 2000. Application of Cathodoluminescence to Magmatic Quartz in a Tin Granite: Case Study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita, 35(2): 169–189. https://doi.org/10.1007/s001260050014 |
Ouyang, H. G., Mao, J. W., Zhou, Z. H., et al., 2015. Late Mesozoic Metallogeny and Intracontinental Magmatism, Southern Great Xing'an Range, Northeastern China. Gondwana Research, 27(3): 1153–1172. https://doi.org/10.1016/j.gr.2014.08.010 |
Pei, Q. M., Zhang, S. T., Hayashi, K. I., et al., 2018. Permo–Triassic Granitoids of the Xing'an-Mongolia Segment of the Central Asian Orogenic Belt, NorthEast China: Age, Composition, and Tectonic Implications. International Geology Review, 60(9): 1172–1194. https://doi.org/10.1080/00206814.2017.1377121 |
Pokrovski, G. S., Schott, J., 1998. Thermodynamic Properties of Aqueous Ge(Ⅳ) Hydroxide Complexes from 25 to 350 ºC: Implications for the Behavior of Germanium and the Ge/Si Ratio in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 62(9): 1631–1642. https://doi.org/10.1016/S0016-7037(98)00081-7 |
Qin, G. J., Kawachi, Y., Zhao, L. Q., et al., 2001. The Upper Permian Sedimentary Facies and Its Role in the Dajing Cu-Sn Deposit, Linxi County, Inner Mongolia, China. Resource Geology, 51(4): 293–305. https://doi.org/10.1111/j.1751-3928.2001.tb00103.x |
Rottier, B., 2016. Magmatic and Hydrothermal Fluid Processes at the Origin of the Giant Porphyry-Related Epithermal Polymetallic Deposit of Cerro de Pasco (Central Peru): [Dissertation]. University of Geneva, Geneva |
Ruan, B. X., Lü, X. B., Liu, S. T., et al., 2013. Genesis of Bianjiadayuan Pb-Zn-Ag Deposit in Inner Mongolia: Constraints from U-Pb Dating of Zircon and Multi-Isotope Geochemistry. Mineral Deposits, 32(3): 501–514. https://doi.org/10.16111/j.0258-7106.2013.03.003 (in Chinese with English Abstract) |
Ruan, B. X., Lv, X. B., Yang, W., et al., 2015. Geology, Geochemistry and Fluid Inclusions of the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, NE China: Implications for Tectonic Setting and Metallogeny. Ore Geology Reviews, 71: 121–137. https://doi.org/10.1016/j.oregeorev.2015.05.004 |
Rusk, B., 2012. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer Berlin Heidelberg, Berlin, Heidelberg. 307–329. |
Rusk, B. G., Lowers, H. A., Reed, M. H., 2008. Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation. Geology, 36(7): 547–550. https://doi.org/10.1130/G24580A.1 |
Shi, Y. R., Liu, D. Y., Miao, L. C., et al., 2010. Devonian A-Type Granitic Magmatism on the Northern Margin of the North China Craton: SHRIMP U-Pb Zircon Dating and Hf-Isotopes of the Hongshan Granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632–641. https://doi.org/10.1016/j.gr.2009.11.011 |
Shu, Q. H., Lai, Y., Sun, Y., et al., 2013. Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, NorthEast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 108(4): 835–860. https://doi.org/10.2113/econgeo.108.4.835 |
Song, K. R., Tang, L., Zhang, S. T., et al., 2019. Genesis of the Bianjiadayuan Pb-Zn Polymetallic Deposit, Inner Mongolia, China: Constraints from in-situ Sulfur Isotope and Trace Element Geochemistry of Pyrite. Geoscience Frontiers, 10(5): 1863–1877. https://doi.org/10.1016/j.gsf.2019.02.004 |
Thomas, J. B., Bruce Watson, E., Spear, F. S., et al., 2010. TitaniQ under Pressure: The Effect of Pressure and Temperature on the Solubility of Ti in Quartz. Contributions to Mineralogy and Petrology, 160(5): 743–759. https://doi.org/10.1007/s00410-010-0505-3 |
Wang, F. X., Bagas, L., Jiang, S. H., et al., 2017. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 80(Suppl. C): 1206–1229. https://doi.org/10.1016/j.oregeorev.2016.09.021 |
Wang, C. G., Sun, F. Y., Sun, G. S., et al., 2016. Geochronology, Geochemical and Isotopic Constraints on Petrogenesis of Intrusive Complex Associated with Bianjiadayuan Polymetallic Deposit on the Southern Margin of the Greater Khingan, China. Arabian Journal of Geosciences, 9(5): 334. https://doi.org/10.1007/s12517-016-2333-x |
Wang, S. Q., Xin, H. T., Zhang, Y., et al., 2022. Geochronology and Petrogenesis of Late Carboniferous Alkaline Granites from Erlian-Dongwuqi Region, and Its Geological Significance. Earth Science, 47(4): 1295–1315 (in Chinese with English Abstract) |
Wang, X. L., Liu, J. J., Zhai, D. G., et al., 2013. LA-ICP-MS Zircon U-Pb Dating, Geochemistry of the Intrusive Rocks from the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, China and Tectonic Implications. Geotectonica et Metallogenia, 37(4): 730–742 (in Chinese with English Abstract) |
Wang, X. L., Liu, J. J., Zhai, D. G., et al., 2014. U-Pb Dating, Geochemistry and Tectonic Implications of Bianjiadayuan Quartz Porphyry, Inner Mongolia, China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(05): 654–665 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201405012.htm |
Wark, D. A., Watson, E. B., 2006. TitaniQ: A Titanium-in-Quartz Geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743–754. https://doi.org/10.1007/s00410-006-0132-1 |
Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014 |
Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183–196. https://doi.org/10.1016/j.jseaes.2014.07.020 |
Yang, X. Y., Sun, C., Cao, J. Y., et al., 2022. High Purity Quartz: Research Progress and Perspective Review. Earth Science Frontiers, 29(1): 231–244. https://doi.org/10.13745/j.esf.sf.2021.8.1 (in Chinese with English Abstract) |
Zhai, D. G., Liu, J. J., Cook, N. J., et al., 2019. Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54(1): 47–66. https://doi.org/10.1007/s00126-018-0804-6 |
Zhai, D. G., Liu, J. J., Zhang, A. L., et al., 2017. U-Pb, Re-Os, and 40Ar/39Ar Geochronology of Porphyry Sn ± Cu ± Mo and Polymetallic (Ag-Pb-Zn-Cu) Vein Mineralization at Bianjiadayuan, Inner Mongolia, NorthEast China: Implications for Discrete Mineralization Events. Economic Geology, 112(8): 2041–2059. https://doi.org/10.5382/econgeo.2017.4540 |
Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014. S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59: 109–122. https://doi.org/10.1016/j.oregeorev.2013.12.005 |
Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2018. A Magmatic-Hydrothermal Origin for Ag-Pb-Zn Vein Formation at the Bianjiadayuan Deposit, Inner Mongolia, NE China: Evidences from Fluid Inclusion, Stable (C-H-O) and Noble Gas Isotope Studies. Ore Geology Reviews, 101: 1–16. https://doi.org/10.1016/j.oregeorev.2018.07.005 |
Zhang, Y., Cheng, J. M., Tian, J., et al., 2019. Texture and Trace Element Geochemistry of Quartz in Skarn System: Perspective from Jiguanzui Cu-Au Skarn Deposit, Eastern China. Ore Geology Reviews, 109: 535–544. https://doi.org/10.1016/j.oregeorev.2019.05.007 |