Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Xin Wang, Nan Qi, Xinyou Zhu, Xi-Heng He, Haowei Gu, Xiaohua Deng. Magmatic to Hydrothermal Evolution of Bianjiadayuan Ag-Pb-Zn-Sn Deposit, Northeast China: A Quartz Texture and Trace Elements Study. Journal of Earth Science, 2025, 36(4): 1493-1504. doi: 10.1007/s12583-024-0110-4
Citation: Xin Wang, Nan Qi, Xinyou Zhu, Xi-Heng He, Haowei Gu, Xiaohua Deng. Magmatic to Hydrothermal Evolution of Bianjiadayuan Ag-Pb-Zn-Sn Deposit, Northeast China: A Quartz Texture and Trace Elements Study. Journal of Earth Science, 2025, 36(4): 1493-1504. doi: 10.1007/s12583-024-0110-4

Magmatic to Hydrothermal Evolution of Bianjiadayuan Ag-Pb-Zn-Sn Deposit, Northeast China: A Quartz Texture and Trace Elements Study

doi: 10.1007/s12583-024-0110-4
More Information
  • Corresponding author: Nan Qi, nanqi09@126.com; Xiaohua Deng, dxh198411@126.com
  • Received Date: 25 Jul 2024
  • Accepted Date: 08 Nov 2024
  • Available Online: 05 Aug 2025
  • Issue Publish Date: 30 Aug 2025
  • Quartz trace elements are extensively employed in studying magmatic evolution, fluid evolution, and metal enrichment. The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatic-hydrothermal system in northeastern China, however, studies on its complex magmatic-hydrothermal evolution are limited. This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence (CL) textures and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) of quartz. Five types quartz (Q1 to Q5) were identified. From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins, the CL intensity and Ti content gradually decreases, and Ge, Ge/Ti, and Al/Ti ratios increase, indicating a temperature decline from magmatic to hydrothermal stages. The Sb content shows an opposite trend to Ti content, correlating positively with Ge content in quartz, suggesting that Sb content could also be temperature-dependent. These trace elements in quartz indicate cooling is critical for Ag mineralization. Furthermore, quartz phenocryst (Q1) from the quartz porphyry shows low Al/Ti (mostly < 4) and Ge/Ti ratios (< 0.04), suggesting a low degree of magmatic evolution. The Sb content in Q5 from Ag-Pb-Zn-quartz veins (> 1 ppm, mostly tens of ppm) is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins (< 1 ppm), suggesting that Sb contents can serve as an effective indicator of Ag mineralization.

     

  • Electronic Supplementary Materials: Supplementary materials (Tables S1–S4) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0110-4.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Audétat, A., Garbe-Schönberg, D., Kronz, A., et al., 2015. Characterisation of a Natural Quartz Crystal as a Reference Material for Microanalytical Determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostandards and Geoanalytical Research, 39(2): 171–184. https://doi.org/10.1111/j.1751-908X.2014.00309.x
    Breiter, K., Ackerman, L., Svojtka, M., et al., 2013. Behavior of Trace Elements in Quartz from Plutons of Different Geochemical Signature: A Case Study from the Bohemian Massif, Czech Republic. Lithos, 175: 54–67. https://doi.org/10.1016/j.lithos.2013.04.023
    Breiter, K., Jana, Ď., Dosbaba, M., 2017. Quartz Chemistry—A Step to Understanding Magmatic-Hydrothermal Processes in Ore-Bearing Granites: Cínovec/Zinnwald Sn-W-Li Deposit, Central Europe. Ore Geology Reviews, 90: 25–35. https://doi.org/10.1016/j.oregeorev.2017.10.013
    Breiter, K., Müller, A., 2009. Evolution of Rare-Metal Granitic Magmas Documented by Quartz Chemistry. European Journal of Mineralogy, 21(2): 335–346. https://doi.org/10.1127/0935-1221/2009/0021-1907
    Chen, S. J., Hu, X. Y., Liu, S., 2022. Application Study on High Precision Aeromagnetic Survey in Weilasituo, Inner Mongolia, China. Earth Science, 47(6): 2175–2189 (in Chinese with English Abstract)
    Chen, Y. J., Zhang, C., Wang, P., et al., 2017. The Mo Deposits of NorthEast China: A Powerful Indicator of Tectonic Settings and Associated Evolutionary Trends. Ore Geology Reviews, 81: 602–640. https://doi.org/10.1016/j.oregeorev.2016.04.017
    Dennen, W. H., Blackburn, W. H., Quesada, A., 1970. Aluminum in Quartz as a Geothermometer. Contributions to Mineralogy and Petrology, 27(4): 332–342. https://doi.org/10.1007/BF00389817
    Gao, S., Zou, X. Y., Hofstra, A. H., et al., 2022. Trace Elements in Quartz: Insights into Source and Fluid Evolution in Magmatic-Hydrothermal Systems. Economic Geology, 117(6): 1415–1428. https://doi.org/10.5382/econgeo.4943
    Götte, T., Ramseyer, K., 2012. Trace Element Characteristics, Luminescence Properties and Real Structure of Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer Berlin Heidelberg, Berlin, Heidelberg. 71–118. https://doi.org/10.1007/978-3-642-22161-3_12
    Götze, J., Pan, Y. M., Müller, A., 2021. Mineralogy and Mineral Chemistry of Quartz: A Review. Mineralogical Magazine, 85(5): 639–664. https://doi.org/10.1180/mgm.2021.72
    Götze, J., Plötze, M., Graupner, T., et al., 2004. Trace Element Incorporation into Quartz: A Combined Study by ICP-MS, Electron Spin Resonance, Cathodoluminescence, Capillary Ion Analysis, and Gas Chromatography. Geochimica et Cosmochimica Acta, 68(18): 3741–3759. https://doi.org/10.1016/j.gca.2004.01.003
    Gu, Y. C., Chen, R. Y., Jia, B., et al., 2017. Zircon U-Pb Dating and Geochemistry of the Syenogranite from the Bianjiadayuan Pb-Zn-Ag Deposit of Inner Mongolia and Its Tectonic Implications. Geology in China, 44(1): 101–117. https://doi.org/10.12029/gc20170108 (in Chinese with English Abstract)
    Hong, W., Cooke, D. R., Zhang, L. J., et al., 2021. The Formation of Magmatic-Hydrothermal Features in Sn-Mineralized and Barren Tasmanian Intrusions, Southeast Australia: Insights from Quartz Textures, Trace Elements, and Microthermometry. Economic Geology, 116(8): 1917–1948. https://doi.org/10.5382/econgeo.4853
    Huang, R. F., Audétat, A., 2012. The Titanium-in-Quartz (TitaniQ) Thermobarometer: A Critical Examination and Re-Calibration. Geochimica et Cosmochimica Acta, 84: 75–89. https://doi.org/10.1016/j.gca.2012.01.009
    Jacamon, F., Larsen, R. B., 2009. Trace Element Evolution of Quartz in the Charnockitic Kleivan Granite, SW-Norway: The Ge/Ti Ratio of Quartz as an Index of Igneous Differentiation. Lithos, 107(3/4): 281–291. https://doi.org/10.1016/j.lithos.2008.10.016
    Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73–100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
    Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Geological Society of America Special Papers, 350: 181–193. https://doi.org/10.1130/0-8137-2350-7.181
    Jiang, H. Y., Zhao, Z. D., Zhu, X. Y., et al., 2020. Characteristics and Metallogenic Significance of Granite Porphyry and Pyroxene Diorite in the Bianjiadayuan Pb-Zn-Ag Polymetallic Deposit, Inner Mongolia. Geology in China, 47(2): 450–471. https://doi.org/10.12029/gc20200213 (in Chinese with English Abstract)
    Jiang, S. Y., Wang, W., 2022. What are the Super-Enrichment Mechanisms for Strategic Critical Metal Deposits?. Earth Science, 47(10): 3869–3871. https://doi.org/10.3799/dqkx.2022.844 (in Chinese with English Abstract)
    Lan, T. G., Hu, R. Z., Bi, X. W., et al., 2018. Metasomatized Asthenospheric Mantle Contributing to the Generation of Cu-Mo Deposits within an Intracontinental Setting: A Case Study of the ∼128 Ma Wangjiazhuang Cu-Mo Deposit, Eastern North China Craton. Journal of Asian Earth Sciences, 160: 460–489. https://doi.org/10.1016/j.jseaes.2017.07.014
    Larsen, R. B., Henderson, I., Ihlen, P. M., et al., 2004. Distribution and Petrogenetic Behaviour of Trace Elements in Granitic Pegmatite Quartz from South Norway. Contributions to Mineralogy and Petrology, 147(5): 615–628. https://doi.org/10.1007/s00410-004-0580-4
    Liu, H. J., Yang, Y. Q., Sun, Y. Q., et al., 2016. The Primary Halo Characteristics of Bianjiadayuan Pb-Zn-Ag Polymetallic Deposit in Inner Mongolia, China and Ore Prediction to Depth. Contributions to Geology and Mineral Resources Research, 31(2): 245–252 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK201602012.htm
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Lowenstern, J. B., Sinclair, W. D., 1996. Exsolved Magmatic Fluid and Its Role in the Formation of Comb-Layered Quartz at the Cretaceous Logtung W-Mo Deposit, Yukon Territory, Canada. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 291–303. https://doi.org/10.1017/s0263593300006696
    Mao, W., Rusk, B., Yang, F. C., et al., 2017. Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz. Economic Geology, 112(4): 889–918. https://doi.org/10.2113/econgeo.112.4.889
    Müller, A., Herklotz, G., Giegling, H., 2018. Chemistry of Quartz Related to the Zinnwald/Cínovec Sn-W-Li Greisen-Type Deposit, Eastern Erzgebirge, Germany. Journal of Geochemical Exploration, 190: 357–373. https://doi.org/10.1016/j.gexplo.2018.04.009
    Müller, A., Kronz, A., Breiter, K., 2002. Trace Elements and Growth Patterns in Quartz: A Fingerprint of the Evolution of the Subvolcanic Podlesí Granite System (Krušné Hory Mts., Czech Republic). Bulletin of Geosciences, 77(2): 135–145. https://www.researchgate.net/publication/280016513
    Müller, A., Seltmann, R., Behr, H. J., 2000. Application of Cathodoluminescence to Magmatic Quartz in a Tin Granite: Case Study from the Schellerhau Granite Complex, Eastern Erzgebirge, Germany. Mineralium Deposita, 35(2): 169–189. https://doi.org/10.1007/s001260050014
    Ouyang, H. G., Mao, J. W., Zhou, Z. H., et al., 2015. Late Mesozoic Metallogeny and Intracontinental Magmatism, Southern Great Xing'an Range, Northeastern China. Gondwana Research, 27(3): 1153–1172. https://doi.org/10.1016/j.gr.2014.08.010
    Pei, Q. M., Zhang, S. T., Hayashi, K. I., et al., 2018. Permo–Triassic Granitoids of the Xing'an-Mongolia Segment of the Central Asian Orogenic Belt, NorthEast China: Age, Composition, and Tectonic Implications. International Geology Review, 60(9): 1172–1194. https://doi.org/10.1080/00206814.2017.1377121
    Pokrovski, G. S., Schott, J., 1998. Thermodynamic Properties of Aqueous Ge(Ⅳ) Hydroxide Complexes from 25 to 350 ºC: Implications for the Behavior of Germanium and the Ge/Si Ratio in Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 62(9): 1631–1642. https://doi.org/10.1016/S0016-7037(98)00081-7
    Qin, G. J., Kawachi, Y., Zhao, L. Q., et al., 2001. The Upper Permian Sedimentary Facies and Its Role in the Dajing Cu-Sn Deposit, Linxi County, Inner Mongolia, China. Resource Geology, 51(4): 293–305. https://doi.org/10.1111/j.1751-3928.2001.tb00103.x
    Rottier, B., 2016. Magmatic and Hydrothermal Fluid Processes at the Origin of the Giant Porphyry-Related Epithermal Polymetallic Deposit of Cerro de Pasco (Central Peru): [Dissertation]. University of Geneva, Geneva
    Ruan, B. X., Lü, X. B., Liu, S. T., et al., 2013. Genesis of Bianjiadayuan Pb-Zn-Ag Deposit in Inner Mongolia: Constraints from U-Pb Dating of Zircon and Multi-Isotope Geochemistry. Mineral Deposits, 32(3): 501–514. https://doi.org/10.16111/j.0258-7106.2013.03.003 (in Chinese with English Abstract)
    Ruan, B. X., Lv, X. B., Yang, W., et al., 2015. Geology, Geochemistry and Fluid Inclusions of the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, NE China: Implications for Tectonic Setting and Metallogeny. Ore Geology Reviews, 71: 121–137. https://doi.org/10.1016/j.oregeorev.2015.05.004
    Rusk, B., 2012. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In: Götze, J., Möckel, R., eds., Quartz: Deposits, Mineralogy and Analytics. Springer Berlin Heidelberg, Berlin, Heidelberg. 307–329. https://doi.org/10.1007/978-3-642-22161-3_14
    Rusk, B. G., Lowers, H. A., Reed, M. H., 2008. Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation. Geology, 36(7): 547–550. https://doi.org/10.1130/G24580A.1
    Shi, Y. R., Liu, D. Y., Miao, L. C., et al., 2010. Devonian A-Type Granitic Magmatism on the Northern Margin of the North China Craton: SHRIMP U-Pb Zircon Dating and Hf-Isotopes of the Hongshan Granite at Chifeng, Inner Mongolia, China. Gondwana Research, 17(4): 632–641. https://doi.org/10.1016/j.gr.2009.11.011
    Shu, Q. H., Lai, Y., Sun, Y., et al., 2013. Ore Genesis and Hydrothermal Evolution of the Baiyinnuo'er Zinc-Lead Skarn Deposit, NorthEast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 108(4): 835–860. https://doi.org/10.2113/econgeo.108.4.835
    Song, K. R., Tang, L., Zhang, S. T., et al., 2019. Genesis of the Bianjiadayuan Pb-Zn Polymetallic Deposit, Inner Mongolia, China: Constraints from in-situ Sulfur Isotope and Trace Element Geochemistry of Pyrite. Geoscience Frontiers, 10(5): 1863–1877. https://doi.org/10.1016/j.gsf.2019.02.004
    Thomas, J. B., Bruce Watson, E., Spear, F. S., et al., 2010. TitaniQ under Pressure: The Effect of Pressure and Temperature on the Solubility of Ti in Quartz. Contributions to Mineralogy and Petrology, 160(5): 743–759. https://doi.org/10.1007/s00410-010-0505-3
    Wang, F. X., Bagas, L., Jiang, S. H., et al., 2017. Geological, Geochemical, and Geochronological Characteristics of Weilasituo Sn-Polymetal Deposit, Inner Mongolia, China. Ore Geology Reviews, 80(Suppl. C): 1206–1229. https://doi.org/10.1016/j.oregeorev.2016.09.021
    Wang, C. G., Sun, F. Y., Sun, G. S., et al., 2016. Geochronology, Geochemical and Isotopic Constraints on Petrogenesis of Intrusive Complex Associated with Bianjiadayuan Polymetallic Deposit on the Southern Margin of the Greater Khingan, China. Arabian Journal of Geosciences, 9(5): 334. https://doi.org/10.1007/s12517-016-2333-x
    Wang, S. Q., Xin, H. T., Zhang, Y., et al., 2022. Geochronology and Petrogenesis of Late Carboniferous Alkaline Granites from Erlian-Dongwuqi Region, and Its Geological Significance. Earth Science, 47(4): 1295–1315 (in Chinese with English Abstract)
    Wang, X. L., Liu, J. J., Zhai, D. G., et al., 2013. LA-ICP-MS Zircon U-Pb Dating, Geochemistry of the Intrusive Rocks from the Bianjiadayuan Pb-Zn-Ag Deposit, Inner Mongolia, China and Tectonic Implications. Geotectonica et Metallogenia, 37(4): 730–742 (in Chinese with English Abstract)
    Wang, X. L., Liu, J. J., Zhai, D. G., et al., 2014. U-Pb Dating, Geochemistry and Tectonic Implications of Bianjiadayuan Quartz Porphyry, Inner Mongolia, China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(05): 654–665 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201405012.htm
    Wark, D. A., Watson, E. B., 2006. TitaniQ: A Titanium-in-Quartz Geothermometer. Contributions to Mineralogy and Petrology, 152(6): 743–754. https://doi.org/10.1007/s00410-006-0132-1
    Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014
    Xu, B., Zhao, P., Wang, Y. Y., et al., 2015. The Pre-Devonian Tectonic Framework of Xing'an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 97: 183–196. https://doi.org/10.1016/j.jseaes.2014.07.020
    Yang, X. Y., Sun, C., Cao, J. Y., et al., 2022. High Purity Quartz: Research Progress and Perspective Review. Earth Science Frontiers, 29(1): 231–244. https://doi.org/10.13745/j.esf.sf.2021.8.1 (in Chinese with English Abstract)
    Zhai, D. G., Liu, J. J., Cook, N. J., et al., 2019. Mineralogical, Textural, Sulfur and Lead Isotope Constraints on the Origin of Ag-Pb-Zn Mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54(1): 47–66. https://doi.org/10.1007/s00126-018-0804-6
    Zhai, D. G., Liu, J. J., Zhang, A. L., et al., 2017. U-Pb, Re-Os, and 40Ar/39Ar Geochronology of Porphyry Sn ± Cu ± Mo and Polymetallic (Ag-Pb-Zn-Cu) Vein Mineralization at Bianjiadayuan, Inner Mongolia, NorthEast China: Implications for Discrete Mineralization Events. Economic Geology, 112(8): 2041–2059. https://doi.org/10.5382/econgeo.2017.4540
    Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2014. S-Pb Isotopic Geochemistry, U-Pb and Re-Os Geochronology of the Huanggangliang Fe-Sn Deposit, Inner Mongolia, NE China. Ore Geology Reviews, 59: 109–122. https://doi.org/10.1016/j.oregeorev.2013.12.005
    Zhai, D. G., Liu, J. J., Zhang, H. Y., et al., 2018. A Magmatic-Hydrothermal Origin for Ag-Pb-Zn Vein Formation at the Bianjiadayuan Deposit, Inner Mongolia, NE China: Evidences from Fluid Inclusion, Stable (C-H-O) and Noble Gas Isotope Studies. Ore Geology Reviews, 101: 1–16. https://doi.org/10.1016/j.oregeorev.2018.07.005
    Zhang, Y., Cheng, J. M., Tian, J., et al., 2019. Texture and Trace Element Geochemistry of Quartz in Skarn System: Perspective from Jiguanzui Cu-Au Skarn Deposit, Eastern China. Ore Geology Reviews, 109: 535–544. https://doi.org/10.1016/j.oregeorev.2019.05.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(58) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return