Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost Is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4 |
Bockheim, J. G., Hinkel, K. M., 2010. Characteristics and Significance of the Transition Zone in Drained Thaw-Lake Basins of the Arctic Coastal Plain, Alaska. Arctic, 58(4): 406–417. https://doi.org/10.14430/arctic454 |
Bonnaventure, P. P., Lamoureux, S. F., 2013. The Active Layer: A Conceptual Review of Monitoring, Modelling Techniques and Changes in a Warming Climate. Progress in Physical Geography: Earth and Environment, 37(3): 352–376. https://doi.org/10.1177/0309133313478314 |
Burn, C. R., 1988. The Development of Near-Surface Ground Ice during the Holocene at Sites near Mayo, Yukon Territory, Canada. Journal of Quaternary Science, 3(1): 31–38. https://doi.org/10.1002/jqs.3390030106 |
Burn, C. R., 1998. The Active Layer: Two Contrasting Definitions. Permafrost and Periglacial Processes, 9(4): 411–416 doi: 10.1002/(SICI)1099-1530(199810/12)9:4<411::AID-PPP292>3.0.CO;2-6 |
Cable, J. M., Ogle, K., Bolton, W. R., et al., 2014. Permafrost Thaw Affects Boreal Deciduous Plant Transpiration through Increased Soil Water, Deeper Thaw, and Warmer Soils. Ecohydrology, 7(3): 982–997. https://doi.org/10.1002/eco.1423 |
Cai, L., Lee, H. N., Aas, K. S., et al., 2020. Projecting Circum-Arctic Excess-Ground-Ice Melt with a Sub-Grid Representation in the Community Land Model. The Cryosphere, 14(12): 4611–4626. https://doi.org/10.5194/tc-14-4611-2020 |
Chen, Y. P., Lara, M. J., Jones, B. M., et al., 2021. Thermokarst Acceleration in Arctic Tundra Driven by Climate Change and Fire Disturbance. One Earth, 4(12): 1718–1729. https://doi.org/10.1016/j.oneear.2021.11.011 |
Cheng, G. D., 1983. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Regions Science and Technology, 8(1): 57–66. https://doi.org/10.1016/0165-232X(83)90017-4 |
Dobiński, W., 2011. Permafrost. Earth-Science Reviews, 108(3/4): 158–169. https://doi.org/10.1016/j.earscirev.2011.06.007 |
Dobiński, W., 2020. Permafrost Active Layer. Earth-Science Reviews, 208: 103301. https://doi.org/10.1016/j.earscirev.2020.103301 |
Farquharson, L. M., Romanovsky, V. E., Kholodov, A., et al., 2022. Sub-Aerial Talik Formation Observed across the Discontinuous Permafrost Zone of Alaska. Nature Geoscience, 15: 475–481. https://doi.org/10.1038/s41561-022-00952-z |
Fortier, D., Allard, M., Shur, Y., 2007. Observation of Rapid Drainage System Development by Thermal Erosion of Ice Wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes, 18(3): 229–243. https://doi.org/10.1002/ppp.595 |
French, H., Shur, Y., 2010. The Principles of Cryostratigraphy. Earth-Science Reviews, 101(3/4): 190–206. https://doi.org/10.1016/j.earscirev.2010.04.002 |
Genet, H., McGuire, A. D., Barrett, K., et al., 2013. Modeling the Effects of Fire Severity and Climate Warming on Active Layer Thickness and Soil Carbon Storage of Black Spruce Forests across the Landscape in Interior Alaska. Environmental Research Letters, 8(4): 045016. https://doi.org/10.1088/1748-9326/8/4/045016 |
Harris, S. A., Anatoli, B., Cheng, G. D., 2018. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms. CRC Press, Taylor & Francis, London. 766 |
Heijmans, M. M. P. D., Magnússon, R. Í., Lara, M. J., et al., 2022. Tundra Vegetation Change and Impacts on Permafrost. Nature Reviews Earth & Environment, 3: 68–84. https://doi.org/10.1038/s43017-021-00233-0 |
Hinkel, K. M., Nelson, F. E., 2003. Spatial and Temporal Patterns of Active Layer Thickness at Circumpolar Active Layer Monitoring (CALM) Sites in Northern Alaska, 1995–2000. Journal of Geophysical Research: Atmospheres, 108(D2): 8168. https://doi.org/10.1029/2001JD000927 |
Jasinski, B. L., Hewitt, R. E., Mauritz, M., et al., 2022. Plant Foliar Nutrient Response to Active Layer and Water Table Depth in Warming Permafrost Soils. Journal of Ecology, 110(5): 1201–1216. https://doi.org/10.1111/1365-2745.13864 |
Jin, H. J., He, R. X., Cheng, G. D., et al., 2009. Changes in Frozen Ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and Their Eco-Environmental Impacts. Environmental Research Letters, 4(4): 045206. https://doi.org/10.1088/1748-9326/4/4/045206 |
Jin, H. J., Li, S. X., Cheng, G. D., et al., 2000. Permafrost and Climatic Change in China. Global and Planetary Change, 26(4): 387–404. https://doi.org/10.1016/S0921-8181(00)00051-5 |
Jin, H. J., Yu, Q. H., Wang, S. L., et al., 2008. Changes in Permafrost Environments along the Qinghai-Tibet Engineering Corridor Induced by Anthropogenic Activities and Climate Warming. Cold Regions Science and Technology, 53(3): 317–333. https://doi.org/10.1016/j.coldregions.2007.07.005 |
Jin, X. Y., Jin, H. J., Iwahana, G., et al., 2021. Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Advances in Climate Change Research, 12(1): 29–47. https://doi.org/10.1016/j.accre.2020.07.002 |
Jorgenson, M. T., Kanevskiy, M., Shur, Y., et al., 2015. Role of Ground Ice Dynamics and Ecological Feedbacks in Recent Ice Wedge Degradation and Stabilization. Journal of Geophysical Research: Earth Surface, 120(11): 2280–2297. https://doi.org/10.1002/2015jf003602 |
Jorgenson, M. T., Romanovsky, V., Harden, J., et al., 2010. Resilience and Vulnerability of Permafrost to Climate Change. Canadian Journal of Forest Research, 40(7): 1219–1236. https://doi.org/10.1139/x10-060 |
Kanevskiy, M., Jorgenson, T., Shur, Y., et al., 2014. Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska. Permafrost and Periglacial Processes, 25(1): 14–34. https://doi.org/10.1002/ppp.1800 |
Kanevskiy, M., Shur, Y., Jorgenson, M. T., et al., 2013. Ground Ice in the Upper Permafrost of the Beaufort Sea Coast of Alaska. Cold Regions Science and Technology, 85: 56–70. https://doi.org/10.1016/j.coldregions.2012.08.002 |
Lee, H. N., Swenson, S. C., Slater, A. G., et al., 2014. Effects of Excess Ground Ice on Projections of Permafrost in a Warming Climate. Environmental Research Letters, 9(12): 124006. https://doi.org/10.1088/1748-9326/9/12/124006 |
Li, T., Chen, Y. Z., Han, L. J., et al., 2021. Shortened Duration and Reduced Area of Frozen Soil in the Northern Hemisphere. The Innovation, 2(3): 100146. https://doi.org/10.1016/j.xinn.2021.100146 |
Luo, D. L., Jin, H. J., Wu, Q. B., et al., 2023. Active Layer Thickness (ALT) in Permafrost Regions under Natural/Undisturbed State: A Review. Journal of Glaciology and Geocryology, 45(2): 558–574 (in Chinese of English Abstract) |
Luo, D. L., Liu, J., Chen, F. F., et al., 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063–4081 (in Chinese of English Abstract) |
Luo, D. L., Wu, Q. B., Jin, H. J., et al., 2016. Recent Changes in the Active Layer Thickness across the Northern Hemisphere. Environmental Earth Sciences, 75(7): 555. https://doi.org/10.1007/s12665-015-5229-2 |
Mackay, J. R., 1972. The World of Underground Ice. Annals of the Association of American Geographers, 62(1): 1–22 doi: 10.1111/j.1467-8306.1972.tb00839.x |
Monteath, A. J., Kuzmina, S., Mahony, M., et al., 2023. Relict Permafrost Preserves Megafauna, Insects, Pollen, Soils and Pore-Ice Isotopes of the Mammoth Steppe and Its Collapse in Central Yukon. Quaternary Science Reviews, 299: 107878. https://doi.org/10.1016/j.quascirev.2022.107878 |
Muller, S. W., 1943. Permafrost or Permanently Frozen Ground and Related Engineering Problems. Strategic Engineering Study, U. S. Army |
Murton, J. B., 2022. Ground Ice. In: Haritashya, J. S., eds., Treatise on Geomorphology. Academic Press, San Diego. 428–457 |
Murton, J. B., French, H. M., 1994. Cryostructures in Permafrost, Tuktoyaktuk Coastlands, Western Arctic Canada. Canadian Journal of Earth Sciences, 31(4): 737–747. https://doi.org/10.1139/e94-067 |
Murton, J. B., Waller, R. I., Hart, J. K., et al., 2004. Stratigraphy and Glaciotectonic Structures of Permafrost Deformed beneath the Northwest Margin of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, Canada. Journal of Glaciology, 50(170): 399–412. https://doi.org/10.3189/172756504781829927 |
Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., et al., 1997. Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, U. S. A. Arctic and Alpine Research, 29(4): 367. https://doi.org/10.2307/1551985 |
Nelson, F. E., Shiklomanov, N. I., Nyland, K. E., 2021. Cool, CALM, Collected: The Circumpolar Active Layer Monitoring Program and Network. Polar Geography, 44(3): 155–166. https://doi.org/10.1080/1088937x.2021.1988001 |
Osterkamp, T. E., Romanovsky, V. E., 1999. Evidence for Warming and Thawing of Discontinuous Permafrost in Alaska. Permafrost and Periglacial Processes, 10(1): 17–37. https://doi.org/10.1002/(sici)1099-1530(199901/03)10:117:aid-ppp303>3.0.co;2-4 doi: 10.1002/(sici)1099-1530(199901/03)10:117:aid-ppp303>3.0.co;2-4 |
Paquette, M., Rudy, A. C. A., Fortier, D., et al., 2020. Multi-Scale Site Evaluation of a Relict Active Layer Detachment in a High Arctic Landscape. Geomorphology, 359: 107159. https://doi.org/10.1016/j.geomorph.2020.107159 |
Peng, X. Q., Zhang, T. J., Frauenfeld, O. W., et al., 2018. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere. Journal of Climate, 31(1): 251–266. https://doi.org/10.1175/jcli-d-16-0721.1 |
Romanovsky, V. E., Smith, S. L., Christiansen, H. H., 2010. Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007–2009: A Synthesis. Permafrost and Periglacial Processes, 21(2): 106–116. https://doi.org/10.1002/ppp.689 |
Schuur, E. A. G., Abbott, B. W., Commane, R., et al., 2022. Permafrost and Climate Change: Carbon Cycle Feedbacks from the Warming Arctic. Annual Review of Environment and Resources, 47(1): 343–371. https://doi.org/10.1146/annurev-environ-012220-011847 |
Schuur, E. A. G., Bockheim, J., Canadell, J. G., et al., 2008. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience, 58(8): 701–714. https://doi.org/10.1641/b580807 |
Schuur, E. A. G., Mack, M. C., 2018. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annual Review of Ecology, Evolution, and Systematics, 49: 279–301. https://doi.org/10.1146/annurev-ecolsys-121415-032349 |
Schuur, E. A. G., McGuire, A. D., Schädel, C., et al., 2015. Climate Change and the Permafrost Carbon Feedback. Nature, 520(7546): 171–179. https://doi.org/10.1038/nature14338 |
Shur, Y. L., Jorgenson, M. T., 2007. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafrost and Periglacial Processes, 18(1): 7–19. https://doi.org/10.1002/ppp.582 |
Shur, Y., 1988. The upper Horizon of Permafrost Soils. In: Senneset, K., ed., Proceedings of Fifth International Conference on Permafrost, Tapir, Trondheim, Norway. 867–871 |
Shur, Y., Hinkel, K. M., Nelson, F. E., 2005. The Transient Layer: Implications for Geocryology and Climate-Change Science. Permafrost and Periglacial Processes, 16(1): 5–17. https://doi.org/10.1002/ppp.518 |
Smith, S. L., O'Neill, H. B., Isaksen, K., et al., 2022. The Changing Thermal State of Permafrost. Nature Reviews Earth & Environment, 3(1): 10–23. https://doi.org/10.1038/s43017-021-00240-1 |
Solomatin, V. I., Xu, X. Z., 1994. Water Migration and Ice Segregation in the Transition Zone between Thawed and Frozen Soil. Permafrost and Periglacial Processes, 5(3): 185–190. https://doi.org/10.1002/ppp.3430050307 |
Sugimoto, A., Yanagisawa, N., Naito, D., et al., 2002. Importance of Permafrost as a Source of Water for Plants in East Siberian Taiga. Ecological Research, 17(4): 493–503. https://doi.org/10.1046/j.1440-1703.2002.00506.x |
Sun, J., Wang, Y. X., Lee, T. M., et al., 2024. Nature-Based Solutions Can Help Restore Degraded Grasslands and Increase Carbon Sequestration in the Tibetan Plateau. Communications Earth & Environment, 5: 154. https://doi.org/10.1038/s43247-024-01330-w |
Wang, G. Q., Peng, Y. F., Chen, L. Y., et al., 2024. Enhanced Response of Soil Respiration to Experimental Warming Upon Thermokarst Formation. Nature Geoscience, 17(6): 532–538. https://doi.org/10.1038/s41561-024-01440-2 |
Wang, W. H., Wu, T. H., Chen, Y. N., et al., 2019. Spatial Variations and Controlling Factors of Ground Ice Isotopes in Permafrost Areas of the Central Qinghai-Tibet Plateau. Science of the Total Environment, 688: 542–554. https://doi.org/10.1016/j.scitotenv.2019.06.196 |
Wu, Q. B., Ma, W., Lai, Y. M., et al., 2024. Permafrost Degradation Threatening the Qinghai-Xizang Railway. Engineering, https://doi.org/10.1016/j.eng.2024.01.023 |
Wu, Q. B., Zhang, T. J., 2010. Changes in Active Layer Thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research: Atmospheres, 115(D9): e2009jd012974. https://doi.org/10.1029/2009jd012974 |
Xu, X. M., Wu, Q. B., 2021. Active Layer Thickness Variation on the Qinghai-Tibetan Plateau: Historical and Projected Trends. Journal of Geophysical Research: Atmospheres, 126(23): e2021jd034841. https://doi.org/10.1029/2021jd034841 |
Yang, Z. P., Gao, J. X., Zhao, L., et al., 2013. Linking Thaw Depth with Soil Moisture and Plant Community Composition: Effects of Permafrost Degradation on Alpine Ecosystems on the Qinghai-Tibet Plateau. Plant and Soil, 367(1): 687–700. https://doi.org/10.1007/s11104-012-1511-1 |
Zhang, L., Lu, X. M., Zhu, H. Z., et al., 2023. A Rapid Transition from Spruce-Fir to Pine-Broadleaf Forests in Response to Disturbances and Climate Warming on the Southeastern Qinghai-Tibet Plateau. Plant Diversity, https://doi.org/10.1016/j.pld.2023.03.002 |