Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Dongliang Luo, Zeyong Gao, Fangfang Chen, Luyang Wang, Jia Liu, Shizhen Li, Qi Shen, Yajuan Zao. Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances. Journal of Earth Science, 2025, 36(1): 339-346. doi: 10.1007/s12583-024-0111-3
Citation: Dongliang Luo, Zeyong Gao, Fangfang Chen, Luyang Wang, Jia Liu, Shizhen Li, Qi Shen, Yajuan Zao. Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances. Journal of Earth Science, 2025, 36(1): 339-346. doi: 10.1007/s12583-024-0111-3

Revised Understanding of Permafrost Shape: Inclusion of the Transition Zone and Its Climatic and Environmental Significances

doi: 10.1007/s12583-024-0111-3
More Information
  • Corresponding author: Dongliang Luo, luodongliang@lzb.ac.cn
  • Received Date: 26 Oct 2024
  • Accepted Date: 11 Nov 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost Is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4
    Bockheim, J. G., Hinkel, K. M., 2010. Characteristics and Significance of the Transition Zone in Drained Thaw-Lake Basins of the Arctic Coastal Plain, Alaska. Arctic, 58(4): 406–417. https://doi.org/10.14430/arctic454
    Bonnaventure, P. P., Lamoureux, S. F., 2013. The Active Layer: A Conceptual Review of Monitoring, Modelling Techniques and Changes in a Warming Climate. Progress in Physical Geography: Earth and Environment, 37(3): 352–376. https://doi.org/10.1177/0309133313478314
    Burn, C. R., 1988. The Development of Near-Surface Ground Ice during the Holocene at Sites near Mayo, Yukon Territory, Canada. Journal of Quaternary Science, 3(1): 31–38. https://doi.org/10.1002/jqs.3390030106
    Burn, C. R., 1998. The Active Layer: Two Contrasting Definitions. Permafrost and Periglacial Processes, 9(4): 411–416 doi: 10.1002/(SICI)1099-1530(199810/12)9:4<411::AID-PPP292>3.0.CO;2-6
    Cable, J. M., Ogle, K., Bolton, W. R., et al., 2014. Permafrost Thaw Affects Boreal Deciduous Plant Transpiration through Increased Soil Water, Deeper Thaw, and Warmer Soils. Ecohydrology, 7(3): 982–997. https://doi.org/10.1002/eco.1423
    Cai, L., Lee, H. N., Aas, K. S., et al., 2020. Projecting Circum-Arctic Excess-Ground-Ice Melt with a Sub-Grid Representation in the Community Land Model. The Cryosphere, 14(12): 4611–4626. https://doi.org/10.5194/tc-14-4611-2020
    Chen, Y. P., Lara, M. J., Jones, B. M., et al., 2021. Thermokarst Acceleration in Arctic Tundra Driven by Climate Change and Fire Disturbance. One Earth, 4(12): 1718–1729. https://doi.org/10.1016/j.oneear.2021.11.011
    Cheng, G. D., 1983. The Mechanism of Repeated-Segregation for the Formation of Thick Layered Ground Ice. Cold Regions Science and Technology, 8(1): 57–66. https://doi.org/10.1016/0165-232X(83)90017-4
    Dobiński, W., 2011. Permafrost. Earth-Science Reviews, 108(3/4): 158–169. https://doi.org/10.1016/j.earscirev.2011.06.007
    Dobiński, W., 2020. Permafrost Active Layer. Earth-Science Reviews, 208: 103301. https://doi.org/10.1016/j.earscirev.2020.103301
    Farquharson, L. M., Romanovsky, V. E., Kholodov, A., et al., 2022. Sub-Aerial Talik Formation Observed across the Discontinuous Permafrost Zone of Alaska. Nature Geoscience, 15: 475–481. https://doi.org/10.1038/s41561-022-00952-z
    Fortier, D., Allard, M., Shur, Y., 2007. Observation of Rapid Drainage System Development by Thermal Erosion of Ice Wedges on Bylot Island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes, 18(3): 229–243. https://doi.org/10.1002/ppp.595
    French, H., Shur, Y., 2010. The Principles of Cryostratigraphy. Earth-Science Reviews, 101(3/4): 190–206. https://doi.org/10.1016/j.earscirev.2010.04.002
    Genet, H., McGuire, A. D., Barrett, K., et al., 2013. Modeling the Effects of Fire Severity and Climate Warming on Active Layer Thickness and Soil Carbon Storage of Black Spruce Forests across the Landscape in Interior Alaska. Environmental Research Letters, 8(4): 045016. https://doi.org/10.1088/1748-9326/8/4/045016
    Harris, S. A., Anatoli, B., Cheng, G. D., 2018. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms. CRC Press, Taylor & Francis, London. 766
    Heijmans, M. M. P. D., Magnússon, R. Í., Lara, M. J., et al., 2022. Tundra Vegetation Change and Impacts on Permafrost. Nature Reviews Earth & Environment, 3: 68–84. https://doi.org/10.1038/s43017-021-00233-0
    Hinkel, K. M., Nelson, F. E., 2003. Spatial and Temporal Patterns of Active Layer Thickness at Circumpolar Active Layer Monitoring (CALM) Sites in Northern Alaska, 1995–2000. Journal of Geophysical Research: Atmospheres, 108(D2): 8168. https://doi.org/10.1029/2001JD000927
    Jasinski, B. L., Hewitt, R. E., Mauritz, M., et al., 2022. Plant Foliar Nutrient Response to Active Layer and Water Table Depth in Warming Permafrost Soils. Journal of Ecology, 110(5): 1201–1216. https://doi.org/10.1111/1365-2745.13864
    Jin, H. J., He, R. X., Cheng, G. D., et al., 2009. Changes in Frozen Ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and Their Eco-Environmental Impacts. Environmental Research Letters, 4(4): 045206. https://doi.org/10.1088/1748-9326/4/4/045206
    Jin, H. J., Li, S. X., Cheng, G. D., et al., 2000. Permafrost and Climatic Change in China. Global and Planetary Change, 26(4): 387–404. https://doi.org/10.1016/S0921-8181(00)00051-5
    Jin, H. J., Yu, Q. H., Wang, S. L., et al., 2008. Changes in Permafrost Environments along the Qinghai-Tibet Engineering Corridor Induced by Anthropogenic Activities and Climate Warming. Cold Regions Science and Technology, 53(3): 317–333. https://doi.org/10.1016/j.coldregions.2007.07.005
    Jin, X. Y., Jin, H. J., Iwahana, G., et al., 2021. Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Advances in Climate Change Research, 12(1): 29–47. https://doi.org/10.1016/j.accre.2020.07.002
    Jorgenson, M. T., Kanevskiy, M., Shur, Y., et al., 2015. Role of Ground Ice Dynamics and Ecological Feedbacks in Recent Ice Wedge Degradation and Stabilization. Journal of Geophysical Research: Earth Surface, 120(11): 2280–2297. https://doi.org/10.1002/2015jf003602
    Jorgenson, M. T., Romanovsky, V., Harden, J., et al., 2010. Resilience and Vulnerability of Permafrost to Climate Change. Canadian Journal of Forest Research, 40(7): 1219–1236. https://doi.org/10.1139/x10-060
    Kanevskiy, M., Jorgenson, T., Shur, Y., et al., 2014. Cryostratigraphy and Permafrost Evolution in the Lacustrine Lowlands of West-Central Alaska. Permafrost and Periglacial Processes, 25(1): 14–34. https://doi.org/10.1002/ppp.1800
    Kanevskiy, M., Shur, Y., Jorgenson, M. T., et al., 2013. Ground Ice in the Upper Permafrost of the Beaufort Sea Coast of Alaska. Cold Regions Science and Technology, 85: 56–70. https://doi.org/10.1016/j.coldregions.2012.08.002
    Lee, H. N., Swenson, S. C., Slater, A. G., et al., 2014. Effects of Excess Ground Ice on Projections of Permafrost in a Warming Climate. Environmental Research Letters, 9(12): 124006. https://doi.org/10.1088/1748-9326/9/12/124006
    Li, T., Chen, Y. Z., Han, L. J., et al., 2021. Shortened Duration and Reduced Area of Frozen Soil in the Northern Hemisphere. The Innovation, 2(3): 100146. https://doi.org/10.1016/j.xinn.2021.100146
    Luo, D. L., Jin, H. J., Wu, Q. B., et al., 2023. Active Layer Thickness (ALT) in Permafrost Regions under Natural/Undisturbed State: A Review. Journal of Glaciology and Geocryology, 45(2): 558–574 (in Chinese of English Abstract)
    Luo, D. L., Liu, J., Chen, F. F., et al., 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063–4081 (in Chinese of English Abstract)
    Luo, D. L., Wu, Q. B., Jin, H. J., et al., 2016. Recent Changes in the Active Layer Thickness across the Northern Hemisphere. Environmental Earth Sciences, 75(7): 555. https://doi.org/10.1007/s12665-015-5229-2
    Mackay, J. R., 1972. The World of Underground Ice. Annals of the Association of American Geographers, 62(1): 1–22 doi: 10.1111/j.1467-8306.1972.tb00839.x
    Monteath, A. J., Kuzmina, S., Mahony, M., et al., 2023. Relict Permafrost Preserves Megafauna, Insects, Pollen, Soils and Pore-Ice Isotopes of the Mammoth Steppe and Its Collapse in Central Yukon. Quaternary Science Reviews, 299: 107878. https://doi.org/10.1016/j.quascirev.2022.107878
    Muller, S. W., 1943. Permafrost or Permanently Frozen Ground and Related Engineering Problems. Strategic Engineering Study, U. S. Army
    Murton, J. B., 2022. Ground Ice. In: Haritashya, J. S., eds., Treatise on Geomorphology. Academic Press, San Diego. 428–457
    Murton, J. B., French, H. M., 1994. Cryostructures in Permafrost, Tuktoyaktuk Coastlands, Western Arctic Canada. Canadian Journal of Earth Sciences, 31(4): 737–747. https://doi.org/10.1139/e94-067
    Murton, J. B., Waller, R. I., Hart, J. K., et al., 2004. Stratigraphy and Glaciotectonic Structures of Permafrost Deformed beneath the Northwest Margin of the Laurentide Ice Sheet, Tuktoyaktuk Coastlands, Canada. Journal of Glaciology, 50(170): 399–412. https://doi.org/10.3189/172756504781829927
    Nelson, F. E., Shiklomanov, N. I., Mueller, G. R., et al., 1997. Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, U. S. A. Arctic and Alpine Research, 29(4): 367. https://doi.org/10.2307/1551985
    Nelson, F. E., Shiklomanov, N. I., Nyland, K. E., 2021. Cool, CALM, Collected: The Circumpolar Active Layer Monitoring Program and Network. Polar Geography, 44(3): 155–166. https://doi.org/10.1080/1088937x.2021.1988001
    Osterkamp, T. E., Romanovsky, V. E., 1999. Evidence for Warming and Thawing of Discontinuous Permafrost in Alaska. Permafrost and Periglacial Processes, 10(1): 17–37. https://doi.org/10.1002/(sici)1099-1530(199901/03)10:117:aid-ppp303>3.0.co;2-4 doi: 10.1002/(sici)1099-1530(199901/03)10:117:aid-ppp303>3.0.co;2-4
    Paquette, M., Rudy, A. C. A., Fortier, D., et al., 2020. Multi-Scale Site Evaluation of a Relict Active Layer Detachment in a High Arctic Landscape. Geomorphology, 359: 107159. https://doi.org/10.1016/j.geomorph.2020.107159
    Peng, X. Q., Zhang, T. J., Frauenfeld, O. W., et al., 2018. Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere. Journal of Climate, 31(1): 251–266. https://doi.org/10.1175/jcli-d-16-0721.1
    Romanovsky, V. E., Smith, S. L., Christiansen, H. H., 2010. Permafrost Thermal State in the Polar Northern Hemisphere during the International Polar Year 2007–2009: A Synthesis. Permafrost and Periglacial Processes, 21(2): 106–116. https://doi.org/10.1002/ppp.689
    Schuur, E. A. G., Abbott, B. W., Commane, R., et al., 2022. Permafrost and Climate Change: Carbon Cycle Feedbacks from the Warming Arctic. Annual Review of Environment and Resources, 47(1): 343–371. https://doi.org/10.1146/annurev-environ-012220-011847
    Schuur, E. A. G., Bockheim, J., Canadell, J. G., et al., 2008. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience, 58(8): 701–714. https://doi.org/10.1641/b580807
    Schuur, E. A. G., Mack, M. C., 2018. Ecological Response to Permafrost Thaw and Consequences for Local and Global Ecosystem Services. Annual Review of Ecology, Evolution, and Systematics, 49: 279–301. https://doi.org/10.1146/annurev-ecolsys-121415-032349
    Schuur, E. A. G., McGuire, A. D., Schädel, C., et al., 2015. Climate Change and the Permafrost Carbon Feedback. Nature, 520(7546): 171–179. https://doi.org/10.1038/nature14338
    Shur, Y. L., Jorgenson, M. T., 2007. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafrost and Periglacial Processes, 18(1): 7–19. https://doi.org/10.1002/ppp.582
    Shur, Y., 1988. The upper Horizon of Permafrost Soils. In: Senneset, K., ed., Proceedings of Fifth International Conference on Permafrost, Tapir, Trondheim, Norway. 867–871
    Shur, Y., Hinkel, K. M., Nelson, F. E., 2005. The Transient Layer: Implications for Geocryology and Climate-Change Science. Permafrost and Periglacial Processes, 16(1): 5–17. https://doi.org/10.1002/ppp.518
    Smith, S. L., O'Neill, H. B., Isaksen, K., et al., 2022. The Changing Thermal State of Permafrost. Nature Reviews Earth & Environment, 3(1): 10–23. https://doi.org/10.1038/s43017-021-00240-1
    Solomatin, V. I., Xu, X. Z., 1994. Water Migration and Ice Segregation in the Transition Zone between Thawed and Frozen Soil. Permafrost and Periglacial Processes, 5(3): 185–190. https://doi.org/10.1002/ppp.3430050307
    Sugimoto, A., Yanagisawa, N., Naito, D., et al., 2002. Importance of Permafrost as a Source of Water for Plants in East Siberian Taiga. Ecological Research, 17(4): 493–503. https://doi.org/10.1046/j.1440-1703.2002.00506.x
    Sun, J., Wang, Y. X., Lee, T. M., et al., 2024. Nature-Based Solutions Can Help Restore Degraded Grasslands and Increase Carbon Sequestration in the Tibetan Plateau. Communications Earth & Environment, 5: 154. https://doi.org/10.1038/s43247-024-01330-w
    Wang, G. Q., Peng, Y. F., Chen, L. Y., et al., 2024. Enhanced Response of Soil Respiration to Experimental Warming Upon Thermokarst Formation. Nature Geoscience, 17(6): 532–538. https://doi.org/10.1038/s41561-024-01440-2
    Wang, W. H., Wu, T. H., Chen, Y. N., et al., 2019. Spatial Variations and Controlling Factors of Ground Ice Isotopes in Permafrost Areas of the Central Qinghai-Tibet Plateau. Science of the Total Environment, 688: 542–554. https://doi.org/10.1016/j.scitotenv.2019.06.196
    Wu, Q. B., Ma, W., Lai, Y. M., et al., 2024. Permafrost Degradation Threatening the Qinghai-Xizang Railway. Engineering, https://doi.org/10.1016/j.eng.2024.01.023
    Wu, Q. B., Zhang, T. J., 2010. Changes in Active Layer Thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research: Atmospheres, 115(D9): e2009jd012974. https://doi.org/10.1029/2009jd012974
    Xu, X. M., Wu, Q. B., 2021. Active Layer Thickness Variation on the Qinghai-Tibetan Plateau: Historical and Projected Trends. Journal of Geophysical Research: Atmospheres, 126(23): e2021jd034841. https://doi.org/10.1029/2021jd034841
    Yang, Z. P., Gao, J. X., Zhao, L., et al., 2013. Linking Thaw Depth with Soil Moisture and Plant Community Composition: Effects of Permafrost Degradation on Alpine Ecosystems on the Qinghai-Tibet Plateau. Plant and Soil, 367(1): 687–700. https://doi.org/10.1007/s11104-012-1511-1
    Zhang, L., Lu, X. M., Zhu, H. Z., et al., 2023. A Rapid Transition from Spruce-Fir to Pine-Broadleaf Forests in Response to Disturbances and Climate Warming on the Southeastern Qinghai-Tibet Plateau. Plant Diversity, https://doi.org/10.1016/j.pld.2023.03.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(13) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return