| Citation: | Pengpeng Li, Quanyou Liu, Zheng Zhou, Jing Li, Shixin Zhou. Water-Soluble Organic Acids at Deep-Ultradeep Depth in Chinese Sedimentary Basins: Experimental Results and Geological Significances. Journal of Earth Science, 2025, 36(6): 2546-2560. doi: 10.1007/s12583-024-0113-1 |
Water-soluble organic acid anions (WSOAA) in subsurface water have been intensively studied during past several decades. They are used as natural gas precursor, tracer for the movement of underground fluid, indicator for porosity improvement, and detecter of deep subsurface life on the Earth. However, little is known about the distributions and origins of organic acids at deep-ultradeep depth underground. Herein, we collected twenty-nine source rock samples covering a wide maturity range from the Ordos, Qinshui, Junggar, Minhe, and Southern North China basins, as well as six subsurface water samples with depth between 6 544 and 8 396 m from industrial gas producing wells in the Tarim Basin, China. We carried out pyrolysis experiments at various temperatures (250–450 ℃) to investigate the role of water on the generation of organic acids. Results show that there are considerable amounts of WSOAA detected in both high-over mature source rocks and deep-ultradeep subsurface water. WSOAA mainly consists of monocarboxylates, predominately formate and acetate. High-TOC oil-generating source rock has low production rate of organic acids due to lack of hydrogen. Different source rocks have distinct ratios of formate to acetate concentration, expressed as
| Barth, T., 1991. Organic Acids and Inorganic Ions in Waters from Petroleum Reservoirs, Norwegian Continental Shelf: A Multivariate Statistical Analysis and Comparison with American Reservoir Formation Waters. Applied Geochemistry, 6(1): 1–15. https://doi.org/10.1016/0883-2927(91)90059-x |
| Barth, T., Borgund, A. E., Hopland, A. L., et al., 1988. Volatile Organic Acids Produced during Kerogen Maturation—Amounts, Composition and Role in Migration of Oil. Organic Geochemistry, 13(1/2/3): 461–465. https://doi.org/10.1016/0146-6380(88)90067-8 |
| Barth, T., Riis, M., 1992. Interactions between Organic Acids Anions in Formation Waters and Reservoir Mineral Phases. Organic Geochemistry, 19(4/5/6): 455–482. https://doi.org/10.1016/0146-6380(92)90012-m |
| Behar, F., Beaumont, V., Penteado, H. D. B., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56: 111–134. https://doi.org/10.2516/ogst:2001013 |
| Behar, F., Vandenbroucke, M., 1987. Chemical Modelling of Kerogens. Organic Geochemistry, 11(1): 15–24. https://doi.org/10.1016/0146-6380(87)90047-7 |
| Bennett, P. C., 1991. Quartz Dissolution in Organic-Rich Aqueous Systems. Geochimica et Cosmochimica Acta, 55(7): 1781–1797. https://doi.org/10.1016/0016-7037(91)90023-x |
| Blake, R. E., Walter, L. M., 1999. Kinetics of Feldspar and Quartz Dissolution at 70–80 ℃ and Near-Neutral pH: Effects of Organic Acids and NaCl. Geochimica et Cosmochimica Acta, 63(13/14): 2043–2059. https://doi.org/10.1016/s0016-7037(99)00072-1 |
| Borgund, A. E., Barth, T., 1994. Generation of Short-Chain Organic Acids from Crude Oil by Hydrous Pyrolysis. Organic Geochemistry, 21(8/9): 943–952. https://doi.org/10.1016/0146-6380(94)90053-1 |
| Cai, C. F., Li, K. K., Liu, D. W., et al., 2021. Anaerobic Oxidation of Methane by Mn Oxides in Sulfate-Poor Environments. Geology, 49(7): 761–766. https://doi.org/10.1130/g48553.1 |
| Cama, J., Ganor, J., 2006. The Effects of Organic Acids on the Dissolution of Silicate Minerals: A Case Study of Oxalate Catalysis of Kaolinite Dissolution. Geochimica et Cosmochimica Acta, 70(9): 2191–2209. https://doi.org/10.1016/j.gca.2006.01.028 |
| Cao, Y. C., Yuan, G. H., Li, X. Y., et al., 2014. Characteristics and Origin of Abnormally High Porosity Zones in Buried Paleogene Clastic Reservoirs in the Shengtuo Area, Dongying Sag, East China. Petroleum Science, 11(3): 346–362. https://doi.org/10.1007/s12182-014-0349-y |
| Cao, Y. C., Yang, T., Song, M. Y., et al., 2018. Characteristics of Low-Permeability Clastic Reservoirs and Genesis of Relatively High—Quality Reservoirs in the Continental Rift Alke Basin: A Case Study of Paleogene in the Dongying Sag, Jiyang Depression. Acta Petrolei Sinica, 39: 727–743 (in Chinese with English Abstract) |
| Carothers, W. W., Kharaka Y. K., 1978. Aliphatic Acid Anions in Oil-Field Waters-Implications for Origin of Natural Gas. AAPG Bulletin, 62(12): 2441–2453. https://doi.org/10.1306/c1ea5521-16c9-11d7-8645000102c1865d |
| Chen, C. P., Gu, X., Zhou, S. M., et al., 2008. Experimental Research on Dissolution Dynamics of Main Minerals in Several Aqueous Organic Acid Solutions. Acta Geologica Sinica, 827: 1007–1012 (in Chinese with English Abstract) |
| Chen, C. P., Mei, B. W., Jia, F. J., et al., 1994a. Experimental Study on Simulation of the Generation of Low-Molecular Weight Organic Acids from Source Rocks. Geochimica, 23: 156–159 (in Chinese with English Abstract) |
| Chen, C. P., Mei, B. W., Ma, T., et al., 1994b. Experimental Researches on Downy Siliceous Precipitate in Aqueous Solutions. Oil & Gas Geology, 15(4): 316–321 (in Chinese with English Abstract) |
| Chen, S. Y., Wang, Y. J., Guo, J. Y., et al., 2021. Multi-Scale Evaluation of Fractured Carbonate Reservoir and Its Implication to Sweet-Spot Optimization: A Case Study of Tazhong Oilfield, Central Tarim Basin, China. Energy Reports, 7: 2976–2988. https://doi.org/10.1016/j.egyr.2021.05.017 |
| Chen, X., Qu, X. Y., Xu, S. Y., et al., 2020. Dissolution Pores in Shale and Their Influence on Reservoir Quality in Damintun Depression, Bohai Bay Basin, East China: Insights from SEM Images, N2 Adsorption and Fluid-Rock Interaction Experiments. Marine and Petroleum Geology, 117: 104394. https://doi.org/10.1016/j.marpetgeo.2020.104394 |
| Cooles, G. P., MacKenzie, A. S., Parkes, R. J., 1987. Non-Hydrocarbons of Significance in Petroleum Exploration: Volatile Fatty Acids and Non-Hydrocarbon Gases. Mineralogical Magazine, 51(362): 483–493. https://doi.org/10.1180/minmag.1987.051.362.03 |
| Craddock, P. R., Van Le Doan, T., Bake, K., et al., 2015. Evolution of Kerogen and Bitumen during Thermal Maturation via Semi-Open Pyrolysis Investigated by Infrared Spectroscopy. Energy & Fuels, 29(4): 2197–2210. https://doi.org/10.1021/ef5027532 |
| Curiale, J. A., Lundegard, P. D., Kharaka, Y. K., 1992. Hydrous Pyrolysis of Crude Oil in Gold-Plated Reactors. Organic Geochemistry, 18(5): 745–756. https://doi.org/10.1016/0146-6380(92)90100-c |
| Dai, S. F., Zhao, L., Wei, Q., et al., 2020. Resource of Critical Metals in Coal-Bearing Sequences in China: Enrichment Types and Distribution. Chinese Science Bulletin, 65: 3715–3729 (in Chinese) |
| Dias, R. F., Freeman, K. H., Lewan, M. D., et al., 2002. δ13C of Low-Molecular-Weight Organic Acids Generated by the Hydrous Pyrolysis of Oil-Prone Source Rocks. Geochimica et Cosmochimica Acta, 66(15): 2755–2769. https://doi.org/10.1016/s0016-7037(02)00871-2 |
| Eglinton, T. I., Curtis, C. D., Rowland, S. J., 1987. Generation of Water-Soluble Organic Acids from Kerogen during Hydrous Pyrolysis: Implications for Porosity Development. Mineralogical Magazine, 51(362): 495–503. https://doi.org/10.1180/minmag.1987.051.362.04 |
| Faksness, L. G., Grini, P. G., Daling, P. S., 2004. Partitioning of Semi-Soluble Organic Compounds between the Water Phase and Oil Droplets in Produced Water. Marine Pollution Bulletin, 48(7/8): 731–742. https://doi.org/10.1016/j.marpolbul.2003.10.018 |
| Fisher, J. B., 1987. Distribution and Occurrence of Aliphatic Acid Anions in Deep Subsurface Waters. Geochimica et Cosmochimica Acta, 51(9): 2459–2468. https://doi.org/10.1016/0016-7037(87)90297-3 |
| Gao, J. L., Ni, Y. Y., Li, W., et al., 2020. Pyrolysis of Coal Measure Source Rocks at Highly to over Mature Stage and Its Geological Implications. Petroleum Exploration and Development, 47(4): 773–780. https://doi.org/10.1016/s1876-3804(20)60092-1 |
| Gilles, M., Brun, E., Sicard-Roselli, C., 2018. Quantification of Hydroxyl Radicals and Solvated Electrons Produced by Irradiated Gold Nanoparticles Suggests a Crucial Role of Interfacial Water. Journal of Colloid and Interface Science, 525: 31–38. https://doi.org/10.1016/j.jcis.2018.04.017 |
| Gligorovski, S., Strekowski, R., Barbati, S., et al., 2015. Environmental Implications of Hydroxyl Radicals (•OH). Chemical Reviews, 115(24): 13051–13092. https://doi.org/10.1021/cr500310b |
| Gong, L., Gao, X. Z., Qu, F. T., et al., 2023. Reservoir Quality and Controlling Mechanism of the Upper Paleogene Fine-Grained Sandstones in Lacustrine Basin in the Hinterlands of Northern Qaidam Basin, NW China. Journal of Earth Science, 34(3): 806–823. https://doi.org/10.1007/s12583-022-1701-6 |
| Hawkes, H. E., 1972. Free Hydrogen in Genesis of Petroleum: Geological Notes. AAPG Bulletin, 56(11): 2268–2270. https://doi.org/10.1306/819a4202-16c5-11d7-8645000102c1865d |
| He, X. Q., Liu, X. F., Nie, B. S., et al., 2017. FTIR and Raman Spectroscopy Characterization of Functional Groups in Various Rank Coals. Fuel, 206: 555–563. https://doi.org/10.1016/j.fuel.2017.05.101 |
| Helten, O., Ostertag-Henning, C., Bach, W., et al., 2022. Generation and Decomposition of Low-Molecular-Weight Organic Acids in Hydrous Pyrolysis Experiments with Opalinus Clay Rock. Organic Geochemistry, 172: 104481. https://doi.org/10.1016/j.orggeochem.2022.104481 |
| Heuer, V. B., Inagaki, F., Morono, Y., et al., 2020. Temperature Limits to Deep Subseafloor Life in the Nankai Trough Subduction Zone. Science, 370(6521): 1230–1234. https://doi.org/10.1126/science.abd7934 |
| Hu, W. X., Kang, X., Cao, J., et al., 2018. Thermochemical Oxidation of Methane Induced by High-Valence Metal Oxides in a Sedimentary Basin. Nature Communications, 9: 5131. https://doi.org/10.1038/s41467-018-07267-x |
| Huang, C. G., Zhao, F., Yuan, J. Y., et al., 2016. Acid Fluids Reconstruction Clastic Reservoir Experiment in Qaidam Saline Lacustrine Basin, China. Carbonates and Evaporites, 31(3): 319–328. https://doi.org/10.1007/s13146-015-0273-2 |
| Huang, J., Ma, C. Q., Zhang, S. H., et al., 2024. Characteristics, Distribution Patterns, and Classification of Volcanic Reservoirs in the Huanghua Depression, Bohai Bay Basin, China. Journal of Earth Science, 35(5): 1464–1481. https://doi.org/10.1007/s12583-022-1781-3 |
| Huang, X. W., Jin, Z. J., Liu, Q. Y., et al., 2022. Geochemical Characteristics of Catalytic Hydrogenation of Low-Mature Kerogen under Deep Fluids. Frontiers in Earth Science, 10: 885860. https://doi.org/10.3389/feart.2022.885860 |
| Ivanova, A., Mitiurev, N., Cheremisin, A., et al., 2019. Characterization of Organic Layer in Oil Carbonate Reservoir Rocks and Its Effect on Microscale Wetting Properties. Scientific Reports, 9: 10667. https://doi.org/10.1038/s41598-019-47139-y |
| Jia, L. Q., Cai, C. F., Jiang, L., et al., 2016. Petrological and Geochemical Constraints on Diagenesis and Deep Burial Dissolution of the Ordovician Carbonate Reservoirs in the Tazhong Area, Tarim Basin, NW China. Marine and Petroleum Geology, 78: 271–290. https://doi.org/10.1016/j.marpetgeo.2016.09.031 |
| Jiang, F. J., Chen, X., Wang, P. W., et al., 2024. Genesis and Accumulation of Paleo-Oil Reservoir in Dabei Area, Kuqa Depression, Northwest China: Implications for Tight-Gas Accumulation. Journal of Earth Science, 35(2): 655–665. https://doi.org/10.1007/s12583-021-1562-4 |
| Jin, Z. J., Zhang, L. P., Yang, L., et al., 2004. A Preliminary Study of Mantle-Derived Fluids and Their Effects on Oil/Gas Generation in Sedimentary Basins. Journal of Petroleum Science and Engineering, 41(1/2/3): 45–55. https://doi.org/10.1016/s0920-4105(03)00142-6 |
| Jones, T. J., Le Moigne, Y., Russell, J. K., et al., 2022. Inflated Pyroclasts in Proximal Fallout Deposits Reveal Abrupt Transitions in Eruption Behaviour. Nature Communications, 13: 2832. https://doi.org/10.1038/s41467-022-30501-6 |
| Kawamura, K., Kaplan, I. R., 1987. Dicarboxylic Acids Generated by Thermal Alteration of Kerogen and Humic Acids. Geochimica et Cosmochimica Acta, 51(12): 3201–3207. https://doi.org/10.1016/0016-7037(87)90128-1 |
| Kawamura, K., Tannenbaum, E., Huizinga, B. J., et al., 1986. Volatile Organic Acids Generated from Kerogen during Laboratory Heating. Geochemical Journal, 20: 51–59. https://doi.org/10.2343/geochemj.20.51 |
| Kharaka, Y. K., Lundegard, P. D., Ambats, G., et al., 1993. Generation of Aliphatic Acid Anions and Carbon Dioxide by Hydrous Pyrolysis of Crude Oils. Applied Geochemistry, 8(4): 317–324. https://doi.org/10.1016/0883-2927(93)90001-w |
| Kiyosu, Y., Imaizumi, S., 1996. Carbon and Hydrogen Isotope Fractionation during Oxidation of Methane by Metal Oxides at Temperatures from 400 to 530 ℃. Chemical Geology, 133(1/2/3/4): 279–287. https://doi.org/10.1016/s0009-2541(96)00078-2 |
| Knauss, K. G., Copenhaver, S. A., 1995. The Effect of Malonate on the Dissolution Kinetics of Albite, Quartz, and Microcline as a Function of pH at 70 ℃. Applied Geochemistry, 10(1): 17–33. https://doi.org/10.1016/0883-2927(94)00045-8 |
| Lang, S. Q., Butterfield, D. A., Schulte, M., et al., 2010. Elevated Concentrations of Formate, Acetate and Dissolved Organic Carbon Found at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 74(3): 941–952. https://doi.org/10.1016/j.gca.2009.10.045 |
| Lewan, M. D., 1997. Experiments on the Role of Water in Petroleum Formation. Geochimica et Cosmochimica Acta, 61(17): 3691–3723. https://doi.org/10.1016/s0016-7037(97)00176-2 |
| Li, D., Liu, L., Wang, Z. W., et al., 2024. Tectonosedimentary Patterns of Multiple Interacting Source-to-Sink Systems of the Permian Shanxi Formation, Ordos Basin, China: Insights from Sedimentology and Detrital Zircon U-Pb Geochronology. Marine and Petroleum Geology, 168: 107034. https://doi.org/10.1016/j.marpetgeo.2024.107034 |
| Li, J. J., Ma, Y., Huang, K. Z., et al., 2018. Quantitative Characterization of Organic Acid Generation, Decarboxylation, and Dissolution in a Shale Reservoir and the Corresponding Applications—A Case Study of the Bohai Bay Basin. Fuel, 214: 538–545. https://doi.org/10.1016/j.fuel.2017.11.034 |
| Li, J., Li, Y. J., Li, P. P., et al., 2021. Simulation Study of the Thermostability of Organic Acid at the Temperature and Pressure Conditions of Deep Layers: A Case Study of Acetic Acid and Oxalic Acid. Acta Sedimentologica Sinica, 394: 1047–1056 (in Chinese with English Abstract) |
| Li, P. P., Zhou, S. X., Zhang, X. D., et al., 2021a. Distributions and Evolution Model of Water-Soluble Organic Acids for Coals with Different Thermal Maturations. Fuel, 283: 118863. https://doi.org/10.1016/j.fuel.2020.118863 |
| Li, P. P., Zhou, S. X., Ji, B. Q., et al., 2021b. Water-Soluble Organic Acids in Sedimentary Rocks: Compositions and Influencing Factors. Journal of Natural Gas Geoscience, 6(3): 173–181. https://doi.org/10.1016/j.jnggs.2021.06.003 |
| Li, P. P., Zhou, S. X., Liu, Q. Y., et al., 2025. Mechanism of Water-Induced Alterations to Nanoscale Pores: Implications from Anhydrous versus Hydrous Pyrolysis. Fundamental Research, 5(5): 2111–2120. https://doi.org/10.1016/j.fmre.2023.07.014 |
| Li, Y. H., Zhang, M. J., Wang, X. J., et al., 2010. Accumulation Mechanism of Composite Reservoir of Upper Triassic Yanchang Formation in Northwestern Ordos Basin. Lithologic Reservoirs, 22(2): 32–36 (in Chinese with English Abstract) |
| Li, Y. J., Zhou, S. X., Li, J., et al., 2017. Experimental Study of the Decomposition of Acetic Acid under Conditions Relevant to Deep Reservoirs. Applied Geochemistry, 84: 306–313. https://doi.org/10.1016/j.apgeochem.2017.07.013 |
| Liang, X. P., Zhao, Q. Y., Dong, Y., et al., 2021. Experimental Investigation on Supercritical Water Gasification of Organic-Rich Shale with Low Maturity for Syngas Production. Energy & Fuels, 35(9): 7657–7665. https://doi.org/10.1021/acs.energyfuels.0c04140 |
| Liu, Q. Y., Li, P., Jiang, L., et al., 2024. Distinctive Volcanic Ash-Rich Lacustrine Shale Deposition Related to Chemical Weathering Intensity during the Late Triassic: Evidence from Lithium Contents and Isotopes. Science Advances, 10(11): eadi6594. https://doi.org/10.1126/sciadv.adi6594 |
| Liu, Q. Y., Zhu, D. Y., Meng, Q. Q., et al., 2019. The Scientific Connotation of Oil and Gas Formations under Deep Fluids and Organic-Inorganic Interaction. Science China Earth Sciences, 62(3): 507–528. https://doi.org/10.1007/s11430-018-9281-2 |
| Lu, Z. D., Ping, H. W., Chen, H. H., et al., 2024. Geochemical Characteristics of Ordovician Crude Oils in the FI17 Strike-Slip Fault Zone of the Fuman Oilfield, Tarim Basin: Implications for Ultra-Deep Hydrocarbon Accumulation in the Tarim Basin. Marine and Petroleum Geology, 163: 106800. https://doi.org/10.1016/j.marpetgeo.2024.106800 |
| Luek, J. L., Gonsior, M., 2017. Organic Compounds in Hydraulic Fracturing Fluids and Wastewaters: A Review. Water Research, 123: 536–548. https://doi.org/10.1016/j.watres.2017.07.012 |
| Lundegard, P. D., Senftle, J. T., 1987. Hydrous Pyrolysis: A Tool for the Study of Organic Acid Synthesis. Applied Geochemistry, 2(5/6): 605–612. https://doi.org/10.1016/0883-2927(87)90012-6 |
| Ma, Y. S., He, Z. L., Zhao, P. R., et al., 2019. A New Progress in Formation Mechanism of Deep and Ultra-Deep Carbonate Reservoir. Acta Petrolei Sinica, 40: 1415–1425 (in Chinese with English Abstract) |
| MacGowan, D. B., Surdam, R. C., 1990. Carboxylic Acid Anions in Formation Waters, San Joaquin Basin and Louisiana Gulf Coast, U. S. A. —Implications for Clastic Diagenesis. Applied Geochemistry, 5(5/6): 687–701. https://doi.org/10.1016/0883-2927(90)90065-d |
| Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sedimentary Geology, 140(1/2): 143–175. https://doi.org/10.1016/s0037-0738(00)00176-7 |
| Mangi, H. N., Yan, D. T., Hameed, N., et al., 2020. Pore Structure Characteristics and Fractal Dimension Analysis of Low Rank Coal in the Lower Indus Basin, SE Pakistan. Journal of Natural Gas Science and Engineering, 77: 103231. https://doi.org/10.1016/j.jngse.2020.103231 |
| Manning, D. A. C., Rae, E. I. C., Gestsdóttir, K., 1994. Appraisal of the Use of Experimental and Analogue Studies in the Assessment of the Role of Organic Acid Anions in Diagenesis. Marine and Petroleum Geology, 11(1): 10–19. https://doi.org/10.1016/0264-8172(94)90004-3 |
| McCollom, T. M., Seewald, J. S., 2003. Experimental Constraints on the Hydrothermal Reactivity of Organic Acids and Acid Anions: I. Formic Acid and Formate. Geochimica et Cosmochimica Acta, 67(19): 3625–3644. https://doi.org/10.1016/s0016-7037(03)00136-4 |
| McDermott, J. M., Seewald, J. S., German, C. R., et al., 2015. Pathways for Abiotic Organic Synthesis at Submarine Hydrothermal Fields. Proceedings of the National Academy of Sciences of the United States of America, 112(25): 7668–7672. https://doi.org/10.1073/pnas.1506295112 |
| Meng, T., Liu, P., Qiu, L. W., et al., 2017. Formation and Distribution of the High Quality Reservoirs in a Deep Saline Lacustrine Basin: A Case Study from the Upper Part of the 4th Member of Paleogene Shahejie Formation in Bonan Sag, Jiyang Depression, Bohai Bay Basin, East China. Petroleum Exploration and Development, 44(6): 948–959. https://doi.org/10.1016/s1876-3804(17)30107-6 |
| Nosaka, Y., Nosaka, A. Y., 2017. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews, 117(17): 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161 |
| Orem, W., Tatu, C., Varonka, M., et al., 2014. Organic Substances in Produced and Formation Water from Unconventional Natural Gas Extraction in Coal and Shale. International Journal of Coal Geology, 126: 20–31. https://doi.org/10.1016/j.coal.2014.01.003 |
| Pei, S. Z., You, S. J., Ma, J., et al., 2020. Electron Spin Resonance Evidence for Electro-Generated Hydroxyl Radicals. Environmental Science & Technology, 54(20): 13333–13343. https://doi.org/10.1021/acs.est.0c05287 |
| Prasad, R., Sulaxna, K. A., 2005. Kinetics of Thermal Decomposition of Iron(Ⅲ) Dicarboxylate Complexes. Journal of Thermal Analysis and Calorimetry, 81(2): 441–450. https://doi.org/10.1007/s10973-005-0804-5 |
| Robin, P. L., Rouxhet, P. G., 1978. Characterization of Kerogens and Study of Their Evolution by Infrared Spectroscopy: Carbonyl and Carboxyl Groups. Geochimica et Cosmochimica Acta, 42(9): 1341–1349. https://doi.org/10.1016/0016-7037(78)90039-x |
| Salah, M. K., Janjuhah, H. T., Sanjuan, J., 2023. Analysis and Characterization of Pore System and Grain Sizes of Carbonate Rocks from Southern Lebanon. Journal of Earth Science, 34(1): 101–121. https://doi.org/10.1007/s12583-020-1057-8 |
| Seewald, J. S., 2001. Aqueous Geochemistry of Low Molecular Weight Hydrocarbons at Elevated Temperatures and Pressures: Constraints from Mineral Buffered Laboratory Experiments. Geochimica et Cosmochimica Acta, 65(10): 1641–1664. https://doi.org/10.1016/s0016-7037(01)00544-0 |
| Seewald, J. S., 2003. Organic-Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature, 426(6964): 327–333. https://doi.org/10.1038/nature02132 |
| Seredin, V. V., Dai, S. F., Sun, Y. Z., et al., 2013. Coal Deposits as Promising Sources of Rare Metals for Alternative Power and Energy-Efficient Technologies. Applied Geochemistry, 31: 1–11. https://doi.org/10.1016/j.apgeochem.2013.01.009 |
| Seredin, V. V., Finkelman, R. B., 2008. Metalliferous Coals: A Review of the Main Genetic and Geochemical Types. International Journal of Coal Geology, 76(4): 253–289. https://doi.org/10.1016/j.coal.2008.07.016 |
| Sherwood Lollar, B., Heuer, V. B., McDermott, J., et al., 2021. A Window into the Abiotic Carbon Cycle-Acetate and Formate in Fracture Waters in 2.7 Billion Year-Old Host Rocks of the Canadian Shield. Geochimica et Cosmochimica Acta, 294: 295–314. https://doi.org/10.1016/j.gca.2020.11.026 |
| Smith, M., Pimblott, S. M., LaVerne, J. A., 2021. Hydroxyl Radical Yields in the Heavy Ion Radiolysis of Water. Radiation Physics and Chemistry, 188: 109629. https://doi.org/10.1016/j.radphyschem.2021.109629 |
| Surdam, R. C., Boese, S. W., Crossey, L. J., 1984. The Chemistry of Secondary Porosity. Clastic Diagenesis. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/m37435c8 |
| Surdam, R. C., Crossey, L. J., 1987. Integrated Diagenetic Modeling: A Process-Oriented Approach for Clastic Systems. Annual Review of Earth and Planetary Sciences, 15: 141–170. https://doi.org/10.1146/annurev.ea.15.050187.001041 |
| Surdam, R. C., MacGowan, D. B., 1987. Oilfield Waters and Sandstone Diagenesis. Applied Geochemistry, 2(5/6): 613–619. https://doi.org/10.1016/0883-2927(87)90013-8 |
| Surdam, R. C., Crossey, L. J., Hagen, E. S., et al., 1989. Organic-Inorganic Interactions and Sandstone Diagenesis. AAPG Bulletin, 73(1): 1–23. https://doi.org/10.1306/703c9ad7-1707-11d7-8645000102c1865d |
| Wan, Y., Bourdet, J., Hu, W. X., et al., 2021. Experimental Investigations on the Thermochemical Oxidation of n-Alkane and Alcohol Compounds by MnO2 and Fe2O3 at Temperatures up to 325 ℃. Chemical Geology, 559: 119982. https://doi.org/10.1016/j.chemgeo.2020.119982 |
| Wang, Q. H., 2023. Origin of Gas Condensate Reservoir in Fuman Oilfield, Tarim Basin, NW China. Petroleum Exploration and Development, 50(6): 1295–1307. https://doi.org/10.1016/s1876-3804(24)60467-2 |
| Welch, S. A., Ullman, W. J., 1996. Feldspar Dissolution in Acidic and Organic Solutions: Compositional and pH Dependence of Dissolution Rate. Geochimica et Cosmochimica Acta, 60(16): 2939–2948. https://doi.org/10.1016/0016-7037(96)00134-2 |
| Workman, A. L., Hanor, J. S., 1985. Evidence for Large-Scale Vertical Migration of Dissolved Fatty Acids in Louisiana Oil Field Brines: Iberia Field, South-Central Louisiana. Gulf Coast Association of Geological Societies, 35: 293–300. https://doi.org/10.1306/948852dc-1704-11d7-8645000102c1865d |
| Xiong, H. Q., Lee, J. K., Zare, R. N., et al., 2020. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. The Journal of Physical Chemistry Letters, 11(17): 7423–7428. https://doi.org/10.1021/acs.jpclett.0c02061 |
| Xu, H. Y., Liu, Q. Y., Jin, Z. J., et al., 2024. Organic Compounds in Geological Hydrothermal Systems: A Critical Review of Molecular Transformation and Distribution. Earth-Science Reviews, 252: 104757. https://doi.org/10.1016/j.earscirev.2024.104757 |
| Xu, H. Y., Liu, Q. Y., Zhu, D. Y., et al., 2022. Molecular Evidence Reveals the Presence of Hydrothermal Effect on Ultra-Deep-Preserved Organic Compounds. Chemical Geology, 608: 121045. https://doi.org/10.1016/j.chemgeo.2022.121045 |
| Yuan, G. H., Cao, Y. C., Gluyas, J., et al., 2015. Feldspar Dissolution, Authigenic Clays, and Quartz Cements in Open and Closed Sandstone Geochemical Systems during Diagenesis: Typical Examples from Two Sags in Bohai Bay Basin, East China. AAPG Bulletin, 99(11): 2121–2154. https://doi.org/10.1306/07101514004 |
| Yuan, G. H., Cao, Y. C., Schulz, H. M., et al., 2019a. A Review of Feldspar Alteration and Its Geological Significance in Sedi-mentary Basins: From Shallow Aquifers to Deep Hydrocarbon Reservoirs. Earth-Science Reviews, 191: 114–140. https://doi.org/10.1016/j.earscirev.2019.02.004 |
| Yuan, G. H., Cao, Y. C., Zan, N. M., et al., 2019b. Coupled Mineral Alteration and Oil Degradation in Thermal Oil-Water-Feldspar Systems and Implications for Organic-Inorganic Interactions in Hydrocarbon Reservoirs. Geochimica et Cosmochimica Acta, 248: 61–87. https://doi.org/10.1016/j.gca.2019.01.001 |
| Yuan, G. H., Jin, Z. H., Cao, Y. C., et al., 2024. Microdroplets Initiate Organic-Inorganic Interactions and Mass Transfer in Thermal Hydrous Geosystems. Nature Communications, 15: 4960. https://doi.org/10.1038/s41467-024-49293-y |
| Zhang, K., Liu, R., Liu, Z. J., et al., 2020. Influence of Volcanic and Hydrothermal Activity on Organic Matter Enrichment in the Upper Triassic Yanchang Formation, Southern Ordos Basin, Central China. Marine and Petroleum Geology, 112: 104059. https://doi.org/10.1016/j.marpetgeo.2019.104059 |
| Zhang, S., Zhang, X. D., Li, G. Z., et al., 2019. Distribution Characteristics and Geochemistry Mechanisms of Carbon Isotope of Coalbed Methane in Central-Southern Qinshui Basin, China. Fuel, 244: 1–12. https://doi.org/10.1016/j.fuel.2019.01.129 |
| Zhang, X. D., Qin, Y., Sang, S. X., 2006. Group Composition Characteristic of the Fractional Ultrasonic-Extraction of Different Metamorphism Coals. Coal Conversion, 29: 5–9 (in Chinese with English Abstract) |
| Zhang, Y. W., Zeng, J. H., Guo, J. Y., 2009. Simulated Experimental Study of Feldspar Dissolution in Low Temperature. Geological Review, 55(1): 134–142. https://doi.org/10.16509/j.georeview. 2009. 01.007 (in Chinese with English Abstract) doi: 10.16509/j.georeview.2009.01.007 |
| Zhao, B. S., Li, R. X., Qin, X. L., et al., 2021. Geochemical Characteristics and Mechanism of Organic Matter Accumulation of Marine-Continental Transitional Shale of the Lower Permian Shanxi Formation, Southeastern Ordos Basin, North China. Journal of Petroleum Science and Engineering, 205: 108815. https://doi.org/10.1016/j.petrol.2021.108815 |
| Zhong, D. K., Zhu, X. M., 2008. Characteristics and Genetic Mechanism of Deep-Buried Clastic Eureservoir in China. Science in China Series D: Earth Sciences, 51(2): 11–19. https://doi.org/10.1007/s11430-008-6012-y |
| Zhu, Y. L., Vieth-Hillebrand, A., Wilke, F. D. H., et al., 2015. Characterization of Water-Soluble Organic Compounds Released from Black Shales and Coals. International Journal of Coal Geology, 150/151: 265–275. https://doi.org/10.1016/j.coal.2015.09.009 |