| Citation: | Zisen Liu, Yi Zhang, Qiaohong Zhou, Zhenbin Wu, Yanxin Wang. In-situ Technologies for Controlling Sediment Phosphorus in Eutrophic Shallow Lakes: A Review. Journal of Earth Science, 2025, 36(1): 113-133. doi: 10.1007/s12583-024-0118-9 |
Phosphorus (P) is the main limiting factor in eutrophication. Sediment P can be released decades after its accumulation. Lake restoration requires the reduction of internal sediment P loading. Although we tried to provide a comprehensive summary of the state-of-the-art sediment P control technologies, our analyses in this review are focused on the mechanisms, control effects, and application conditions of different
| Acelas, N. Y., Martin, B. D., López, D., et al., 2015. Selective Removal of Phosphate from Wastewater Using Hydrated Metal Oxides Dispersed within Anionic Exchange Media. Chemosphere, 119: 1353–1360. https://doi.org/10.1016/j.chemosphere.2014.02.024 |
| Association of American Railroads, 2018. Railroads and Chemicals. AAR, Washington DC |
| Berg, U., Neumann, T., Donnert, D., et al., 2004. Sediment Capping in Eutrophic Lakes-Efficiency of Undisturbed Calcite Barriers to Immobilize Phosphorus. Applied Geochemistry, 19(11): 1759–1771. https://doi.org/10.1016/j.apgeochem.2004.05.004 |
| Brattebo, S. K., Welch, E. B., Gibbons, H. L., et al., 2017. Effectiveness of Alum in a Hypereutrophic Lake with Substantial External Loading. Lake and Reservoir Management, 33(2): 108–118. https://doi.org/10.1080/10402381.2017.1311390 |
| Carvalho L, Maberly S, May L, et al., 2005. Risk Assessment Methodology for Determining Nutrient Impacts in Surface Freshwater Bodies. Environment Agency, Bristol |
| Chao, C. X., Wang, L. G., Li, Y., et al., 2021. Response of Sediment and Water Microbial Communities to Submerged Vegetations Restoration in a Shallow Eutrophic Lake. Science of the Total Environment, 801: 149701. https://doi.org/10.1016/j.scitotenv.2021.149701 |
| Chen, M. S., Cui, J. Z., Lin, J., et al., 2018. Successful Control of Internal Phosphorus Loading after Sediment Dredging for 6 Years: A Field Assessment Using High-Resolution Sampling Techniques. Science of the Total Environment, 616: 927–936. https://doi.org/10.1016/j.scitotenv.2017.10.227 |
| Chen, Z. Q., Zhao, D., Li, M. L., et al., 2020. A Field Study on the Effects of Combined Biomanipulation on the Water Quality of a Eutrophic Lake. Environmental Pollution, 265: 115091. https://doi.org/10.1016/j.envpol.2020.115091 |
| Daldorph, P. W. G., 1999. A Reservoir in Management-Induced Transition between Ecological States. In: The Ecological Bases for Lake and Reservoir Management. Springer Netherlands, Dordrecht. 325–333. https://doi.org/10.1007/978-94-017-3282-6_28 |
| Deng, J. M., Paerl, H. W., Qin, B. Q., et al., 2018. Climatically-Modulated Decline in Wind Speed may Strongly Affect Eutrophication in Shallow Lakes. Science of the Total Environment, 645: 1361–1370. https://doi.org/10.1016/j.scitotenv.2018.07.208 |
| Deng, S. J., Chen, J. Q., Chang, J. J., 2021. Application of Biochar as an Innovative Substrate in Constructed Wetlands/Biofilters for Wastewater Treatment: Performance and Ecological Benefits. Journal of Cleaner Production, 293: 126156. https://doi.org/10.1016/j.jclepro.2021.126156 |
| Deppe, T., Benndorf, J., 2002. Phosphorus Reduction in a Shallow Hypereutrophic Reservoir by In-Lake Dosage of Ferrous Iron. Water Research, 36(18): 4525–4534. https://doi.org/10.1016/S0043-1354(02)00193-8 |
| Ding, S. M., Chen, M. S., Cui, J. Z., et al., 2018. Reactivation of Phosphorus in Sediments after Calcium-Rich Mineral Capping: Implication for Revising the Laboratory Testing Scheme for Immobilization Efficiency. Chemical Engineering Journal, 331: 720–728. https://doi.org/10.1016/j.cej.2017.09.010 |
| Dittrich, M., Gabriel, O., Rutzen, C., et al., 2011. Lake Restoration by Hypolimnetic Ca(OH)2 Treatment: Impact on Phosphorus Sedimentation and Release from Sediment. Science of the Total Environment, 409(8): 1504–1515. https://doi.org/10.1016/j.scitotenv.2011.01.006 |
| Egemose, S., Reitzel, K., Andersen, F. Ø., et al., 2010. Chemical Lake Restoration Products: Sediment Stability and Phosphorus Dynamics. Environmental Science & Technology, 44(3): 985–991. https://doi.org/10.1021/es903260y |
| Egemose, S., Wauer, G., Kleeberg, A., 2009. Resuspension Behaviour of Aluminium Treated Lake Sediments: Effects of Ageing and pH. Hydrobiologia, 636(1): 203–217. https://doi.org/10.1007/s10750-009-9949-8 |
| Epe, T. S., Finsterle, K., Yasseri, S., 2017. Nine Years of Phosphorus Management with Lanthanum Modified Bentonite (Phoslock) in a Eutrophic, Shallow Swimming Lake in Germany. Lake and Reservoir Management, 33(2): 119–129. https://doi.org/10.1080/10402381.2016.1263693 |
| Fan, Y., Li, Y. W., Wu, D. Y., et al., 2017. Application of Zeolite/Hydrous Zirconia Composite as a Novel Sediment Capping Material to Immobilize Phosphorus. Water Research, 123: 1–11. https://doi.org/10.1016/j.watres.2017.06.031 |
| Fang, F., Yang, L. Y., Gan, L., et al., 2014. DO, pH, and Eh Microprofiles in Cyanobacterial Granules from Lake Taihu under Different Environmental Conditions. Journal of Applied Phycology, 26(4): 1689–1699. https://doi.org/10.1007/s10811-013-0211-4 |
| Fang, T., Bao, S. P., Sima, X. F., et al., 2016. Study on the Application of Integrated Eco-Engineering in Purifying Eutrophic River Waters. Ecological Engineering, 94: 320–328. https://doi.org/10.1016/j.ecoleng.2016.06.003 |
| Gibbs, M. M., Hickey, C. W., Özkundakci, D., 2011. Sustainability Assessment and Comparison of Efficacy of Four P-Inactivation Agents for Managing Internal Phosphorus Loads in Lakes: Sediment Incubations. Hydrobiologia, 658(1): 253–275. https://doi.org/10.1007/s10750-010-0477-3 |
| Gibbs, M., Özkundakci, D., 2011. Effects of a Modified Zeolite on P and N Processes and Fluxes across the Lake Sediment-Water Interface Using Core Incubations. Hydrobiologia, 661(1): 21–35. https://doi.org/10.1007/s10750-009-0071-8 |
| Gong, Y., Zhao, D., 2014. Physical-Chemical Processes for Phosphorus Removal and Recovery. In: Comprehensive Water Quality and Purification. Elsevier, Amsterdam. 196–222. https://doi.org/10.1016/b978-0-12-382182-9.00086-4 |
| Grisé, D., Titus, J. E., Wagner, D. J., 1986. Environmental pH Influences Growth and Tissue Chemistry of the Submersed Macrophyte Vallisneria americana. Canadian Journal of Botany, 64(2): 306–310. https://doi.org/10.1139/b86-044 |
| Han, C., Ren, J. H., Wang, Z. D., et al., 2018. Characterization of Phosphorus Availability in Response to Radial Oxygen Losses in the Rhizosphere of Vallisneria Spiralis. Chemosphere, 208: 740–748. https://doi.org/10.1016/j.chemosphere.2018.05.180 |
| Han, F., Zhang, Y., Liu, Z. S., et al., 2020. Effects of Maifanite on Growth, Physiological and Phytochemical Process of Submerged Macrophytes Vallisneria Spiralis. Ecotoxicology and Environmental Safety, 189: 109941. https://doi.org/10.1016/j.ecoenv.2019.109941 |
| Han, Y. Q., Jeppesen, E., Lürling, M., et al., 2022. Combining Lanthanum-Modified Bentonite (LMB) and Submerged Macrophytes Alleviates Water Quality Deterioration in the Presence of Omni-Benthivorous Fish. Journal of Environmental Management, 314: 115036. https://doi.org/10.1016/j.jenvman.2022.115036 |
| Hilt, S., Van de Weyer, K., Köhler, A., et al., 2010. Submerged Macrophyte Responses to Reduced Phosphorus Concentrations in Two Peri-Urban Lakes. Restoration Ecology, 18(s2): 452–461. https://doi.org/10.1111/j.1526-100x.2009.00577.x |
| Himmelheber, D. W., Taillefert, M., Pennell, K. D., et al., 2008. Spatial and Temporal Evolution of Biogeochemical Processes Following in Situ Capping of Contaminated Sediments. Environmental Science & Technology, 42(11): 4113–4120. https://doi.org/10.1021/es702626x |
| Horppila, J., Nurminen, L., 2003. Effects of Submerged Macrophytes on Sediment Resuspension and Internal Phosphorus Loading in Lake Hiidenvesi (Southern Finland). Water Research, 37(18): 4468–4474. https://doi.org/10.1016/S0043-1354(03)00405-6 |
| Horppila, J., Nurminen, L., 2005. Effects of Different Macrophyte Growth Forms on Sediment and P Resuspension in a Shallow Lake. Hydrobiologia, 545(1): 167–175. https://doi.org/10.1007/s10750-005-2677-9 |
| Huser, B. J., Egemose, S., Harper, H., et al., 2016a. Longevity and Effectiveness of Aluminum Addition to Reduce Sediment Phosphorus Release and Restore Lake Water Quality. Water Research, 97: 122–132. https://doi.org/10.1016/j.watres.2015.06.051 |
| Huser, B. J., Futter, M., Lee, J. T., et al., 2016b. In-Lake Measures for Phosphorus Control: The Most Feasible and Cost-Effective Solution for Long-Term Management of Water Quality in Urban Lakes. Water Research, 97: 142–152. https://doi.org/10.1016/j.watres.2015.07.036 |
| Kelly Vargas, K. G., Qi, Z. M., 2019. P Immobilizing Materials for Lake Internal Loading Control: A Review towards Future Developments. Critical Reviews in Environmental Science and Technology, 49(6): 518–552. https://doi.org/10.1080/10643389.2018.1551300 |
| Kim, G., Jung, W., 2010. Role of Sand Capping in Phosphorus Release from Sediment. KSCE Journal of Civil Engineering, 14(6): 815–821. https://doi.org/10.1007/s12205-010-0856-3 |
| Kleeberg, A., Herzog, C., Hupfer, M., 2013. Redox Sensitivity of Iron in Phosphorus Binding Does Not Impede Lake Restoration. Water Research, 47(3): 1491–1502. https://doi.org/10.1016/j.watres.2012.12.014 |
| Kuster, A. C., Kuster, A. T., Huser, B. J., 2020. A Comparison of Aluminum Dosing Methods for Reducing Sediment Phosphorus Release in Lakes. Journal of Environmental Management, 261: 110195. https://doi.org/10.1016/j.jenvman.2020.110195 |
| Lampert, D. J., Sarchet, W. V., Reible, D. D., 2011. Assessing the Effectiveness of Thin-Layer Sand Caps for Contaminated Sediment Management through Passive Sampling. Environmental Science & Technology, 45(19): 8437–8443. https://doi.org/10.1021/es200406a |
| Li, C. J., Yu, H. X., Tabassum, S., et al., 2017. Effect of Calcium Silicate Hydrates (CSH) on Phosphorus Immobilization and Speciation in Shallow Lake Sediment. Chemical Engineering Journal, 317: 844–853. https://doi.org/10.1016/j.cej.2017.02.117 |
| Li, C. J., Yu, H. X., Tabassum, S., et al., 2018. Effect of Calcium Silicate Hydrates Coupled with Myriophyllum Spicatum on Phosphorus Release and Immobilization in Shallow Lake Sediment. Chemical Engineering Journal, 331: 462–470. https://doi.org/10.1016/j.cej.2017.08.134 |
| Li, H. F., Li, Z. J., Qu, J. H., et al., 2018. Combined Effects of Phosphate-Solubilizing Bacterium XMT-5 (Rhizobium Sp. ) and Submerged Macrophyte Ceratophyllum Demersum on Phosphorus Release in Eutrophic Lake Sediments. Environmental Science and Pollution Research International, 25(19): 18990–19000. https://doi.org/10.1007/s11356-018-2022-2 |
| Li, X. D., Chen, J. B., Zhang, Z. Y., et al., 2020. Interactions of Phosphate and Dissolved Organic Carbon with Lanthanum Modified Bentonite: Implications for the Inactivation of Phosphorus in Lakes. Water Research, 181: 115941. https://doi.org/10.1016/j.watres.2020.115941 |
| Li, Y., Wang, L. G., Chao, C. X., et al., 2021. Submerged Macrophytes Successfully Restored a Subtropical Aquacultural Lake by Controlling Its Internal Phosphorus Loading. Environmental Pollution, 268: 115949. https://doi.org/10.1016/j.envpol.2020.115949 |
| Libralato, G., Minetto, D., Lofrano, G., et al., 2018. Toxicity Assessment within the Application of in Situ Contaminated Sediment Remediation Technologies: A Review. Science of the Total Environment, 621: 85–94. https://doi.org/10.1016/j.scitotenv.2017.11.229 |
| Lin, J. W., Li, Y., Zhan, Y. H., et al., 2023a. Combined Amendment and Capping of Sediment with Ferrihydrite and Magnetite to Control Internal Phosphorus Release. Water Research, 235: 119899. https://doi.org/10.1016/j.watres.2023.119899 |
| Lin, J. W., Xiang, W. J., Zhan, Y. H., 2023b. Comparison of Magnetite, Hematite and Goethite Amendment and Capping in Control of Phosphorus Release from Sediment. Environmental Science and Pollution Research International, 30(24): 66080–66101. https://doi.org/10.1007/s11356-023-27063-5 |
| Lin, J. W., Wang, H., Zhan, Y. H., et al., 2016. Evaluation of Sediment Amendment with Zirconium-Reacted Bentonite to Control Phosphorus Release. Environmental Earth Sciences, 75(11): 942. https://doi.org/10.1007/s12665-016-5744-9 |
| Lin, J. W., Zhan, Y. H., Zhu, Z. L., 2011. Evaluation of Sediment Capping with Active Barrier Systems (ABS) Using Calcite/Zeolite Mixtures to Simultaneously Manage Phosphorus and Ammonium Release. Science of the Total Environment, 409(3): 638–646. https://doi.org/10.1016/j.scitotenv.2010.10.031 |
| Lin, J., Sun, Q., Ding, S. M., et al., 2017. Mobile Phosphorus Stratification in Sediments by Aluminum Immobilization. Chemosphere, 186: 644–651. https://doi.org/10.1016/j.chemosphere.2017.08.005 |
| Liu, Z. S., Bai, G. L., Liu, Y. L., et al., 2022b. Long-Term Study of Ecological Restoration in a Typical Shallow Urban Lake. Science of the Total Environment, 846: 157505. https://doi.org/10.1016/j.scitotenv.2022.157505 |
| Liu, Z. S., Zhang, Y., Liu, B. Y., et al., 2017. Adsorption Performance of Modified Bentonite Granular (MBG) on Sediment Phosphorus in all Fractions in the West Lake, Hangzhou, China. Ecological Engineering, 106: 124–131. https://doi.org/10.1016/j.ecoleng.2017.05.042 |
| Liu, Z. S., Zhang, Y., Yan, P., et al., 2020. Synergistic Control of Internal Phosphorus Loading from Eutrophic Lake Sediment Using MMF Coupled with Submerged Macrophytes. Science of the Total Environment, 731: 138697. https://doi.org/10.1016/j.scitotenv.2020.138697 |
| Liu, Z. S., Zou, Y., Liu, Y. L., et al., 2022a. Effective Adsorption of Nutrients from Simulated Domestic Sewage by Modified Maifanite. Environmental Science and Pollution Research International, 29(17): 25939–25951. https://doi.org/10.1007/s11356-021-17661-6 |
| Liu, Z. Y., Jin, Z. H., Li, Y. W., et al., 2007. Sediment Phosphorus Fractions and Profile Distribution at Different Vegetation Growth Zones in a Macrophyte Dominated Shallow Wuliangsuhai Lake, China. Environmental Geology, 52(5): 997–1005. https://doi.org/10.1007/s00254-007-0637-6 |
| Lu, S. Y., Jin, X. C., Liang, L. L., et al., 2013. Influence of Inactivation Agents on Phosphorus Release from Sediment. Environmental Earth Sciences, 68(4): 1143–1151. https://doi.org/10.1007/s12665-012-1816-7 |
| Mikuniya Corporation, 1984. Pilot-Scale Treatment of Nakanoumi Lake, Report to Ministry of Construction. Mikuniya Corporation, Tokyo |
| Miretzky, P., Saralegui, A., Cirelli, A. F., 2004. Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina). Chemosphere, 57(8): 997–1005. https://doi.org/10.1016/j.chemosphere.2004.07.024 |
| Moore, B. C., Christensen, D., Richter, A. C., 2009. Newman Lake Restoration: A Case Study. Part Ⅱ. Microfloc Alum Injection. Lake and Reservoir Management, 25(4): 351–363. https://doi.org/10.1080/07438140903172923 |
| Münch, M. A., van Kaam, R., As, K., et al., 2024. Impact of Iron Addition on Phosphorus Dynamics in Sediments of a Shallow Peat Lake 10 Years after Treatment. Water Research, 248: 120844. https://doi.org/10.1016/j.watres.2023.120844 |
| Murphy, T. P., Hall, K. G., Northcote, T. G., 1988. Lime Treatment of a Hardwater Lake to Reduce Eutrophication. Lake and Reservoir Management, 4(2): 51–62. https://doi.org/10.1080/07438148809354813 |
| Orihel, D. M., Baulch, H. M., Casson, N. J., et al., 2017. Internal Phosphorus Loading in Canadian Fresh Waters: A Critical Review and Data Analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74(12): 2005–2029. https://doi.org/10.1139/cjfas-2016-0500 |
| Özkundakci, D., Hamilton, D. P., Gibbs, M. M., 2011. Hypolimnetic Phosphorus and Nitrogen Dynamics in a Small, Eutrophic Lake with a Seasonally Anoxic Hypolimnion. Hydrobiologia, 661(1): 5–20. https://doi.org/10.1007/s10750-010-0358-9 |
| Paice, R. L., Chambers, J. M., Robson, B. J., 2016. Outcomes of Submerged Macrophyte Restoration in a Shallow Impounded, Eutrophic River. Hydrobiologia, 778(1): 179–192. https://doi.org/10.1007/s10750-015-2441-8 |
| Pan, G., Yang, B., Wang, D., et al., 2011. In-Lake Algal Bloom Removal and Submerged Vegetation Restoration Using Modified Local Soils. Ecological Engineering, 37(2): 302–308. https://doi.org/10.1016/j.ecoleng.2010.11.019 |
| Prepas, E. E., Babin, J., Murphy, T. P., et al., 2001. Long-Term Effects of Successive Ca(OH)2 and CaCO3 Treatments on the Water Quality of Two Eutrophic Hardwater Lakes. Freshwater Biology, 46(8): 1089–1103. https://doi.org/10.1046/j.1365-2427.2001.00792.x |
| Qin, B. Q., Zhang, Y. L., Zhu, G. W., et al., 2023. Eutrophication Control of Large Shallow Lakes in China. Science of the Total Environment, 881: 163494. https://doi.org/10.1016/j.scitotenv.2023.163494 |
| Qin, B. Q., Zhu, G. W., Zhang, L., et al., 2006. Estimation of Internal Nutrient Release in Large Shallow Lake Taihu, China. Science in China Series D, 49(1): 38–50. https://doi.org/10.1007/s11430-006-8104-x |
| Reitzel, K., Hansen, J., Andersen, F. O., et al., 2005. Lake Restoration by Dosing Aluminum Relative to Mobile Phosphorus in the Sediment. Environmental Science & Technology, 39(11): 4134–4140. https://doi.org/10.1021/es0485964 |
| Rooney, N., Kalff, J., Habel, C., 2003. The Role of Submerged Macrophyte Beds in Phosphorus and Sediment Accumulation in Lake Memphremagog, Quebec, Canada. Limnology and Oceanography, 48(5): 1927–1937. https://doi.org/10.4319/lo.2003.48.5.1927 |
| Schindler, D. W., Hecky, R. E., Findlay, D. L., et al., 2008. Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32): 11254–11258. https://doi.org/10.1073/pnas.0805108105 |
| Schulz, M., Kozerski, H. P., Pluntke, T., et al., 2003. The Influence of Macrophytes on Sedimentation and Nutrient Retention in the Lower River Spree (Germany). Water Research, 37(3): 569–578. https://doi.org/10.1016/S0043-1354(02)00276-2 |
| Smolders, A. J. P., Lamers, L. P. M., Moonen, M., et al., 2001. Controlling Phosphate Release from Phosphate-Enriched Sediments by Adding Various Iron Compounds. Biogeochemistry, 54(2): 219–228. https://doi.org/10.1023/A: 1010660401527 doi: 10.1023/A:1010660401527 |
| Tang, A. P., Wan, J. B., Rong, W., et al., 2015. Importance of pH, Dissolved Oxygen and Light to Phosphorus Release from Ditch Sediments. Nature Environment and Pollution Technology, 14: 475–484. |
| van Oosterhout, F., Yasseri, S., Noyma, N., et al., 2022. Assessing the Long-Term Efficacy of Internal Loading Management to Control Eutrophication in Lake Rauwbraken. Inland Waters, 12(1): 61–77. https://doi.org/10.1080/20442041.2021.1969189 |
| Wang, C. H., Jiang, H. L., 2016. Chemicals Used for in Situ Immobilization to Reduce the Internal Phosphorus Loading from Lake Sediments for Eutrophication Control. Critical Reviews in Environmental Science and Technology, 46: 947–997. https://doi.org/10.1080/10643389.2016.1200330 |
| Wang, C., Liu, S. Y., Jahan, T. E., et al., 2017. Short Term Succession of Artificially Restored Submerged Macrophytes and Their Impact on the Sediment Microbial Community. Ecological Engineering, 103: 50–58. https://doi.org/10.1016/j.ecoleng.2017.02.030 |
| Wang, C., Liu, Z. S., Zhang, Y., et al., 2018. Synergistic Removal Effect of P in Sediment of all Fractions by Combining the Modified Bentonite Granules and Submerged Macrophyte. Science of the Total Environment, 626: 458–467. https://doi.org/10.1016/j.scitotenv.2018.01.093 |
| Wang, J. F., Chen, J. G., Yu, P. P., et al., 2020. Oxygenation and Synchronous Control of Nitrogen and Phosphorus Release at the Sediment-Water Interface Using Oxygen Nano-Bubble Modified Material. Science of the Total Environment, 725: 138258. https://doi.org/10.1016/j.scitotenv.2020.138258 |
| Wang, J. J., Gao, M. M., Yang, Y. J., et al., 2022. Interactions of Vallisneria natans and Iron-Oxidizing Bacteria Enhance Iron-Bound Phosphorus Formation in Eutrophic Lake Sediments. Microorganisms, 10(2): 413. https://doi.org/10.3390/microorganisms10020413 |
| Wang, J. J., Zhang, S. W., Que, T. Y., et al., 2021. Mitigation of Eutrophication in a Shallow Lake: The Influences of Submerged Macrophytes on Phosphorus and Bacterial Community Structure in Sediments. Sustainability, 13(17): 9833. https://doi.org/10.3390/su13179833 |
| Wang, L. Z., Wang, G. X., Ge, X. G., et al., 2012. Influence of Submerged Plants on Phosphorus Fractions and Profiles of Sediments in Gucheng Lake. Soil and Sediment Contamination, 21(5): 640–654. https://doi.org/10.1080/15320383.2012.672491 |
| Wang, S. R., Jiao, L. X., Yang, S. W., et al., 2012. Effects of Organic Matter and Submerged Macrophytes on Variations of Alkaline Phosphatase Activity and Phosphorus Fractions in Lake Sediment. Journal of Environmental Management, 113: 355–360. https://doi.org/10.1016/j.jenvman.2012.09.007 |
| Wauer, G., Gonsiorczyk, T., Casper, P., et al., 2005. P-Immobilisation and Phosphatase Activities in Lake Sediment Following Treatment with Nitrate and Iron. Limnologica, 35(1/2): 102–108. https://doi.org/10.1016/j.limno.2004.08.001 |
| Wei, G. N., Xu, J. N., Yang, B., et al., 2023. Controlling Internal Nutrients Loading at Low Temperature Using Oxygen-Loading Zeolite and Submerged Macrophytes Enhances Environmental Resilience to Subsequent High Temperature. Environmental Research, 231: 116101. https://doi.org/10.1016/j.envres.2023.116101 |
| Willenbring, P. R., Miller, M. S., Weidenbacher, W. D., 1984. Reducing Sediment Phosphorus Release Rates in Long Lake through the Use of Calcium Nitrate. Lake and Reservoir Management, 1(1): 118–121. https://doi.org/10.1080/07438148409354496 |
| Wu, Z. H., Wang, S. R., Luo, J., 2018. Transfer Kinetics of Phosphorus (P) in Macrophyte Rhizosphere and Phytoremoval Performance for Lake Sediments Using DGT Technique. Journal of Hazardous Materials, 350: 189–200. https://doi.org/10.1016/j.jhazmat.2018.02.005 |
| Xia, L., van Dael, T., Bergen, B., et al., 2023. Phosphorus Immobilisation in Sediment by Using Iron Rich By-Product as Affected by Water pH and Sulphate Concentrations. Science of the Total Environment, 864: 160820. https://doi.org/10.1016/j.scitotenv.2022.160820 |
| Xiong, C. H., Wang, D. Y., Tam, N. F., et al., 2018. Enhancement of Active Thin-Layer Capping with Natural Zeolite to Simultaneously Inhibit Nutrient and Heavy Metal Release from Sediments. Ecological Engineering, 119: 64–72. https://doi.org/10.1016/j.ecoleng.2018.05.008 |
| Xu, D., Ding, S. M., Sun, Q., et al., 2012. Evaluation of in Situ Capping with Clean Soils to Control Phosphate Release from Sediments. Science of the Total Environment, 438: 334–341. https://doi.org/10.1016/j.scitotenv.2012.08.053 |
| Xu, P., Xiao, E. R., Xu, D., et al., 2018. Enhanced Phosphorus Reduction in Simulated Eutrophic Water: A Comparative Study of Submerged Macrophytes, Sediment Microbial Fuel Cells, and Their Combination. Environmental Technology, 39(9): 1144–1157. https://doi.org/10.1080/09593330.2017.1323955 |
| Xu, X. G., Zhou, Y. W., Han, R. M., et al., 2019. Eutrophication Triggers the Shift of Nutrient Absorption Pathway of Submerged Macrophytes: Implications for the Phytoremediation of Eutrophic Waters. Journal of Environmental Management, 239: 376–384. https://doi.org/10.1016/j.jenvman.2019.03.069 |
| Yang, M. J., Lin, J. W., Zhan, Y. H., et al., 2015. Immobilization of Phosphorus from Water and Sediment Using Zirconium-Modified Zeolites. Environmental Science and Pollution Research International, 22(5): 3606–3619. https://doi.org/10.1007/s11356-014-3604-2 |
| Yang, Y., Chen, W., Yi, Z. Y., et al., 2018. The Integrative Effect of Periphyton Biofilm and Tape Grass (Vallisneria Natans) on Internal Loading of Shallow Eutrophic Lakes. Environmental Science and Pollution Research International, 25(2): 1773–1783. https://doi.org/10.1007/s11356-017-0623-9 |
| Yin, H. B., Kong, M., Han, M. X., et al., 2016. Influence of Sediment Resuspension on the Efficacy of Geoengineering Materials in the Control of Internal Phosphorous Loading from Shallow Eutrophic Lakes. Environmental Pollution, 219: 568–579. https://doi.org/10.1016/j.envpol.2016.06.011 |
| Yin, H. B., Ren, C., Li, W., 2018. Introducing Hydrate Aluminum into Porous Thermally-Treated Calcium-Rich Attapulgite to Enhance Its Phosphorus Sorption Capacity for Sediment Internal Loading Management. Chemical Engineering Journal, 348: 704–712. https://doi.org/10.1016/j.cej.2018.05.065 |
| Yin, H. B., Yan, X. W., Gu, X. H., 2017. Evaluation of Thermally-Modified Calcium-Rich Attapulgite as a Low-Cost Substrate for Rapid Phosphorus Removal in Constructed Wetlands. Water Research, 115: 329–338. https://doi.org/10.1016/j.watres.2017.03.014 |
| Yin, H. B., Yang, C. H., Yang, P., et al., 2021. Contrasting Effects and Mode of Dredging and in Situ Adsorbent Amendment for the Control of Sediment Internal Phosphorus Loading in Eutrophic Lakes. Water Research, 189: 116644. https://doi.org/10.1016/j.watres.2020.116644 |
| Yin, H., Kong, M., 2015. Reduction of Sediment Internal P-Loading from Eutrophic Lakes Using Thermally Modified Calcium-Rich Attapulgite-Based Thin-Layer Cap. Journal of Environmental Management, 151: 178–185. https://doi.org/10.1016/j.jenvman.2015.01.003 |
| Yu, J. H., Ding, S. M., Zhong, J. C., et al., 2017. Evaluation of Simulated Dredging to Control Internal Phosphorus Release from Sediments: Focused on Phosphorus Transfer and Resupply across the Sediment-Water Interface. Science of the Total Environment, 592: 662–673. https://doi.org/10.1016/j.scitotenv.2017.02.219 |
| Yuan, H. Z., Cai, Y. W., Wang, H. X., et al., 2023. How PhoD-Harboring Functional Microbial Populations Trigger the Release Risk of Phosphorus in Water Sediment System of Shijiuhu Lake, China after Experiencing the Transseasonal Shift. Water Research, 240: 120107. https://doi.org/10.1016/j.watres.2023.120107 |
| Yun, S. L., Kim, S. J., Park, Y. J., et al., 2007. Evaluation of Capping Materials for the Stabilization of Contaminated Sediments. In: Materials Science Forum. Trans Tech Publications Ltd., Stafa. 565–568. https://doi.org/10.4028/0-87849-431-6.565 |
| Zamparas, M., Deligiannakis, Y., Zacharias, I., 2013. Phosphate Adsorption from Natural Waters and Evaluation of Sediment Capping Using Modified Clays. Desalination and Water Treatment, 51(13/14/15): 2895–2902. https://doi.org/10.1080/19443994.2012.748139 |
| Zamparas, M., Zacharias, I., 2014. Restoration of Eutrophic Freshwater by Managing Internal Nutrient Loads: A Review. Science of the Total Environment, 496: 551–562. https://doi.org/10.1016/j.scitotenv.2014.07.076 |
| Zhang, C., Zhu, M. Y., Zeng, G. M., et al., 2016. Active Capping Technology: A New Environmental Remediation of Contaminated Sediment. Environmental Science and Pollution Research International, 23(5): 4370–4386. https://doi.org/10.1007/s11356-016-6076-8 |
| Zhang, F. R., Yan, J., Fang, J. L., et al., 2023. Sediment Phosphorus Immobilization with the Addition of Calcium/Aluminum and Lanthanum/Calcium/Aluminum Composite Materials under Wide Ranges of pH and Redox Conditions. Science of the Total Environment, 863: 160997. https://doi.org/10.1016/j.scitotenv.2022.160997 |
| Zhang, L., Wang, S. R., Jiao, L. X., et al., 2013. Physiological Response of a Submerged Plant (Myriophyllum Spicatum) to Different NH4Cl Concentrations in Sediments. Ecological Engineering, 58: 91–98. https://doi.org/10.1016/j.ecoleng.2013.06.006 |
| Zhang, X. M., Zhen, W., Jensen, H. S., et al., 2021. The Combined Effects of Macrophytes (Vallisneria Denseserrulata) and a Lanthanum-Modified Bentonite on Water Quality of Shallow Eutrophic Lakes: A Mesocosm Study. Environmental Pollution, 277: 116720. https://doi.org/10.1016/j.envpol.2021.116720 |
| Zhang, Y., He, F., Liu, Z. S., et al., 2016. Release Characteristics of Sediment Phosphorus in all Fractions of West Lake, Hang Zhou, China. Ecological Engineering, 95: 645–651. https://doi.org/10.1016/j.ecoleng.2016.06.014 |
| Zhang, Y., He, F., Xia, S. B., et al., 2015. Studies on the Treatment Efficiency of Sediment Phosphorus with a Combined Technology of PCFM and Submerged Macrophytes. Environmental Pollution, 206: 705–711. https://doi.org/10.1016/j.envpol.2015.08.018 |
| Zhou, J., Li, D. P., Chen, S. T., et al., 2019. Sedimentary Phosphorus Immobilization with the Addition of Amended Calcium Peroxide Material. Chemical Engineering Journal, 357: 288–297. https://doi.org/10.1016/j.cej.2018.09.175 |
| Zhou, Y. Y., Li, J. Q., Fu, Y. Q., 2000. Effects of Submerged Macrophytes on Kinetics of Alkaline Phosphatase in Lake Donghu—Ⅰ. Unfiltered Water and Sediments. Water Research, 34(15): 3737–3742. https://doi.org/10.1016/S0043-1354(00)00140-8 |
| Zhu, M. Y., Zhu, G. W., Nurminen, L., et al., 2015. The Influence of Macrophytes on Sediment Resuspension and the Effect of Associated Nutrients in a Shallow and Large Lake (Lake Taihu, China). PLoS One, 10(6): e0127915. https://doi.org/10.1371/journal.pone.0127915 |