Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Zisen Liu, Yi Zhang, Qiaohong Zhou, Zhenbin Wu, Yanxin Wang. In-situ Technologies for Controlling Sediment Phosphorus in Eutrophic Shallow Lakes: A Review. Journal of Earth Science, 2025, 36(1): 113-133. doi: 10.1007/s12583-024-0118-9
Citation: Zisen Liu, Yi Zhang, Qiaohong Zhou, Zhenbin Wu, Yanxin Wang. In-situ Technologies for Controlling Sediment Phosphorus in Eutrophic Shallow Lakes: A Review. Journal of Earth Science, 2025, 36(1): 113-133. doi: 10.1007/s12583-024-0118-9

In-situ Technologies for Controlling Sediment Phosphorus in Eutrophic Shallow Lakes: A Review

doi: 10.1007/s12583-024-0118-9
More Information
  • Corresponding author: Zhenbin Wu, wuzb@ihb.ac.cn; Yanxin Wang, yx.wang@cug.edu.cn
  • Received Date: 18 Nov 2024
  • Accepted Date: 24 Nov 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Phosphorus (P) is the main limiting factor in eutrophication. Sediment P can be released decades after its accumulation. Lake restoration requires the reduction of internal sediment P loading. Although we tried to provide a comprehensive summary of the state-of-the-art sediment P control technologies, our analyses in this review are focused on the mechanisms, control effects, and application conditions of different in-situ technologies including physical control, chemical control, ecological remediation, and combined control technology. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. More efforts are needed to improve in-situ sediment P control technologies so as to enhance the interaction between materials and plant communities and promote the adsorption and fixation of active P in sediments. The control materials for internal sediment P loading need to be further studied in terms of their functional properties, pre-evaluation of the P control effect, and engineering applications.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Acelas, N. Y., Martin, B. D., López, D., et al., 2015. Selective Removal of Phosphate from Wastewater Using Hydrated Metal Oxides Dispersed within Anionic Exchange Media. Chemosphere, 119: 1353–1360. https://doi.org/10.1016/j.chemosphere.2014.02.024
    Association of American Railroads, 2018. Railroads and Chemicals. AAR, Washington DC
    Berg, U., Neumann, T., Donnert, D., et al., 2004. Sediment Capping in Eutrophic Lakes-Efficiency of Undisturbed Calcite Barriers to Immobilize Phosphorus. Applied Geochemistry, 19(11): 1759–1771. https://doi.org/10.1016/j.apgeochem.2004.05.004
    Brattebo, S. K., Welch, E. B., Gibbons, H. L., et al., 2017. Effectiveness of Alum in a Hypereutrophic Lake with Substantial External Loading. Lake and Reservoir Management, 33(2): 108–118. https://doi.org/10.1080/10402381.2017.1311390
    Carvalho L, Maberly S, May L, et al., 2005. Risk Assessment Methodology for Determining Nutrient Impacts in Surface Freshwater Bodies. Environment Agency, Bristol
    Chao, C. X., Wang, L. G., Li, Y., et al., 2021. Response of Sediment and Water Microbial Communities to Submerged Vegetations Restoration in a Shallow Eutrophic Lake. Science of the Total Environment, 801: 149701. https://doi.org/10.1016/j.scitotenv.2021.149701
    Chen, M. S., Cui, J. Z., Lin, J., et al., 2018. Successful Control of Internal Phosphorus Loading after Sediment Dredging for 6 Years: A Field Assessment Using High-Resolution Sampling Techniques. Science of the Total Environment, 616: 927–936. https://doi.org/10.1016/j.scitotenv.2017.10.227
    Chen, Z. Q., Zhao, D., Li, M. L., et al., 2020. A Field Study on the Effects of Combined Biomanipulation on the Water Quality of a Eutrophic Lake. Environmental Pollution, 265: 115091. https://doi.org/10.1016/j.envpol.2020.115091
    Daldorph, P. W. G., 1999. A Reservoir in Management-Induced Transition between Ecological States. In: The Ecological Bases for Lake and Reservoir Management. Springer Netherlands, Dordrecht. 325–333. https://doi.org/10.1007/978-94-017-3282-6_28
    Deng, J. M., Paerl, H. W., Qin, B. Q., et al., 2018. Climatically-Modulated Decline in Wind Speed may Strongly Affect Eutrophication in Shallow Lakes. Science of the Total Environment, 645: 1361–1370. https://doi.org/10.1016/j.scitotenv.2018.07.208
    Deng, S. J., Chen, J. Q., Chang, J. J., 2021. Application of Biochar as an Innovative Substrate in Constructed Wetlands/Biofilters for Wastewater Treatment: Performance and Ecological Benefits. Journal of Cleaner Production, 293: 126156. https://doi.org/10.1016/j.jclepro.2021.126156
    Deppe, T., Benndorf, J., 2002. Phosphorus Reduction in a Shallow Hypereutrophic Reservoir by In-Lake Dosage of Ferrous Iron. Water Research, 36(18): 4525–4534. https://doi.org/10.1016/S0043-1354(02)00193-8
    Ding, S. M., Chen, M. S., Cui, J. Z., et al., 2018. Reactivation of Phosphorus in Sediments after Calcium-Rich Mineral Capping: Implication for Revising the Laboratory Testing Scheme for Immobilization Efficiency. Chemical Engineering Journal, 331: 720–728. https://doi.org/10.1016/j.cej.2017.09.010
    Dittrich, M., Gabriel, O., Rutzen, C., et al., 2011. Lake Restoration by Hypolimnetic Ca(OH)2 Treatment: Impact on Phosphorus Sedimentation and Release from Sediment. Science of the Total Environment, 409(8): 1504–1515. https://doi.org/10.1016/j.scitotenv.2011.01.006
    Egemose, S., Reitzel, K., Andersen, F. Ø., et al., 2010. Chemical Lake Restoration Products: Sediment Stability and Phosphorus Dynamics. Environmental Science & Technology, 44(3): 985–991. https://doi.org/10.1021/es903260y
    Egemose, S., Wauer, G., Kleeberg, A., 2009. Resuspension Behaviour of Aluminium Treated Lake Sediments: Effects of Ageing and pH. Hydrobiologia, 636(1): 203–217. https://doi.org/10.1007/s10750-009-9949-8
    Epe, T. S., Finsterle, K., Yasseri, S., 2017. Nine Years of Phosphorus Management with Lanthanum Modified Bentonite (Phoslock) in a Eutrophic, Shallow Swimming Lake in Germany. Lake and Reservoir Management, 33(2): 119–129. https://doi.org/10.1080/10402381.2016.1263693
    Fan, Y., Li, Y. W., Wu, D. Y., et al., 2017. Application of Zeolite/Hydrous Zirconia Composite as a Novel Sediment Capping Material to Immobilize Phosphorus. Water Research, 123: 1–11. https://doi.org/10.1016/j.watres.2017.06.031
    Fang, F., Yang, L. Y., Gan, L., et al., 2014. DO, pH, and Eh Microprofiles in Cyanobacterial Granules from Lake Taihu under Different Environmental Conditions. Journal of Applied Phycology, 26(4): 1689–1699. https://doi.org/10.1007/s10811-013-0211-4
    Fang, T., Bao, S. P., Sima, X. F., et al., 2016. Study on the Application of Integrated Eco-Engineering in Purifying Eutrophic River Waters. Ecological Engineering, 94: 320–328. https://doi.org/10.1016/j.ecoleng.2016.06.003
    Gibbs, M. M., Hickey, C. W., Özkundakci, D., 2011. Sustainability Assessment and Comparison of Efficacy of Four P-Inactivation Agents for Managing Internal Phosphorus Loads in Lakes: Sediment Incubations. Hydrobiologia, 658(1): 253–275. https://doi.org/10.1007/s10750-010-0477-3
    Gibbs, M., Özkundakci, D., 2011. Effects of a Modified Zeolite on P and N Processes and Fluxes across the Lake Sediment-Water Interface Using Core Incubations. Hydrobiologia, 661(1): 21–35. https://doi.org/10.1007/s10750-009-0071-8
    Gong, Y., Zhao, D., 2014. Physical-Chemical Processes for Phosphorus Removal and Recovery. In: Comprehensive Water Quality and Purification. Elsevier, Amsterdam. 196–222. https://doi.org/10.1016/b978-0-12-382182-9.00086-4
    Grisé, D., Titus, J. E., Wagner, D. J., 1986. Environmental pH Influences Growth and Tissue Chemistry of the Submersed Macrophyte Vallisneria americana. Canadian Journal of Botany, 64(2): 306–310. https://doi.org/10.1139/b86-044
    Han, C., Ren, J. H., Wang, Z. D., et al., 2018. Characterization of Phosphorus Availability in Response to Radial Oxygen Losses in the Rhizosphere of Vallisneria Spiralis. Chemosphere, 208: 740–748. https://doi.org/10.1016/j.chemosphere.2018.05.180
    Han, F., Zhang, Y., Liu, Z. S., et al., 2020. Effects of Maifanite on Growth, Physiological and Phytochemical Process of Submerged Macrophytes Vallisneria Spiralis. Ecotoxicology and Environmental Safety, 189: 109941. https://doi.org/10.1016/j.ecoenv.2019.109941
    Han, Y. Q., Jeppesen, E., Lürling, M., et al., 2022. Combining Lanthanum-Modified Bentonite (LMB) and Submerged Macrophytes Alleviates Water Quality Deterioration in the Presence of Omni-Benthivorous Fish. Journal of Environmental Management, 314: 115036. https://doi.org/10.1016/j.jenvman.2022.115036
    Hilt, S., Van de Weyer, K., Köhler, A., et al., 2010. Submerged Macrophyte Responses to Reduced Phosphorus Concentrations in Two Peri-Urban Lakes. Restoration Ecology, 18(s2): 452–461. https://doi.org/10.1111/j.1526-100x.2009.00577.x
    Himmelheber, D. W., Taillefert, M., Pennell, K. D., et al., 2008. Spatial and Temporal Evolution of Biogeochemical Processes Following in Situ Capping of Contaminated Sediments. Environmental Science & Technology, 42(11): 4113–4120. https://doi.org/10.1021/es702626x
    Horppila, J., Nurminen, L., 2003. Effects of Submerged Macrophytes on Sediment Resuspension and Internal Phosphorus Loading in Lake Hiidenvesi (Southern Finland). Water Research, 37(18): 4468–4474. https://doi.org/10.1016/S0043-1354(03)00405-6
    Horppila, J., Nurminen, L., 2005. Effects of Different Macrophyte Growth Forms on Sediment and P Resuspension in a Shallow Lake. Hydrobiologia, 545(1): 167–175. https://doi.org/10.1007/s10750-005-2677-9
    Huser, B. J., Egemose, S., Harper, H., et al., 2016a. Longevity and Effectiveness of Aluminum Addition to Reduce Sediment Phosphorus Release and Restore Lake Water Quality. Water Research, 97: 122–132. https://doi.org/10.1016/j.watres.2015.06.051
    Huser, B. J., Futter, M., Lee, J. T., et al., 2016b. In-Lake Measures for Phosphorus Control: The Most Feasible and Cost-Effective Solution for Long-Term Management of Water Quality in Urban Lakes. Water Research, 97: 142–152. https://doi.org/10.1016/j.watres.2015.07.036
    Kelly Vargas, K. G., Qi, Z. M., 2019. P Immobilizing Materials for Lake Internal Loading Control: A Review towards Future Developments. Critical Reviews in Environmental Science and Technology, 49(6): 518–552. https://doi.org/10.1080/10643389.2018.1551300
    Kim, G., Jung, W., 2010. Role of Sand Capping in Phosphorus Release from Sediment. KSCE Journal of Civil Engineering, 14(6): 815–821. https://doi.org/10.1007/s12205-010-0856-3
    Kleeberg, A., Herzog, C., Hupfer, M., 2013. Redox Sensitivity of Iron in Phosphorus Binding Does Not Impede Lake Restoration. Water Research, 47(3): 1491–1502. https://doi.org/10.1016/j.watres.2012.12.014
    Kuster, A. C., Kuster, A. T., Huser, B. J., 2020. A Comparison of Aluminum Dosing Methods for Reducing Sediment Phosphorus Release in Lakes. Journal of Environmental Management, 261: 110195. https://doi.org/10.1016/j.jenvman.2020.110195
    Lampert, D. J., Sarchet, W. V., Reible, D. D., 2011. Assessing the Effectiveness of Thin-Layer Sand Caps for Contaminated Sediment Management through Passive Sampling. Environmental Science & Technology, 45(19): 8437–8443. https://doi.org/10.1021/es200406a
    Li, C. J., Yu, H. X., Tabassum, S., et al., 2017. Effect of Calcium Silicate Hydrates (CSH) on Phosphorus Immobilization and Speciation in Shallow Lake Sediment. Chemical Engineering Journal, 317: 844–853. https://doi.org/10.1016/j.cej.2017.02.117
    Li, C. J., Yu, H. X., Tabassum, S., et al., 2018. Effect of Calcium Silicate Hydrates Coupled with Myriophyllum Spicatum on Phosphorus Release and Immobilization in Shallow Lake Sediment. Chemical Engineering Journal, 331: 462–470. https://doi.org/10.1016/j.cej.2017.08.134
    Li, H. F., Li, Z. J., Qu, J. H., et al., 2018. Combined Effects of Phosphate-Solubilizing Bacterium XMT-5 (Rhizobium Sp. ) and Submerged Macrophyte Ceratophyllum Demersum on Phosphorus Release in Eutrophic Lake Sediments. Environmental Science and Pollution Research International, 25(19): 18990–19000. https://doi.org/10.1007/s11356-018-2022-2
    Li, X. D., Chen, J. B., Zhang, Z. Y., et al., 2020. Interactions of Phosphate and Dissolved Organic Carbon with Lanthanum Modified Bentonite: Implications for the Inactivation of Phosphorus in Lakes. Water Research, 181: 115941. https://doi.org/10.1016/j.watres.2020.115941
    Li, Y., Wang, L. G., Chao, C. X., et al., 2021. Submerged Macrophytes Successfully Restored a Subtropical Aquacultural Lake by Controlling Its Internal Phosphorus Loading. Environmental Pollution, 268: 115949. https://doi.org/10.1016/j.envpol.2020.115949
    Libralato, G., Minetto, D., Lofrano, G., et al., 2018. Toxicity Assessment within the Application of in Situ Contaminated Sediment Remediation Technologies: A Review. Science of the Total Environment, 621: 85–94. https://doi.org/10.1016/j.scitotenv.2017.11.229
    Lin, J. W., Li, Y., Zhan, Y. H., et al., 2023a. Combined Amendment and Capping of Sediment with Ferrihydrite and Magnetite to Control Internal Phosphorus Release. Water Research, 235: 119899. https://doi.org/10.1016/j.watres.2023.119899
    Lin, J. W., Xiang, W. J., Zhan, Y. H., 2023b. Comparison of Magnetite, Hematite and Goethite Amendment and Capping in Control of Phosphorus Release from Sediment. Environmental Science and Pollution Research International, 30(24): 66080–66101. https://doi.org/10.1007/s11356-023-27063-5
    Lin, J. W., Wang, H., Zhan, Y. H., et al., 2016. Evaluation of Sediment Amendment with Zirconium-Reacted Bentonite to Control Phosphorus Release. Environmental Earth Sciences, 75(11): 942. https://doi.org/10.1007/s12665-016-5744-9
    Lin, J. W., Zhan, Y. H., Zhu, Z. L., 2011. Evaluation of Sediment Capping with Active Barrier Systems (ABS) Using Calcite/Zeolite Mixtures to Simultaneously Manage Phosphorus and Ammonium Release. Science of the Total Environment, 409(3): 638–646. https://doi.org/10.1016/j.scitotenv.2010.10.031
    Lin, J., Sun, Q., Ding, S. M., et al., 2017. Mobile Phosphorus Stratification in Sediments by Aluminum Immobilization. Chemosphere, 186: 644–651. https://doi.org/10.1016/j.chemosphere.2017.08.005
    Liu, Z. S., Bai, G. L., Liu, Y. L., et al., 2022b. Long-Term Study of Ecological Restoration in a Typical Shallow Urban Lake. Science of the Total Environment, 846: 157505. https://doi.org/10.1016/j.scitotenv.2022.157505
    Liu, Z. S., Zhang, Y., Liu, B. Y., et al., 2017. Adsorption Performance of Modified Bentonite Granular (MBG) on Sediment Phosphorus in all Fractions in the West Lake, Hangzhou, China. Ecological Engineering, 106: 124–131. https://doi.org/10.1016/j.ecoleng.2017.05.042
    Liu, Z. S., Zhang, Y., Yan, P., et al., 2020. Synergistic Control of Internal Phosphorus Loading from Eutrophic Lake Sediment Using MMF Coupled with Submerged Macrophytes. Science of the Total Environment, 731: 138697. https://doi.org/10.1016/j.scitotenv.2020.138697
    Liu, Z. S., Zou, Y., Liu, Y. L., et al., 2022a. Effective Adsorption of Nutrients from Simulated Domestic Sewage by Modified Maifanite. Environmental Science and Pollution Research International, 29(17): 25939–25951. https://doi.org/10.1007/s11356-021-17661-6
    Liu, Z. Y., Jin, Z. H., Li, Y. W., et al., 2007. Sediment Phosphorus Fractions and Profile Distribution at Different Vegetation Growth Zones in a Macrophyte Dominated Shallow Wuliangsuhai Lake, China. Environmental Geology, 52(5): 997–1005. https://doi.org/10.1007/s00254-007-0637-6
    Lu, S. Y., Jin, X. C., Liang, L. L., et al., 2013. Influence of Inactivation Agents on Phosphorus Release from Sediment. Environmental Earth Sciences, 68(4): 1143–1151. https://doi.org/10.1007/s12665-012-1816-7
    Mikuniya Corporation, 1984. Pilot-Scale Treatment of Nakanoumi Lake, Report to Ministry of Construction. Mikuniya Corporation, Tokyo
    Miretzky, P., Saralegui, A., Cirelli, A. F., 2004. Aquatic Macrophytes Potential for the Simultaneous Removal of Heavy Metals (Buenos Aires, Argentina). Chemosphere, 57(8): 997–1005. https://doi.org/10.1016/j.chemosphere.2004.07.024
    Moore, B. C., Christensen, D., Richter, A. C., 2009. Newman Lake Restoration: A Case Study. Part Ⅱ. Microfloc Alum Injection. Lake and Reservoir Management, 25(4): 351–363. https://doi.org/10.1080/07438140903172923
    Münch, M. A., van Kaam, R., As, K., et al., 2024. Impact of Iron Addition on Phosphorus Dynamics in Sediments of a Shallow Peat Lake 10 Years after Treatment. Water Research, 248: 120844. https://doi.org/10.1016/j.watres.2023.120844
    Murphy, T. P., Hall, K. G., Northcote, T. G., 1988. Lime Treatment of a Hardwater Lake to Reduce Eutrophication. Lake and Reservoir Management, 4(2): 51–62. https://doi.org/10.1080/07438148809354813
    Orihel, D. M., Baulch, H. M., Casson, N. J., et al., 2017. Internal Phosphorus Loading in Canadian Fresh Waters: A Critical Review and Data Analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74(12): 2005–2029. https://doi.org/10.1139/cjfas-2016-0500
    Özkundakci, D., Hamilton, D. P., Gibbs, M. M., 2011. Hypolimnetic Phosphorus and Nitrogen Dynamics in a Small, Eutrophic Lake with a Seasonally Anoxic Hypolimnion. Hydrobiologia, 661(1): 5–20. https://doi.org/10.1007/s10750-010-0358-9
    Paice, R. L., Chambers, J. M., Robson, B. J., 2016. Outcomes of Submerged Macrophyte Restoration in a Shallow Impounded, Eutrophic River. Hydrobiologia, 778(1): 179–192. https://doi.org/10.1007/s10750-015-2441-8
    Pan, G., Yang, B., Wang, D., et al., 2011. In-Lake Algal Bloom Removal and Submerged Vegetation Restoration Using Modified Local Soils. Ecological Engineering, 37(2): 302–308. https://doi.org/10.1016/j.ecoleng.2010.11.019
    Prepas, E. E., Babin, J., Murphy, T. P., et al., 2001. Long-Term Effects of Successive Ca(OH)2 and CaCO3 Treatments on the Water Quality of Two Eutrophic Hardwater Lakes. Freshwater Biology, 46(8): 1089–1103. https://doi.org/10.1046/j.1365-2427.2001.00792.x
    Qin, B. Q., Zhang, Y. L., Zhu, G. W., et al., 2023. Eutrophication Control of Large Shallow Lakes in China. Science of the Total Environment, 881: 163494. https://doi.org/10.1016/j.scitotenv.2023.163494
    Qin, B. Q., Zhu, G. W., Zhang, L., et al., 2006. Estimation of Internal Nutrient Release in Large Shallow Lake Taihu, China. Science in China Series D, 49(1): 38–50. https://doi.org/10.1007/s11430-006-8104-x
    Reitzel, K., Hansen, J., Andersen, F. O., et al., 2005. Lake Restoration by Dosing Aluminum Relative to Mobile Phosphorus in the Sediment. Environmental Science & Technology, 39(11): 4134–4140. https://doi.org/10.1021/es0485964
    Rooney, N., Kalff, J., Habel, C., 2003. The Role of Submerged Macrophyte Beds in Phosphorus and Sediment Accumulation in Lake Memphremagog, Quebec, Canada. Limnology and Oceanography, 48(5): 1927–1937. https://doi.org/10.4319/lo.2003.48.5.1927
    Schindler, D. W., Hecky, R. E., Findlay, D. L., et al., 2008. Eutrophication of Lakes Cannot Be Controlled by Reducing Nitrogen Input: Results of a 37-Year Whole-Ecosystem Experiment. Proceedings of the National Academy of Sciences of the United States of America, 105(32): 11254–11258. https://doi.org/10.1073/pnas.0805108105
    Schulz, M., Kozerski, H. P., Pluntke, T., et al., 2003. The Influence of Macrophytes on Sedimentation and Nutrient Retention in the Lower River Spree (Germany). Water Research, 37(3): 569–578. https://doi.org/10.1016/S0043-1354(02)00276-2
    Smolders, A. J. P., Lamers, L. P. M., Moonen, M., et al., 2001. Controlling Phosphate Release from Phosphate-Enriched Sediments by Adding Various Iron Compounds. Biogeochemistry, 54(2): 219–228. https://doi.org/10.1023/A: 1010660401527 doi: 10.1023/A:1010660401527
    Tang, A. P., Wan, J. B., Rong, W., et al., 2015. Importance of pH, Dissolved Oxygen and Light to Phosphorus Release from Ditch Sediments. Nature Environment and Pollution Technology, 14: 475–484.
    van Oosterhout, F., Yasseri, S., Noyma, N., et al., 2022. Assessing the Long-Term Efficacy of Internal Loading Management to Control Eutrophication in Lake Rauwbraken. Inland Waters, 12(1): 61–77. https://doi.org/10.1080/20442041.2021.1969189
    Wang, C. H., Jiang, H. L., 2016. Chemicals Used for in Situ Immobilization to Reduce the Internal Phosphorus Loading from Lake Sediments for Eutrophication Control. Critical Reviews in Environmental Science and Technology, 46: 947–997. https://doi.org/10.1080/10643389.2016.1200330
    Wang, C., Liu, S. Y., Jahan, T. E., et al., 2017. Short Term Succession of Artificially Restored Submerged Macrophytes and Their Impact on the Sediment Microbial Community. Ecological Engineering, 103: 50–58. https://doi.org/10.1016/j.ecoleng.2017.02.030
    Wang, C., Liu, Z. S., Zhang, Y., et al., 2018. Synergistic Removal Effect of P in Sediment of all Fractions by Combining the Modified Bentonite Granules and Submerged Macrophyte. Science of the Total Environment, 626: 458–467. https://doi.org/10.1016/j.scitotenv.2018.01.093
    Wang, J. F., Chen, J. G., Yu, P. P., et al., 2020. Oxygenation and Synchronous Control of Nitrogen and Phosphorus Release at the Sediment-Water Interface Using Oxygen Nano-Bubble Modified Material. Science of the Total Environment, 725: 138258. https://doi.org/10.1016/j.scitotenv.2020.138258
    Wang, J. J., Gao, M. M., Yang, Y. J., et al., 2022. Interactions of Vallisneria natans and Iron-Oxidizing Bacteria Enhance Iron-Bound Phosphorus Formation in Eutrophic Lake Sediments. Microorganisms, 10(2): 413. https://doi.org/10.3390/microorganisms10020413
    Wang, J. J., Zhang, S. W., Que, T. Y., et al., 2021. Mitigation of Eutrophication in a Shallow Lake: The Influences of Submerged Macrophytes on Phosphorus and Bacterial Community Structure in Sediments. Sustainability, 13(17): 9833. https://doi.org/10.3390/su13179833
    Wang, L. Z., Wang, G. X., Ge, X. G., et al., 2012. Influence of Submerged Plants on Phosphorus Fractions and Profiles of Sediments in Gucheng Lake. Soil and Sediment Contamination, 21(5): 640–654. https://doi.org/10.1080/15320383.2012.672491
    Wang, S. R., Jiao, L. X., Yang, S. W., et al., 2012. Effects of Organic Matter and Submerged Macrophytes on Variations of Alkaline Phosphatase Activity and Phosphorus Fractions in Lake Sediment. Journal of Environmental Management, 113: 355–360. https://doi.org/10.1016/j.jenvman.2012.09.007
    Wauer, G., Gonsiorczyk, T., Casper, P., et al., 2005. P-Immobilisation and Phosphatase Activities in Lake Sediment Following Treatment with Nitrate and Iron. Limnologica, 35(1/2): 102–108. https://doi.org/10.1016/j.limno.2004.08.001
    Wei, G. N., Xu, J. N., Yang, B., et al., 2023. Controlling Internal Nutrients Loading at Low Temperature Using Oxygen-Loading Zeolite and Submerged Macrophytes Enhances Environmental Resilience to Subsequent High Temperature. Environmental Research, 231: 116101. https://doi.org/10.1016/j.envres.2023.116101
    Willenbring, P. R., Miller, M. S., Weidenbacher, W. D., 1984. Reducing Sediment Phosphorus Release Rates in Long Lake through the Use of Calcium Nitrate. Lake and Reservoir Management, 1(1): 118–121. https://doi.org/10.1080/07438148409354496
    Wu, Z. H., Wang, S. R., Luo, J., 2018. Transfer Kinetics of Phosphorus (P) in Macrophyte Rhizosphere and Phytoremoval Performance for Lake Sediments Using DGT Technique. Journal of Hazardous Materials, 350: 189–200. https://doi.org/10.1016/j.jhazmat.2018.02.005
    Xia, L., van Dael, T., Bergen, B., et al., 2023. Phosphorus Immobilisation in Sediment by Using Iron Rich By-Product as Affected by Water pH and Sulphate Concentrations. Science of the Total Environment, 864: 160820. https://doi.org/10.1016/j.scitotenv.2022.160820
    Xiong, C. H., Wang, D. Y., Tam, N. F., et al., 2018. Enhancement of Active Thin-Layer Capping with Natural Zeolite to Simultaneously Inhibit Nutrient and Heavy Metal Release from Sediments. Ecological Engineering, 119: 64–72. https://doi.org/10.1016/j.ecoleng.2018.05.008
    Xu, D., Ding, S. M., Sun, Q., et al., 2012. Evaluation of in Situ Capping with Clean Soils to Control Phosphate Release from Sediments. Science of the Total Environment, 438: 334–341. https://doi.org/10.1016/j.scitotenv.2012.08.053
    Xu, P., Xiao, E. R., Xu, D., et al., 2018. Enhanced Phosphorus Reduction in Simulated Eutrophic Water: A Comparative Study of Submerged Macrophytes, Sediment Microbial Fuel Cells, and Their Combination. Environmental Technology, 39(9): 1144–1157. https://doi.org/10.1080/09593330.2017.1323955
    Xu, X. G., Zhou, Y. W., Han, R. M., et al., 2019. Eutrophication Triggers the Shift of Nutrient Absorption Pathway of Submerged Macrophytes: Implications for the Phytoremediation of Eutrophic Waters. Journal of Environmental Management, 239: 376–384. https://doi.org/10.1016/j.jenvman.2019.03.069
    Yang, M. J., Lin, J. W., Zhan, Y. H., et al., 2015. Immobilization of Phosphorus from Water and Sediment Using Zirconium-Modified Zeolites. Environmental Science and Pollution Research International, 22(5): 3606–3619. https://doi.org/10.1007/s11356-014-3604-2
    Yang, Y., Chen, W., Yi, Z. Y., et al., 2018. The Integrative Effect of Periphyton Biofilm and Tape Grass (Vallisneria Natans) on Internal Loading of Shallow Eutrophic Lakes. Environmental Science and Pollution Research International, 25(2): 1773–1783. https://doi.org/10.1007/s11356-017-0623-9
    Yin, H. B., Kong, M., Han, M. X., et al., 2016. Influence of Sediment Resuspension on the Efficacy of Geoengineering Materials in the Control of Internal Phosphorous Loading from Shallow Eutrophic Lakes. Environmental Pollution, 219: 568–579. https://doi.org/10.1016/j.envpol.2016.06.011
    Yin, H. B., Ren, C., Li, W., 2018. Introducing Hydrate Aluminum into Porous Thermally-Treated Calcium-Rich Attapulgite to Enhance Its Phosphorus Sorption Capacity for Sediment Internal Loading Management. Chemical Engineering Journal, 348: 704–712. https://doi.org/10.1016/j.cej.2018.05.065
    Yin, H. B., Yan, X. W., Gu, X. H., 2017. Evaluation of Thermally-Modified Calcium-Rich Attapulgite as a Low-Cost Substrate for Rapid Phosphorus Removal in Constructed Wetlands. Water Research, 115: 329–338. https://doi.org/10.1016/j.watres.2017.03.014
    Yin, H. B., Yang, C. H., Yang, P., et al., 2021. Contrasting Effects and Mode of Dredging and in Situ Adsorbent Amendment for the Control of Sediment Internal Phosphorus Loading in Eutrophic Lakes. Water Research, 189: 116644. https://doi.org/10.1016/j.watres.2020.116644
    Yin, H., Kong, M., 2015. Reduction of Sediment Internal P-Loading from Eutrophic Lakes Using Thermally Modified Calcium-Rich Attapulgite-Based Thin-Layer Cap. Journal of Environmental Management, 151: 178–185. https://doi.org/10.1016/j.jenvman.2015.01.003
    Yu, J. H., Ding, S. M., Zhong, J. C., et al., 2017. Evaluation of Simulated Dredging to Control Internal Phosphorus Release from Sediments: Focused on Phosphorus Transfer and Resupply across the Sediment-Water Interface. Science of the Total Environment, 592: 662–673. https://doi.org/10.1016/j.scitotenv.2017.02.219
    Yuan, H. Z., Cai, Y. W., Wang, H. X., et al., 2023. How PhoD-Harboring Functional Microbial Populations Trigger the Release Risk of Phosphorus in Water Sediment System of Shijiuhu Lake, China after Experiencing the Transseasonal Shift. Water Research, 240: 120107. https://doi.org/10.1016/j.watres.2023.120107
    Yun, S. L., Kim, S. J., Park, Y. J., et al., 2007. Evaluation of Capping Materials for the Stabilization of Contaminated Sediments. In: Materials Science Forum. Trans Tech Publications Ltd., Stafa. 565–568. https://doi.org/10.4028/0-87849-431-6.565
    Zamparas, M., Deligiannakis, Y., Zacharias, I., 2013. Phosphate Adsorption from Natural Waters and Evaluation of Sediment Capping Using Modified Clays. Desalination and Water Treatment, 51(13/14/15): 2895–2902. https://doi.org/10.1080/19443994.2012.748139
    Zamparas, M., Zacharias, I., 2014. Restoration of Eutrophic Freshwater by Managing Internal Nutrient Loads: A Review. Science of the Total Environment, 496: 551–562. https://doi.org/10.1016/j.scitotenv.2014.07.076
    Zhang, C., Zhu, M. Y., Zeng, G. M., et al., 2016. Active Capping Technology: A New Environmental Remediation of Contaminated Sediment. Environmental Science and Pollution Research International, 23(5): 4370–4386. https://doi.org/10.1007/s11356-016-6076-8
    Zhang, F. R., Yan, J., Fang, J. L., et al., 2023. Sediment Phosphorus Immobilization with the Addition of Calcium/Aluminum and Lanthanum/Calcium/Aluminum Composite Materials under Wide Ranges of pH and Redox Conditions. Science of the Total Environment, 863: 160997. https://doi.org/10.1016/j.scitotenv.2022.160997
    Zhang, L., Wang, S. R., Jiao, L. X., et al., 2013. Physiological Response of a Submerged Plant (Myriophyllum Spicatum) to Different NH4Cl Concentrations in Sediments. Ecological Engineering, 58: 91–98. https://doi.org/10.1016/j.ecoleng.2013.06.006
    Zhang, X. M., Zhen, W., Jensen, H. S., et al., 2021. The Combined Effects of Macrophytes (Vallisneria Denseserrulata) and a Lanthanum-Modified Bentonite on Water Quality of Shallow Eutrophic Lakes: A Mesocosm Study. Environmental Pollution, 277: 116720. https://doi.org/10.1016/j.envpol.2021.116720
    Zhang, Y., He, F., Liu, Z. S., et al., 2016. Release Characteristics of Sediment Phosphorus in all Fractions of West Lake, Hang Zhou, China. Ecological Engineering, 95: 645–651. https://doi.org/10.1016/j.ecoleng.2016.06.014
    Zhang, Y., He, F., Xia, S. B., et al., 2015. Studies on the Treatment Efficiency of Sediment Phosphorus with a Combined Technology of PCFM and Submerged Macrophytes. Environmental Pollution, 206: 705–711. https://doi.org/10.1016/j.envpol.2015.08.018
    Zhou, J., Li, D. P., Chen, S. T., et al., 2019. Sedimentary Phosphorus Immobilization with the Addition of Amended Calcium Peroxide Material. Chemical Engineering Journal, 357: 288–297. https://doi.org/10.1016/j.cej.2018.09.175
    Zhou, Y. Y., Li, J. Q., Fu, Y. Q., 2000. Effects of Submerged Macrophytes on Kinetics of Alkaline Phosphatase in Lake Donghu—Ⅰ. Unfiltered Water and Sediments. Water Research, 34(15): 3737–3742. https://doi.org/10.1016/S0043-1354(00)00140-8
    Zhu, M. Y., Zhu, G. W., Nurminen, L., et al., 2015. The Influence of Macrophytes on Sediment Resuspension and the Effect of Associated Nutrients in a Shallow and Large Lake (Lake Taihu, China). PLoS One, 10(6): e0127915. https://doi.org/10.1371/journal.pone.0127915
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views(13) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return