Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 4
Aug 2025
Turn off MathJax
Article Contents
Quanyou Liu, Xiaoqi Wu, Xiaowei Huang, Di Zhu, Qingqiang Meng, Dongya Zhu, Huiyuan Xu, Jiayi Liu, Pengpeng Li, Zheng Zhou, Kaiqiang Zhang, Zhijun Jin. Occurrence of Global Natural Hydrogen and Profitable Preservation. Journal of Earth Science, 2025, 36(4): 1525-1554. doi: 10.1007/s12583-024-0120-2
Citation: Quanyou Liu, Xiaoqi Wu, Xiaowei Huang, Di Zhu, Qingqiang Meng, Dongya Zhu, Huiyuan Xu, Jiayi Liu, Pengpeng Li, Zheng Zhou, Kaiqiang Zhang, Zhijun Jin. Occurrence of Global Natural Hydrogen and Profitable Preservation. Journal of Earth Science, 2025, 36(4): 1525-1554. doi: 10.1007/s12583-024-0120-2

Occurrence of Global Natural Hydrogen and Profitable Preservation

doi: 10.1007/s12583-024-0120-2
More Information
  • Corresponding author: Quanyou Liu, liuqy@pku.edu.cn
  • Received Date: 18 Jul 2024
  • Accepted Date: 23 Dec 2024
  • Issue Publish Date: 30 Aug 2025
  • Occurrence and abundance of molecular hydrogen in natural geologic reservoirs are enigmatic, due to its various sources, diverse migration pathways and complicated biological and chemical reactions. Natural gas samples containing hydrogen from producing wells in several sedimentary basins in China were collected in this study, and gas abundances and isotopic compositions of these gases were compared with those in global petroliferous basins and deep intrusive rocks. Several geochemical indicators were suggested for identifying sources, migration and accumulation mechanisms of hydrogen in the subsurface environment. Hydrogen contents in natural gas deposits have contributions from various sources with the following high-to-low order: microbial degradation > serpentinization > deep mantle volatile release > radiation-induced water decomposition > thermal cracking of organic matter. A hydrogen-rich reservoir in Kansas, USA, is specifically analyzed to determine its formation mechanism. This study suggests that future exploration of geological hydrogen resources may focus on the igneous rock bodies with overlying dense sedimentary rocks in the continental rift systems.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., et al., 1988. Methane-Hydrogen Gas Seeps, Zambales Ophiolite, Philippines: Deep or Shallow Origin? Chemical Geology, 71(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(88)90116-7
    Aftab, A., Hassanpouryouzband, A., Xie, Q., et al., 2022. Toward a Fundamental Understanding of Geological Hydrogen Storage. Industrial & Engineering Chemistry Research, 61(9): 3233–3253. https://doi.org/10.1021/acs.iecr.1c04380
    Allègre, C. J., Staudacher, T., Sarda, P., 1987. Rare Gas Systematics: Formation of the Atmosphere, Evolution and Structure of the Earth's Mantle. Earth and Planetary Science Letters, 81(2/3): 127–150. https://doi.org/10.1016/0012-821X(87)90151-8
    Allen, D. E., Seyfried, W. E., Jr, 2004. Serpentinization and Heat Generation: Constraints from Lost City and Rainbow Hydrothermal Systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. https://doi.org/10.1016/j.gca.2003.09.003
    Anderson, R. B., Köllbel, H., Rálek, M., 1984. The Fischer-Tropsch synthesis. Academic Press, Newyork. 1–30
    Ballentine, C. J., Burnard, P. G., 2002. Production, Release and Transport of Noble Gases in the Continental Crust. Reviews in Mineralogy and Geochemistry, 47(1): 481–538. https://doi.org/10.2138/rmg.2002.47.12
    Ballentine, C. J., Schoell, M., Coleman, D., et al., 2001. 300-Myr-Old Magmatic CO2 in Natural Gas Reservoirs of the West Texas Permian Basin. Nature, 409(6818): 327–331. https://doi.org/10.1038/35053046
    Barnes, I., O'Neil, J. R., 1969. The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States. Geological Society of America Bulletin, 80(10): 1947. https://doi.org/10.1130/0016-7606(1969)80<1947:trbfis>2.0.co;2 doi: 10.1130/0016-7606(1969)80<1947:trbfis>2.0.co;2
    Basu, S., Stuart, F. M., Klemm, V., et al., 2006. Helium Isotopes in Ferromanganese Crusts from the Central Pacific Ocean. Geochimica et Cosmochimica Acta, 70(15): 3996–4006. https://doi.org/10.1016/j.gca.2006.05.015
    Bougault, H., 2019. Hydrothermal Hydeogen and Methane: Scientific insight, A New Potential Resouce? Mines & Carrieres, Les Techniques, 2012(196): 73–80
    Bradley, A. S., Summons, R. E., 2010. Multiple Origins of Methane at the Lost City Hydrothermal Field. Earth and Planetary Science Letters, 297(1-2): 34–41. https://doi.org/10.1016/j.epsl.2010.05.034
    Briere, D., Jerzykiewicz, T., 2016. On Generating a Geological Model for Hydrogen Gas in the Southern Taoudeni Megabasin (Bourakebougou Area, Mali). International Conference and Exhibition, Society of Exploration Geophysicists and American Association of Petroleum Geologists, 3–6 April 2016, Barcelona, Spain. 342. https://doi.org/10.1190/ice2016-6312821.1
    Caffee, M. W., Hudson, G. B., Velsko, C., et al., 1999. Primordial Noble Gases from Earth's Mantle: identification of a Primitive Volatile Component. Science, 285(5436): 2115–2118. https://doi.org/10.1126/science.285.5436.2115
    Cathles, L., Prinzhofer, A., 2020. What Pulsating H2 Emissions Suggest about the H2 Resource in the Sao Francisco Basin of Brazil. Geosciences, 10(4): 149. https://doi.org/10.3390/geosciences10040149
    Chavrit, D., Burgess, R., Sumino, H., et al., 2016. The Contribution of Hydrothermally Altered Ocean Crust to the Mantle Halogen and Noble Gas Cycles. Geochimica et Cosmochimica Acta, 183: 106–124. https://doi.org/10.1016/j.gca.2016.03.014
    Cheng, A. R., Sherwood Lollar, B., Gluyas, J. G., et al., 2023. Primary N2-He Gas Field Formation in Intracratonic Sedimentary Basins. Nature, 615(7950): 94–99. https://doi.org/10.1038/s41586-022-05659-0
    Coleman, D. D., Risatti, J. B., Schoell, M., 1981. Fractionation of Carbon and Hydrogen Isotopes by Methane-Oxidizing Bacteria. Geochimica et Cosmochimica Acta, 45(7): 1033–1037. https://doi.org/10.1016/0016-7037(81)90129-0
    Coveney, J. R. M., Goebel, E. D., Zeller, E. D. J., et al., 1987. Serpentinization and the Orgin of Hydrogen Gas in Kansas. AAPG Bulletin, 71: 39–49
    Craig, H., Lupton, J. E., 1976. Primordial Neon, Helium, and Hydrogen in Oceanic Basalts. Earth and Planetary Science Letters, 31(3): 369–385. https://doi.org/10.1016/0012-821X(76)90118-7
    Craig, H., Lupton, J. E., Welhan, J. A., et al., 1978. Helium Isotope Ratios in Yellowstone and Lassen Park Volcanic Gases. Geophysical Research Letters, 5(11): 897–900. https://doi.org/10.1029/GL005i011p00897
    Dai, J. X., 1989. Composition Characteristics and Origin of Carbon Isotope of Liuhuangtang Natural Gas in Tengchong County, Yunnan Province. Chinese Science Bulletin, 34(12): 1027–1030 (in Chinese)
    Dai, J. X., Li, J., Luo, X., et al., 2005a. Stable Carbon Isotope Compositions and Source Rock Geochemistry of the Giant Gas Accumulations in the Ordos Basin, China. Organic Geochemistry, 36(12): 1617–1635. https://doi.org/10.1016/j.orggeochem.2005.08.017
    Dai, J. X., Yang, S. F., Chen, H. L., et al., 2005b. Geochemistry and Occurrence of Inorganic Gas Accumulations in Chinese Sedimentary Basins. Organic Geochemistry, 36(12): 1664–1688. https://doi.org/10.1016/j.orggeochem.2005.08.007
    Dai, J. X., Ni, Y. Y., Zou, C. N., 2012. Stable Carbon and Hydrogen Isotopes of Natural Gases Sourced from the Xujiahe Formation in the Sichuan Basin, China. Organic Geochemistry, 43: 103–111. https://doi.org/10.1016/j.orggeochem.2011.10.006
    Deronzier, J. F., Giouse, H., 2020. Vaux-En-Bugey (Ain, France): The First Gas Field Produced in France, Providing Learning Lessons for Natural Hydrogen in the Sub-Surface? BSGF-Earth Sciences Bulletin, 191(1): 7. https://doi.org/10.1051/bsgf/2020005
    Deville, E., Prinzhofer, A., 2016. The Origin of N2-H2-CH4-Rich Natural Gas Seepages in Ophiolitic Context: A Major and Noble Gases Study of Fluid Seepages in New Caledonia. Chemical Geology, 440: 139–147. https://doi.org/10.1016/j.chemgeo.2016.06.011
    Ding, W. W., Dai, J. X., Yang, C. Y., et al., 2005. Helium Isotopic Compositions in Fluid Inclusions of the Gangxi Fault Belt in the Huanghua Depression, Bohai Bay Basin. Chinese Science Bulletin, 50(22): 2621–2627. https://doi.org/10.1007/BF03183660
    Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., et al., 2016. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer. Frontiers in Microbiology, 7: 76. https://doi.org/10.3389/fmicb.2016.00076
    Ebigbo, A., Golfier, F., Quintard, M., 2013. A Coupled, Pore-Scale Model for Methanogenic Microbial Activity in Underground Hydrogen Storage. Advances in Water Resources, 61: 74–85. https://doi.org/10.1016/j.advwatres.2013.09.004
    Etiope, G., 2017. Abiotic Methane in Continental Serpentinization Sites: An Overview. Procedia Earth and Planetary Science, 17: 9–12. https://doi.org/10.1016/j.proeps.2016.12.006
    Etiope, G., 2023. Massive Release of Natural Hydrogen from a Geological Seep (Chimaera, Türkiye): Gas Advection as a Proxy of Subsurface Gas Migration and Pressurised Accumulations. International Journal of Hydrogen Energy, 48(25): 9172–9184. https://doi.org/10.1016/j.ijhydene.2022.12.025
    Etiope, G., Fridriksson, T., Italiano, F., et al., 2007. Natural Emissions of Methane from Geothermal and Volcanic Sources in Europe. Journal of Volcanology and Geothermal Research, 165(1/2): 76–86. https://doi.org/10.1016/j.jvolgeores.2007.04.014
    Etiope, G., Schoell, M., Hosgörmez, H., 2011. Abiotic Methane Flux from the Chimaera Seep and Tekirova Ophiolites (Türkiye): Understanding Gas Exhalation from Low Temperature Serpentinization and Implications for Mars. Earth and Planetary Science Letters, 310(1/2): 96–104. https://doi.org/10.1016/j.epsl.2011.08.001
    Etiope, G., Whiticar, M. J., 2019. Abiotic Methane in Continental Ultramafic Rock systems: Towards a Genetic Model. Applied Geochemistry, 102: 139–152. https://doi.org/10.1016/j.apgeochem.2019.01.012
    Feng, Z. Q., 2008. Volcanic Rocks as Prolific Gas Reservoir: A Case Study from the Qingshen Gas Field in the Songliao Basin, NE China. Marine and Petroleum Geology, 25(4/5): 416–432. https://doi.org/10.1016/j.marpetgeo.2008.01.008
    Fischer, F., Tropsch, H., 1926. The Synthesis of Petroleum at Atmospheric Pressures from Gasification Products of Coal. Brennstoff-Chemie, 7: 97–104
    Goebel, E. D., Coveney, R. M. J., Angino, E. E., et al., 1983. Naturally Occurring Hydrogen Gas from a Borehole on the Western Flank of Nemaha Anticline in Kansas. AAPG Bulletin, 67(8): 1324. https://doi.org/10.1306/03b5b76d-16d1-11d7-8645000102c1865d
    Graham, D. W., 2002. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. Reviews in Mineralogy and Geochemistry, 47(1): 247–317. https://doi.org/10.2138/rmg.2002.47.8
    Guélard, J., Beaumont, V., Rouchon, V., et al., 2017. Natural H2 in Kansas: Deep or Shallow Origin? Geochemistry, Geophysics, Geosystems, 18(5): 1841–1865. https://doi.org/10.1002/2016GC006544
    Han, S. B., Tang, Z. Y., Wang, C. S., et al., 2022. Hydrogen-Rich Gas Discovery in Continental Scientific Drilling Project of Songliao Basin, Northeast China: New Insights into Deep Earth Exploration. Science Bulletin, 67(10): 1003–1006. https://doi.org/10.1016/j.scib.2022.02.008
    Hand, E., 2023. Hidden Hydrogen-Does Earth Hold Vast Stores of a Renewable, Carbon-Free Fuel? Science, 379(6633): 630–636
    Hanson, A. D., Ritts, B. D., Moldwan, J. M., 2007. Organic Geochemistry of Oil and Source Rock Strata of the Ordos Basin, North-Central China. AAPG Bulletin, 91(9): 1273–1293. https://doi.org/10.1306/05040704131
    Hao, Y. L., Pang, Z. H., Tian, J., et al., 2020. Origin and Evolution of Hydrogen-Rich Gas Discharges from a Hot Spring in the Eastern Coastal Area of China. Chemical Geology, 538: 119477. https://doi.org/10.1016/j.chemgeo.2020.119477
    Hassan, M., Leila, M. L., Ahmed, M., et al., 2024. Hydrocarbon-Source Correlation in the Obayied Sub-Basin, North Western Desert, Egypt: Controls on Generation of Natural Gas and Light Crude Hydrocarbon Blends. Journal of Earth Science, 35(6): 1944–1965. https://doi.org/10.1007/s12583-023-1817-3
    Hawkes, H. E., 1972. Free Hydrogen in Genesis of Petroleum: Geologial Notes. AAPG Bulletin, 56(11): 2268–2270. https://doi.org/10.1306/819a4202-16c5-11d7-8645000102c1865d
    Heinemann, N., Booth, M. G., Haszeldine, R. S., et al., 2018. Hydrogen Storage in Porous Geological Formations: Onshore Play Opportunities in the Midland Valley (Scotland, UK). International Journal of Hydrogen Energy, 43(45): 20861–20874. https://doi.org/10.1016/j.ijhydene.2018.09.149
    Horita, J., Cole, D. R., Polyakov, V. B., et al., 2002. Experimental and Theoretical Study of Pressure Effects on Hydrogen Isotope Fractionation in the System Brucite-Water at Elevated Temperatures. Geochimica et Cosmochimica Acta, 66(21): 3769–3788. https://doi.org/10.1016/S0016-7037(02)00887-6
    Horsfield, B., Mahlstedt, N., Weniger, P., et al., 2022. Molecular Hydrogen from Organic Sources in the Deep Songliao Basin, P. R. China. International Journal of Hydrogen Energy, 47(38): 16750–16774. https://doi.org/10.1016/j.ijhydene.2022.02.208
    Hoşgörmez, H., 2007. Origin of the Natural Gas Seep of Çirali (Chimera), Türkiye: Site of the First Olympic Fire. Journal of Asian Earth Sciences, 30(1): 131–141. https://doi.org/10.1016/j.jseaes.2006.08.002
    Hoşgörmez, H., Yalçın, M. N., Cramer, B., et al., 2005. Molecular and Isotopic Composition of Gas Occurrences in the Thrace Basin (Türkiye): origin of the Gases and Characteristics of Possible Source Rocks. Chemical Geology, 214(1-2): 179–191. https://doi.org/10.1016/j.chemgeo.2004.09.004
    Hu, W. S., Cai, C. F., Wu, Z. Y., et al., 1998. Structural Style and Its Relation to Hydrocarbon Exploration in the Songliao Basin, Northeast China. Marine and Petroleum Geology, 15(1): 41–55. https://doi.org/10.1016/S0264-8172(97)00054-8
    Hydrogen Council, 2017. Hydrogen Scaling up: A Sustainable Pathway for the Global Energy Transition. Technical Report. 1–80. https://www.h2knowledgecentre.com/content/policypaper1201?crawler=true&mimetype=application/pdf https://www.h2knowledgecentre.com/content/policypaper1201?crawler=true&mimetype=application/pdf
    Javoy, M., Pineau, F., Delorme, H., 1986. Carbon and Nitrogen Isotopes in the Mantle. Chemical Geology, 57(1/2): 41–62. https://doi.org/10.1016/0009-2541(86)90093-8
    Jeffrey, A. W. A., Kaplan, I. R., 1988. Hydrocarbons and Inorganic Gases in the Gravberg-1 Well, Siljan Ring, Sweden. Chemical Geology, 71(1/2/3): 237–255. https://doi.org/10.1016/0009-2541(88)90118-0
    Jenden, P. D., Kaplan, I. R., Poreda, R., et al., 1988. Origin of Nitrogen-Rich Natural Gases in the California Great Valley: Evidence from Helium, Carbon and Nitrogen Isotope Ratios. Geochimica et Cosmochimica Acta, 52(4): 851–861. https://doi.org/10.1016/0016-7037(88)90356-0
    Jin Z. J., Wang L., 2022. Does Hydrogen Reservoir Exist in Nature? Earth Science, 47(10): 3858–3859 (in Chinese with English Abstract)
    Jin, Z. J., Zhang, L. P., Wang, Y., et al., 2009. Using Carbon, Hydrogen and Helium Isotopes to Unravel the Origin of Hydrocarbons in the Wujiaweizi Area of the Songliao Basin, China. Episodes, 32(3): 167–176. https://doi.org/10.18814/epiiugs/2009/v32i3/003
    Jin, Z. J., Zhang, L. P., Zeng, J. H., et al., 2002. Multi-Origin Alkanes Related to CO2-Rich, Mantle-Derived Fluid in Dongying Sag, Bohai Bay Basin. Chinese Science Bulletin, 47(20): 1756–1760. https://doi.org/10.1007/BF03183323
    Kim, H. Y., 2003. A Low Cost Production of Hydrogen from Carbonaceous Wastes. International Journal of Hydrogen Energy, 28(11): 1179–1186. https://doi.org/10.1016/S0360-3199(02)00290-2
    Klein, F., Grozeva, N. G., Seewald, J. S., 2019. Abiotic Methane Synthesis and Serpentinization in Olivine-Hosted Fluid Inclusions. Proceedings of the National Academy of Sciences of the United States of America, 116(36): 17666–17672. https://doi.org/10.1073/pnas.1907871116
    Klein, F., Tarnas, J. D., Bach, W., 2020. Abiotic Sources of Molecular Hydrogen on Earth. Elements, 16(1): 19–24. https://doi.org/10.2138/gselements.16.1.19
    Kravtsov, A. I., 1967. Geochemical Flow Sheet on Methane and Liquid Hydrocarbon Formation during Magmatism and Main Criteria in Prospecting for Gas-Oil Deposits. In: Vses, D., ed., Genezis Nefti Gaza, Sovesheh. 314–325 (in Russian)
    Lin, L. H., Hall, J., Lippmann-Pipke, J., et al., 2005. Radiolytic H2 in Continental Crust: Nuclear Power for Deep Subsurface Microbial Communities. Geochemistry, Geophysics, Geosystems, 6(7): 1–13. https://doi.org/10.1029/2004GC000907
    Liu, Q. Y., Dai, J. X., Jin, Z. J., et al., 2016. Abnormal Carbon and Hydrogen Isotopes of Alkane Gases from the Qingshen Gas Field, Songliao Basin, China, Suggesting Abiogenic Alkanes? Journal of Asian Earth Sciences, 115: 285–297. https://doi.org/10.1016/j.jseaes.2015.10.005
    Liu, Q. Y., Dai, J. X., Li, J., et al., 2008. Hydrogen Isotope Composition of Natural Gases from the Tarim Basin and Its Indication of Depositional Environments of the Source Rocks. Science in China Series D: Earth Sciences, 51(2): 300–311. https://doi.org/10.1007/s11430-008-0006-7
    Liu, Q. Y., Jin, Z. J., Meng, Q. Q., et al., 2015. Genetic Types of Natural Gas and Filling Patterns in Daniudi Gas Field, Ordos Basin, China. Journal of Asian Earth Sciences, 107: 1–11. https://doi.org/10.1016/j.jseaes.2015.04.001
    Liu, Q. Y., Worden, R. H., Jin, Z. J., et al., 2014. Thermochemical Sulphate Reduction (TSR) versus Maturation and Their Effects on Hydrogen Stable Isotopes of very Dry Alkane Gases. Geochimica et Cosmochimica Acta, 137: 208–220. https://doi.org/10.1016/j.gca.2014.03.013
    Liu, Q. Y., Wu, X. Q., Huang, X. W., et al., 2024. Integrated Geochemical Identification of Natural Hydrogen Sources. Science Bulletin, 69(19): 2993–2996. https://doi.org/10.1016/j.scib.2024.07.004
    Liu, Q. Y., Wu, X. Q., Jia, H. C., et al., 2022. Geochemical Characteristics of Helium in Natural Gas from the Daniudi Gas Field, Ordos Basin, Central China. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.823308
    Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane: A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190: 247–272. https://doi.org/10.1016/j.earscirev.2018.11.017
    Lupton, J. E., 1983. Terrestrial Inert Gases: Isotope Tracer Studies and Clues to Primordial Components in the Mantle. Annual Review of Earth and Planetary Sciences, 11: 371–414 https://doi.org/10.1146/annurev.ea.11.050183.002103
    Lupton, J. E., Baker, E. T., Massoth, G. J., 1999. Helium, Heat, and the Generation of Hydrothermal Event Plumes at Mid-Ocean Ridges. Earth and Planetary Science Letters, 171(3): 343–350. https://doi.org/10.1016/S0012-821X(99)00149-1
    Macgeehan, D. J., Hodgson, C. J., 1980. The Relationship of Gold Mineralization to Volcanic and Metamorphic Features in the Area of the Campbell and Dickenson Mines, Red Lake District, Ontario. Genesis of Archean, Volcanic-Hosted Gold Deposits, 5293: 212–243
    Mahmoudi, H., Mahmoudi, M., Doustdar, O., et al., 2017. A Review of Fischer Tropsch Synthesis Process, Mechanism, Surface Chemistry and Catalyst Formulation. Biofuels Engineering, 2(1): 11–31. https://doi.org/10.1515/bfuel-2017-0002
    Mamyrin, B. A., Anufriyev, G. S., Kamenskiy, I. L., et al., 1970. Determination of the Isotopic Composition of Atmospheric Helium. Geochemistry International, 7: 478–505
    Mamyrin, B. A., Tolstikhin, L., 1984. Helium Isotopes in Nature. Elsevier, Amsterdam
    Marty, B., Gunnlaugsson, E., Jambon, A., et al., 1991. Gas Geochemistry of Geothermal Fluids, the Hengill Area, Southwest Rift Zone of Iceland. Chemical Geology, 91(3): 207–225
    Marty, B., Tolstikhin, I. N., 1998. CO2 Fluxes from Mid-Ocean Ridges, Arcs and Plumes. Chemical Geology, 145(3/4): 233–248. https://doi.org/10.1016/S0009-2541(97)00145-9
    Mastalerz, M., Schimmelmann, A., 2002. Isotopically Exchangeable Organic Hydrogen in Coal Relates to Thermal Maturity and Maceral Composition. Organic Geochemistry, 33(8): 921–931. https://doi.org/10.1016/S0146-6380(02)00064-5
    McCollom, T. M., Klein, F., Moskowitz, B., et al., 2020. Hydrogen Generation and Iron Partitioning during Experimental Serpentinization of an Olivine-Pyroxene Mixture. Geochimica et Cosmochimica Acta, 282: 55–75. https://doi.org/10.1016/j.gca.2020.05.016
    McCollom, T. M., Seewald, J. S., 2001. A Reassessment of the Potential for Reduction of Dissolved CO2 to Hydrocarbons during Serpentinization of Olivine. Geochimica et Cosmochimica Acta, 65(21): 3769–3778. https://doi.org/10.1016/S0016-7037(01)00655-X
    Meng, Q. Q., Sun, Y. H., Tong, J. Y., et al., 2015. Distribution and Geochemical Characteristics of Hydrogen in Natural Gas from the Jiyang Depression, Eastern China. Acta Geologica Sinica: English Edition, 89(5): 1616–1624. https://doi.org/10.1111/1755-6724.12568
    Milkov, A. V., 2022. Molecular Hydrogen in Surface and Subsurface Natural Gases: Abundance, Origins and Ideas for Deliberate Exploration. Earth-Science Reviews, 230: 104063. https://doi.org/10.1016/j.earscirev.2022.104063
    Neal, C., Stanger, G., 1983. Hydrogen Generation from Mantle Source Rocks in Oman. Earth and Planetary Science Letters, 66: 315–320. https://doi.org/10.1016/0012-821X(83)90144-9
    Newell, K. D., Doveton, J. H., Merriam, D. F., et al., 2007. H2-Rich and Hydrocarbon Gas Recovered in a Deep Precambrian Well in Northeastern Kansas. Natural Resources Research, 16(3): 277–292. https://doi.org/10.1007/s11053-007-9052-7
    Ni, Y. Y., Dai, J. X., Tao, S. Z., et al., 2014. Helium Signatures of Gases from the Sichuan Basin, China. Organic Geochemistry, 74: 33–43. https://doi.org/10.1016/j.orggeochem.2014.03.007
    Ni, Y. Y., Liao, F. R., Dai, J. X., et al., 2012. Using Carbon and Hydrogen Isotopes to Quantify Gas Maturity, Formation Temperature, and Formation Age—Specific Applications for Gas Fields from the Tarim Basin, China. Energy Exploration & Exploitation, 30(2): 273–293. https://doi.org/10.1260/0144-5987.30.2.273
    Ni, Y. Y., Ma, Q. S., Ellis, G. S., et al., 2011. Fundamental Studies on Kinetic Isotope Effect (KIE) of Hydrogen Isotope Fractionation in Natural Gas Systems. Geochimica et Cosmochimica Acta, 75(10): 2696–2707. https://doi.org/10.1016/j.gca.2011.02.016
    Oxburgh, E. R., O'Nions, R. K., Hill, R. I., 1986. Helium Isotopes in Sedimentary Basins. Nature, 324(6098): 632–635. https://doi.org/10.1038/324632a0
    Ozima, M., Podosek, F. A., 2004. Noble Gas Geochemistry (2nd Ed). Cambridge University Press, Cambridge
    Pang, X. Q., Zhao, W. Z., Su, A. G., et al., 2005. Geochemistry and Origin of the Giant Quaternary Shallow Gas Accumulations in the Eastern Qaidam Basin, NW China. Organic Geochemistry, 36(12): 1636–1649. https://doi.org/10.1016/j.orggeochem.2005.08.013
    Peng, W. L., Liu, Q. Y., Zhang, Y., et al., 2022. The First Extra-Large Helium-Rich Gas Field Identified in a Tight Sandstone of the Dongsheng Gas Field, Ordos Basin, China. Science China Earth Sciences, 65(5): 874–881. https://doi.org/10.1007/s11430-021-9898-y
    Poreda, R. J., Jenden, P. D., Kaplan, I. R., et al., 1986. Mantle Helium in Sacramento Basin Natural Gas Wells. Geochimica et Cosmochimica Acta, 50(12): 2847–2853. https://doi.org/10.1016/0016-7037(86)90231-0
    Poreda, R., Craig, H., 1989. Helium Isotope Ratios in Circum-Pacific Volcanic Arcs. Nature, 338(6215): 473–478. https://doi.org/10.1038/338473a0
    Prinzhofer, A., Battani, A., 2003. Gas Isotopes Tracing: An Important Tool for Hydrocarbons Exploration. Oil & Gas Science and Technology, 58(2): 299–311. https://doi.org/10.2516/ogst:2003018
    Prinzhofer, A., Moretti, I., Françolin, J., et al., 2019. Natural Hydrogen Continuous Emission from Sedimentary Basins: The Example of a Brazilian H2-Emitting Structure. International Journal of Hydrogen Energy, 44(12): 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119
    Prinzhofer, A., Tahara Cissé, C. S., Diallo, A. B., 2018. Discovery of a Large Accumulation of Natural Hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42): 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193
    Proskurowski, G., Lilley, M. D., Kelley, D. S., et al., 2006. Low Temperature Volatile Production at the Lost City Hydrothermal Field, Evidence from a Hydrogen Stable Isotope Geothermometer. Chemical Geology, 229(4): 331–343. https://doi.org/10.1016/j.chemgeo.2005.11.005
    Reeves, E. P., Seewald, J. S., Sylva, S. P., 2012. Hydrogen Isotope Exchange between N-Alkanes and Water under Hydrothermal Conditions. Geochimica et Cosmochimica Acta, 77: 582–599. https://doi.org/10.1016/j.gca.2011.10.008
    Reitenbach, V., Ganzer, L., Albrecht, D., et al., 2015. Influence of Added Hydrogen on Underground Gas Storage: A Review of Key Issues. Environmental Earth Sciences, 73(11): 6927–6937. https://doi.org/10.1007/s12665-015-4176-2
    Rigollet, C., Prinzhofer, A., 2022. Natural Hydrogen: A New Source of Carbon-Free and Renewable Energy that Can Compete with Hydrocarbons. First Break, 40(10): 78–84. https://doi.org/10.3997/1365-2397.fb2022087
    Salvi, S., Williams-Jones, A. E., 1997. Fischer-Tropsch Synthesis of Hydrocarbons during Sub-Solidus Alteration of the Strange Lake Peralkaline Granite, Quebec/Labrador, Canada. Geochimica et Cosmochimica Acta, 61(1): 83–99. https://doi.org/10.1016/S0016-7037(96)00313-4
    Sano, Y., Urabe, A., Wakita, H., et al., 1993. Origin of Hydrogen-Nitrogen Gas Seeps, Oman. Applied Geochemistry, 8(1): 1–8. https://doi.org/10.1016/0883-2927(93)90053-J
    Schimmelmann, A., Boudou, J. P., Lewan, M. D., et al., 2001. Experimental Controls on D/H and 13C/12C Ratios of Kerogen, Bitumen and Oil during Hydrous Pyrolysis. Organic Geochemistry, 32(8): 1009–1018. https://doi.org/10.1016/S0146-6380(01)00059-6
    Schimmelmann, A., Lewan, M. D., Wintsch, R. P., 1999. D/H Isotope Ratios of Kerogen, Bitumen, Oil, and Water in Hydrous Pyrolysis of Source Rocks Containing Kerogen Types Ⅰ, Ⅱ, ⅡS, and Ⅲ. Geochimica et Cosmochimica Acta, 63(22): 3751–3766. https://doi.org/10.1016/S0016-7037(99)00221-5
    Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649–661. https://doi.org/10.1016/0016-7037(80)90155-6
    Schoell, M., 1988. Multiple Origins of Methane in the Earth. Chemical Geology, 71(1/2/3): 1–10. https://doi.org/10.1016/0009-2541(88)90101-5
    Schulmeister, M. K., Andeskie, A. S., Benison, K. C., 2019. The Science and Industry of the Permian Hutchinson Salt. Exploring Extreme and Unusual Geology in the Stable Midcontinent: Field Excursions for the 2019 GSA South-Central, North-Central, and Rocky Mountain Sections Joint Meeting. Geological Society of America, 52: 25–36. https://doi.org/10.1130/2019.0052(02)
    Shangguan, Z. G., Huo, W. G., 2002. δD Values of Escaped H2 from Hot Springs at the Tengchong Rehai Geothermal Area and Its Origin. Chinese Science Bulletin, 47(2): 148–150. https://doi.org/10.1360/02tb9034
    Shen, P., Shen, Q. X., Wang, X. B., et al., 1988. Characteristics of Isotope Composition of Gasiform Hydrocarbon and Identification of Coal-Type Gas. Science in China Series D, 31(6): 734–747 (in Chinese)
    Sherwood Lollar, B., Frape, S. K., Fritz, P., et al., 1993. Evidence for Bacterially Generated Hydrocarbon Gas in Canadian Shield and Fennoscandian Shield Rocks. Geochimica et Cosmochimica Acta, 57(23/24): 5073–5085. https://doi.org/10.1016/0016-7037(93)90609-Z
    Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G. F., et al., 2006. Unravelling Abiogenic and Biogenic Sources of Methane in the Earth's Deep Subsurface. Chemical Geology, 226(3/4): 328–339. https://doi.org/10.1016/j.chemgeo.2005.09.027
    Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., et al., 2008. Isotopic Signatures of CH4 and Higher Hydrocarbon Gases from Precambrian Shield Sites: A Model for Abiogenic Polymerization of Hydrocarbons. Geochimica et Cosmochimica Acta, 72(19): 4778–4795. https://doi.org/10.1016/j.gca.2008.07.004
    Sherwood Lollar, B., Onstott, T. C., Lacrampe-Couloume, G., et al., 2014. The Contribution of the Precambrian Continental Lithosphere to Global H2 Production. Nature, 516(7531): 379–382. https://doi.org/10.1038/nature14017
    Sherwood Lollar, B., Westgate, T. D., Ward, J. A., et al., 2002. Abiogenic Formation of Alkanes in the Earth's Crust as a Minor Source for Global Hydrocarbon Reservoirs. Nature, 416(6880): 522–524. https://doi.org/10.1038/416522a
    Shuai, Y. H., Zhang, S. C., Su, A. G., et al., 2010. Geochemical Evidence for Strong Ongoing Methanogenesis in Sanhu Region of Qaidam Basin. Science in China Series D: Earth Sciences, 53(1): 84–90. https://doi.org/10.1007/s11430-009-0081-4
    Šmigáň, P., Greksák, M., Kozánková, J., et al., 1990. Methanogenic Bacteria as a Key Factor Involved in Changes of Town Gas Stored in an Underground Reservoir. FEMS Microbiology Letters, 73(3): 221–224. https://doi.org/10.1016/0378-1097(90)90733-7
    Stiegel, G. J., Ramezan, M., 2006. Hydrogen from Coal Gasification: An Economical Pathway to a Sustainable Energy Future. International Journal of Coal Geology, 65(3/4): 173–190. https://doi.org/10.1016/j.coal.2005.05.002
    Suda, K., Ueno, Y., Yoshizaki, M., et al., 2014. Origin of Methane in Serpentinite-Hosted Hydrothermal Systems: The CH4-H2-H2O Hydrogen Isotope Systematics of the Hakuba Happo Hot Spring. Earth and Planetary Science Letters, 386: 112–125. https://doi.org/10.1016/j.epsl.2013.11.001
    Taran, Y. A., Kliger, G. A., Sevastianov, V. S., 2007. Carbon Isotope Effects in the Open-System Fischer-Tropsch Synthesis. Geochimica et Cosmochimica Acta, 71(18): 4474–4487. https://doi.org/10.1016/j.gca.2007.06.057
    Telling, J., Boyd, E. S., Bone, N., et al., 2015. Rock Comminution as a Source of Hydrogen for Subglacial Ecosystems. Nature Geoscience, 8(11): 851–855. https://doi.org/10.1038/ngeo2533
    Thayer, T. P., 1966. Serpentinization Considered as a Constant-Volume Metasomatic Process. American Mineralogist, 51(5/6): 685–710
    Tuo, J. C., Philp, R. P., 2003. Occurrence and Distribution of High Molecular Weight Hydrocarbons in Selected Non-Marine Source Rocks from the Liaohe, Qaidam and Tarim Basins, China. Organic Geochemistry, 34(11): 1543–1558. https://doi.org/10.1016/S0146-6380(03)00174-8
    Vacquand, C., 2011. Genèse et Mobilité de l'hydrogène Naturel: Source D'énergie ou Vecteur D'énergie Stockable?: [Dissertation]. IFPEN-IPGP, Paris. 1–174 (in French)
    Vacquand, C., Deville, E., Beaumont, V., et al., 2018. Reduced Gas Seepages in Ophiolitic Complexes: Evidences for Multiple Origins of the H2-CH4-N2 Gas Mixtures. Geochimica et Cosmochimica Acta, 223: 437–461. https://doi.org/10.1016/j.gca.2017.12.018
    Vovk, I. F., 1987. Radiolytic Salt Enrichment and Brine in the Crystalline Basement of the East European Platform. In: Fritz, P., Frape, S. K., eds., Saline Water and Gases in Crystalline Rocks. Geological Association of Canada Special Paper, 33: 197–210
    Wakita, H., Sano, Y., 1983. 3He/4He Ratios in CH4-Rich Natural Gases Suggest Magmatic Origin. Nature, 305(5937): 792–794. https://doi.org/10.1038/305792a0
    Wang, L., Jin, Z. J., Lyu, Z. Y., et al., 2024. Research Progress in Underground Hydrogen Storage. Earth Science, 49(6): 2044–2057 (in Chinese with English Abstract)
    Wang, X. F., Liu, Q. Y., Liu, W. H., et al., 2022. Accumulation Mechanism of Mantle-Derived Helium Resources in Petroliferous Basins, Eastern China. Science China Earth Sciences, 65(12): 2322–2334. https://doi.org/10.1007/s11430-022-9977-8
    Wang, X. F., Liu, W. H., Shi, B. G., et al., 2015. Hydrogen Isotope Characteristics of Thermogenic Methane in Chinese Sedimentary Basins. Organic Geochemistry, 83: 178–189. https://doi.org/10.1016/j.orggeochem.2015.03.010
    Warr, O., Giunta, T., Ballentine, C. J., et al., 2019. Mechanisms and Rates of 4He, 40Ar, and H2 Production and Accumulation in Fracture Fluids in Precambrian Shield Environments. Chemical Geology, 530: 119322. https://doi.org/10.1016/j.chemgeo.2019.119322
    Welhan, J. A., 1988. Origins of Methane in Hydrothermal Systems. Chemical Geology, 71(1-3): 183–198. https://doi.org/10.1016/0009-2541(88)90114-3
    Welhan, J. A., Craig, H., 1979. Methane and Hydrogen in East Pacific Rise Hydrothermal Fluids. Geophysical Research Letters, 6(11): 829–831. https://doi.org/10.1029/GL006i011p00829
    Welhan, J. A., Craig, H., 1983. Methan, Hydrogen and Helium in Hydrothermal Fluids at 21oN on the East Pacific Rise. Plenum Press, London and New York. 391–410
    Welte, D. H., Schaefer, R. G., Yalçin, M. N., 1988. Gas Generation from Source Rocks: Aspects of a Quantitative Treatment. Chemical Geology, 71(1/2/3): 105–116. https://doi.org/10.1016/0009-2541(88)90109-X
    Whiticar, M. J., 1999. Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. Chemical Geology, 161(1/2/3): 291–314. https://doi.org/10.1016/S0009-2541(99)00092-3
    Whiticar, M. J., Faber, E., Schoell, M., 1986. Biogenic Methane Formation in Marine and Freshwater Environments: CO2 Reduction vs. Acetate Fermentation—Isotope Evidence. Geochimica et Cosmochimica Acta, 50(5): 693–709. https://doi.org/10.1016/0016-7037(86)90346-7
    Woolnough, W. G., 1934. Natural Gas in Australia and New Guinea. AAPG Bulletin, 18(2): 226–242. https://doi.org/10.1306/3D932C06-16B1-11D7-8645000102C1865D
    Xiao, X. M., Zhao, B. Q., Thu, Z. L., et al., 2005. Upper Paleozoic Petroleum System, Ordos Basin, China. Marine and Petroleum Geology, 22(8): 945–963. https://doi.org/10.1016/j.marpetgeo.2005.04.001
    Xu, S., Nakai, S., Wakita, H., et al., 1995a. Helium Isotope Compositions in Sedimentary Basins in China. Applied Geochemistry, 10(6): 643–656. https://doi.org/10.1016/0883-2927(95)00033-X
    Xu, S., Nakai, S., Wakita, H., et al., 1995b. Mantle-Derived Noble Gases in Natural Gases from Songliao Basin, China. Geochimica et Cosmochimica Acta, 59(22): 4675–4683. https://doi.org/10.1016/0016-7037(95)00301-0
    Xu, Y. C., Liu, W. H., Shen, P., et al., 2006. Carbon and Hydrogen Isotopic Characteristics of Natural Gases from the Luliang and Baoshan Basins in Yunnan Province, China. Science in China Series D: Earth Sciences, 49(9): 938–946. https://doi.org/10.1007/s11430-006-0938-8
    Xu, Y. C., Shen, P., Tao, M. X., et al., 1997a. Geochemistry on Mantle-Derived Volatiles in Natural Gases from Eastern China Oil/Gas Provinces (Ⅱ). Science in China Series D: Earth Sciences, 40(3): 315–321. https://doi.org/10.1007/BF02877541
    Xu, Y. C., Shen, P., Tao, M. X., et al., 1997b. Geochemistry on Mantle-Derived Volatiles in Natural Gases from Eastern China Oil/Gas Provinces (Ⅰ). Science in China Series D: Earth Sciences, 40(2): 120–129. https://doi.org/10.1007/BF02878370
    Xu, Y., Liu, W., Shen, P., et al., 1998. Geochemistry of Noble Gas in Natural Gas. Science Press, Beijing. 275 (in Chinese)
    Yeh, H. W., Epstein, S., 1981. Hydrogen and Carbon Isotopes of Petroleum and Related Organic Matter. Geochimica et Cosmochimica Acta, 45(5): 753–762. https://doi.org/10.1016/0016-7037(81)90046-6
    Zgonnik, V., 2020. The Occurrence and Geoscience of Natural hydrogen: A Comprehensive Review. Earth-Science Reviews, 203: 103140. https://doi.org/10.1016/j.earscirev.2020.103140
    Zhou, Q. H., Feng, Z. H., Men, G. T., 2008. Present Geotemperature and Its Suggestion to Natural Gas Generation in Xujiaweizi Fault-Depression of the Northern Songliao Basin. Science in China Series D: Earth Sciences, 51(1): 207–220. https://doi.org/10.1007/s11430-008-5007-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views(459) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return