Citation: | Quanyou Liu, Xiaoqi Wu, Xiaowei Huang, Di Zhu, Qingqiang Meng, Dongya Zhu, Huiyuan Xu, Jiayi Liu, Pengpeng Li, Zheng Zhou, Kaiqiang Zhang, Zhijun Jin. Occurrence of Global Natural Hydrogen and Profitable Preservation. Journal of Earth Science, 2025, 36(4): 1525-1554. doi: 10.1007/s12583-024-0120-2 |
Occurrence and abundance of molecular hydrogen in natural geologic reservoirs are enigmatic, due to its various sources, diverse migration pathways and complicated biological and chemical reactions. Natural gas samples containing hydrogen from producing wells in several sedimentary basins in China were collected in this study, and gas abundances and isotopic compositions of these gases were compared with those in global petroliferous basins and deep intrusive rocks. Several geochemical indicators were suggested for identifying sources, migration and accumulation mechanisms of hydrogen in the subsurface environment. Hydrogen contents in natural gas deposits have contributions from various sources with the following high-to-low order: microbial degradation > serpentinization > deep mantle volatile release > radiation-induced water decomposition > thermal cracking of organic matter. A hydrogen-rich reservoir in Kansas, USA, is specifically analyzed to determine its formation mechanism. This study suggests that future exploration of geological hydrogen resources may focus on the igneous rock bodies with overlying dense sedimentary rocks in the continental rift systems.
Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., et al., 1988. Methane-Hydrogen Gas Seeps, Zambales Ophiolite, Philippines: Deep or Shallow Origin? Chemical Geology, 71(1/2/3): 211–222. https://doi.org/10.1016/0009-2541(88)90116-7 |
Aftab, A., Hassanpouryouzband, A., Xie, Q., et al., 2022. Toward a Fundamental Understanding of Geological Hydrogen Storage. Industrial & Engineering Chemistry Research, 61(9): 3233–3253. https://doi.org/10.1021/acs.iecr.1c04380 |
Allègre, C. J., Staudacher, T., Sarda, P., 1987. Rare Gas Systematics: Formation of the Atmosphere, Evolution and Structure of the Earth's Mantle. Earth and Planetary Science Letters, 81(2/3): 127–150. https://doi.org/10.1016/0012-821X(87)90151-8 |
Allen, D. E., Seyfried, W. E., Jr, 2004. Serpentinization and Heat Generation: Constraints from Lost City and Rainbow Hydrothermal Systems. Geochimica et Cosmochimica Acta, 68(6): 1347–1354. https://doi.org/10.1016/j.gca.2003.09.003 |
Anderson, R. B., Köllbel, H., Rálek, M., 1984. The Fischer-Tropsch synthesis. Academic Press, Newyork. 1–30 |
Ballentine, C. J., Burnard, P. G., 2002. Production, Release and Transport of Noble Gases in the Continental Crust. Reviews in Mineralogy and Geochemistry, 47(1): 481–538. https://doi.org/10.2138/rmg.2002.47.12 |
Ballentine, C. J., Schoell, M., Coleman, D., et al., 2001. 300-Myr-Old Magmatic CO2 in Natural Gas Reservoirs of the West Texas Permian Basin. Nature, 409(6818): 327–331. https://doi.org/10.1038/35053046 |
Barnes, I., O'Neil, J. R., 1969. The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States. Geological Society of America Bulletin, 80(10): 1947. https://doi.org/10.1130/0016-7606(1969)80<1947:trbfis>2.0.co;2 doi: 10.1130/0016-7606(1969)80<1947:trbfis>2.0.co;2 |
Basu, S., Stuart, F. M., Klemm, V., et al., 2006. Helium Isotopes in Ferromanganese Crusts from the Central Pacific Ocean. Geochimica et Cosmochimica Acta, 70(15): 3996–4006. https://doi.org/10.1016/j.gca.2006.05.015 |
Bougault, H., 2019. Hydrothermal Hydeogen and Methane: Scientific insight, A New Potential Resouce? Mines & Carrieres, Les Techniques, 2012(196): 73–80 |
Bradley, A. S., Summons, R. E., 2010. Multiple Origins of Methane at the Lost City Hydrothermal Field. Earth and Planetary Science Letters, 297(1-2): 34–41. https://doi.org/10.1016/j.epsl.2010.05.034 |
Briere, D., Jerzykiewicz, T., 2016. On Generating a Geological Model for Hydrogen Gas in the Southern Taoudeni Megabasin (Bourakebougou Area, Mali). International Conference and Exhibition, Society of Exploration Geophysicists and American Association of Petroleum Geologists, 3–6 April 2016, Barcelona, Spain. 342. |
Caffee, M. W., Hudson, G. B., Velsko, C., et al., 1999. Primordial Noble Gases from Earth's Mantle: identification of a Primitive Volatile Component. Science, 285(5436): 2115–2118. https://doi.org/10.1126/science.285.5436.2115 |
Cathles, L., Prinzhofer, A., 2020. What Pulsating H2 Emissions Suggest about the H2 Resource in the Sao Francisco Basin of Brazil. Geosciences, 10(4): 149. https://doi.org/10.3390/geosciences10040149 |
Chavrit, D., Burgess, R., Sumino, H., et al., 2016. The Contribution of Hydrothermally Altered Ocean Crust to the Mantle Halogen and Noble Gas Cycles. Geochimica et Cosmochimica Acta, 183: 106–124. https://doi.org/10.1016/j.gca.2016.03.014 |
Cheng, A. R., Sherwood Lollar, B., Gluyas, J. G., et al., 2023. Primary N2-He Gas Field Formation in Intracratonic Sedimentary Basins. Nature, 615(7950): 94–99. https://doi.org/10.1038/s41586-022-05659-0 |
Coleman, D. D., Risatti, J. B., Schoell, M., 1981. Fractionation of Carbon and Hydrogen Isotopes by Methane-Oxidizing Bacteria. Geochimica et Cosmochimica Acta, 45(7): 1033–1037. https://doi.org/10.1016/0016-7037(81)90129-0 |
Coveney, J. R. M., Goebel, E. D., Zeller, E. D. J., et al., 1987. Serpentinization and the Orgin of Hydrogen Gas in Kansas. AAPG Bulletin, 71: 39–49 |
Craig, H., Lupton, J. E., 1976. Primordial Neon, Helium, and Hydrogen in Oceanic Basalts. Earth and Planetary Science Letters, 31(3): 369–385. https://doi.org/10.1016/0012-821X(76)90118-7 |
Craig, H., Lupton, J. E., Welhan, J. A., et al., 1978. Helium Isotope Ratios in Yellowstone and Lassen Park Volcanic Gases. Geophysical Research Letters, 5(11): 897–900. https://doi.org/10.1029/GL005i011p00897 |
Dai, J. X., 1989. Composition Characteristics and Origin of Carbon Isotope of Liuhuangtang Natural Gas in Tengchong County, Yunnan Province. Chinese Science Bulletin, 34(12): 1027–1030 (in Chinese) |
Dai, J. X., Li, J., Luo, X., et al., 2005a. Stable Carbon Isotope Compositions and Source Rock Geochemistry of the Giant Gas Accumulations in the Ordos Basin, China. Organic Geochemistry, 36(12): 1617–1635. https://doi.org/10.1016/j.orggeochem.2005.08.017 |
Dai, J. X., Yang, S. F., Chen, H. L., et al., 2005b. Geochemistry and Occurrence of Inorganic Gas Accumulations in Chinese Sedimentary Basins. Organic Geochemistry, 36(12): 1664–1688. https://doi.org/10.1016/j.orggeochem.2005.08.007 |
Dai, J. X., Ni, Y. Y., Zou, C. N., 2012. Stable Carbon and Hydrogen Isotopes of Natural Gases Sourced from the Xujiahe Formation in the Sichuan Basin, China. Organic Geochemistry, 43: 103–111. https://doi.org/10.1016/j.orggeochem.2011.10.006 |
Deronzier, J. F., Giouse, H., 2020. Vaux-En-Bugey (Ain, France): The First Gas Field Produced in France, Providing Learning Lessons for Natural Hydrogen in the Sub-Surface? BSGF-Earth Sciences Bulletin, 191(1): 7. https://doi.org/10.1051/bsgf/2020005 |
Deville, E., Prinzhofer, A., 2016. The Origin of N2-H2-CH4-Rich Natural Gas Seepages in Ophiolitic Context: A Major and Noble Gases Study of Fluid Seepages in New Caledonia. Chemical Geology, 440: 139–147. https://doi.org/10.1016/j.chemgeo.2016.06.011 |
Ding, W. W., Dai, J. X., Yang, C. Y., et al., 2005. Helium Isotopic Compositions in Fluid Inclusions of the Gangxi Fault Belt in the Huanghua Depression, Bohai Bay Basin. Chinese Science Bulletin, 50(22): 2621–2627. https://doi.org/10.1007/BF03183660 |
Dzaugis, M. E., Spivack, A. J., Dunlea, A. G., et al., 2016. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer. Frontiers in Microbiology, 7: 76. https://doi.org/10.3389/fmicb.2016.00076 |
Ebigbo, A., Golfier, F., Quintard, M., 2013. A Coupled, Pore-Scale Model for Methanogenic Microbial Activity in Underground Hydrogen Storage. Advances in Water Resources, 61: 74–85. https://doi.org/10.1016/j.advwatres.2013.09.004 |
Etiope, G., 2017. Abiotic Methane in Continental Serpentinization Sites: An Overview. Procedia Earth and Planetary Science, 17: 9–12. https://doi.org/10.1016/j.proeps.2016.12.006 |
Etiope, G., 2023. Massive Release of Natural Hydrogen from a Geological Seep (Chimaera, Türkiye): Gas Advection as a Proxy of Subsurface Gas Migration and Pressurised Accumulations. International Journal of Hydrogen Energy, 48(25): 9172–9184. https://doi.org/10.1016/j.ijhydene.2022.12.025 |
Etiope, G., Fridriksson, T., Italiano, F., et al., 2007. Natural Emissions of Methane from Geothermal and Volcanic Sources in Europe. Journal of Volcanology and Geothermal Research, 165(1/2): 76–86. https://doi.org/10.1016/j.jvolgeores.2007.04.014 |
Etiope, G., Schoell, M., Hosgörmez, H., 2011. Abiotic Methane Flux from the Chimaera Seep and Tekirova Ophiolites (Türkiye): Understanding Gas Exhalation from Low Temperature Serpentinization and Implications for Mars. Earth and Planetary Science Letters, 310(1/2): 96–104. https://doi.org/10.1016/j.epsl.2011.08.001 |
Etiope, G., Whiticar, M. J., 2019. Abiotic Methane in Continental Ultramafic Rock systems: Towards a Genetic Model. Applied Geochemistry, 102: 139–152. https://doi.org/10.1016/j.apgeochem.2019.01.012 |
Feng, Z. Q., 2008. Volcanic Rocks as Prolific Gas Reservoir: A Case Study from the Qingshen Gas Field in the Songliao Basin, NE China. Marine and Petroleum Geology, 25(4/5): 416–432. https://doi.org/10.1016/j.marpetgeo.2008.01.008 |
Fischer, F., Tropsch, H., 1926. The Synthesis of Petroleum at Atmospheric Pressures from Gasification Products of Coal. Brennstoff-Chemie, 7: 97–104 |
Goebel, E. D., Coveney, R. M. J., Angino, E. E., et al., 1983. Naturally Occurring Hydrogen Gas from a Borehole on the Western Flank of Nemaha Anticline in Kansas. AAPG Bulletin, 67(8): 1324. https://doi.org/10.1306/03b5b76d-16d1-11d7-8645000102c1865d |
Graham, D. W., 2002. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. Reviews in Mineralogy and Geochemistry, 47(1): 247–317. https://doi.org/10.2138/rmg.2002.47.8 |
Guélard, J., Beaumont, V., Rouchon, V., et al., 2017. Natural H2 in Kansas: Deep or Shallow Origin? Geochemistry, Geophysics, Geosystems, 18(5): 1841–1865. https://doi.org/10.1002/2016GC006544 |
Han, S. B., Tang, Z. Y., Wang, C. S., et al., 2022. Hydrogen-Rich Gas Discovery in Continental Scientific Drilling Project of Songliao Basin, Northeast China: New Insights into Deep Earth Exploration. Science Bulletin, 67(10): 1003–1006. https://doi.org/10.1016/j.scib.2022.02.008 |
Hand, E., 2023. Hidden Hydrogen-Does Earth Hold Vast Stores of a Renewable, Carbon-Free Fuel? Science, 379(6633): 630–636 |
Hanson, A. D., Ritts, B. D., Moldwan, J. M., 2007. Organic Geochemistry of Oil and Source Rock Strata of the Ordos Basin, North-Central China. AAPG Bulletin, 91(9): 1273–1293. https://doi.org/10.1306/05040704131 |
Hao, Y. L., Pang, Z. H., Tian, J., et al., 2020. Origin and Evolution of Hydrogen-Rich Gas Discharges from a Hot Spring in the Eastern Coastal Area of China. Chemical Geology, 538: 119477. https://doi.org/10.1016/j.chemgeo.2020.119477 |
Hassan, M., Leila, M. L., Ahmed, M., et al., 2024. Hydrocarbon-Source Correlation in the Obayied Sub-Basin, North Western Desert, Egypt: Controls on Generation of Natural Gas and Light Crude Hydrocarbon Blends. Journal of Earth Science, 35(6): 1944–1965. https://doi.org/10.1007/s12583-023-1817-3 |
Hawkes, H. E., 1972. Free Hydrogen in Genesis of Petroleum: Geologial Notes. AAPG Bulletin, 56(11): 2268–2270. https://doi.org/10.1306/819a4202-16c5-11d7-8645000102c1865d |
Heinemann, N., Booth, M. G., Haszeldine, R. S., et al., 2018. Hydrogen Storage in Porous Geological Formations: Onshore Play Opportunities in the Midland Valley (Scotland, UK). International Journal of Hydrogen Energy, 43(45): 20861–20874. https://doi.org/10.1016/j.ijhydene.2018.09.149 |
Horita, J., Cole, D. R., Polyakov, V. B., et al., 2002. Experimental and Theoretical Study of Pressure Effects on Hydrogen Isotope Fractionation in the System Brucite-Water at Elevated Temperatures. Geochimica et Cosmochimica Acta, 66(21): 3769–3788. https://doi.org/10.1016/S0016-7037(02)00887-6 |
Horsfield, B., Mahlstedt, N., Weniger, P., et al., 2022. Molecular Hydrogen from Organic Sources in the Deep Songliao Basin, P. R. China. International Journal of Hydrogen Energy, 47(38): 16750–16774. https://doi.org/10.1016/j.ijhydene.2022.02.208 |
Hoşgörmez, H., 2007. Origin of the Natural Gas Seep of Çirali (Chimera), Türkiye: Site of the First Olympic Fire. Journal of Asian Earth Sciences, 30(1): 131–141. https://doi.org/10.1016/j.jseaes.2006.08.002 |
Hoşgörmez, H., Yalçın, M. N., Cramer, B., et al., 2005. Molecular and Isotopic Composition of Gas Occurrences in the Thrace Basin (Türkiye): origin of the Gases and Characteristics of Possible Source Rocks. Chemical Geology, 214(1-2): 179–191. https://doi.org/10.1016/j.chemgeo.2004.09.004 |
Hu, W. S., Cai, C. F., Wu, Z. Y., et al., 1998. Structural Style and Its Relation to Hydrocarbon Exploration in the Songliao Basin, Northeast China. Marine and Petroleum Geology, 15(1): 41–55. https://doi.org/10.1016/S0264-8172(97)00054-8 |
Hydrogen Council, 2017. Hydrogen Scaling up: A Sustainable Pathway for the Global Energy Transition. Technical Report. 1–80. https://www.h2knowledgecentre.com/content/policypaper1201?crawler=true&mimetype=application/pdf https://www.h2knowledgecentre.com/content/policypaper1201?crawler=true&mimetype=application/pdf |
Javoy, M., Pineau, F., Delorme, H., 1986. Carbon and Nitrogen Isotopes in the Mantle. Chemical Geology, 57(1/2): 41–62. https://doi.org/10.1016/0009-2541(86)90093-8 |
Jeffrey, A. W. A., Kaplan, I. R., 1988. Hydrocarbons and Inorganic Gases in the Gravberg-1 Well, Siljan Ring, Sweden. Chemical Geology, 71(1/2/3): 237–255. https://doi.org/10.1016/0009-2541(88)90118-0 |
Jenden, P. D., Kaplan, I. R., Poreda, R., et al., 1988. Origin of Nitrogen-Rich Natural Gases in the California Great Valley: Evidence from Helium, Carbon and Nitrogen Isotope Ratios. Geochimica et Cosmochimica Acta, 52(4): 851–861. https://doi.org/10.1016/0016-7037(88)90356-0 |
Jin Z. J., Wang L., 2022. Does Hydrogen Reservoir Exist in Nature? Earth Science, 47(10): 3858–3859 (in Chinese with English Abstract) |
Jin, Z. J., Zhang, L. P., Wang, Y., et al., 2009. Using Carbon, Hydrogen and Helium Isotopes to Unravel the Origin of Hydrocarbons in the Wujiaweizi Area of the Songliao Basin, China. Episodes, 32(3): 167–176. https://doi.org/10.18814/epiiugs/2009/v32i3/003 |
Jin, Z. J., Zhang, L. P., Zeng, J. H., et al., 2002. Multi-Origin Alkanes Related to CO2-Rich, Mantle-Derived Fluid in Dongying Sag, Bohai Bay Basin. Chinese Science Bulletin, 47(20): 1756–1760. https://doi.org/10.1007/BF03183323 |
Kim, H. Y., 2003. A Low Cost Production of Hydrogen from Carbonaceous Wastes. International Journal of Hydrogen Energy, 28(11): 1179–1186. https://doi.org/10.1016/S0360-3199(02)00290-2 |
Klein, F., Grozeva, N. G., Seewald, J. S., 2019. Abiotic Methane Synthesis and Serpentinization in Olivine-Hosted Fluid Inclusions. Proceedings of the National Academy of Sciences of the United States of America, 116(36): 17666–17672. https://doi.org/10.1073/pnas.1907871116 |
Klein, F., Tarnas, J. D., Bach, W., 2020. Abiotic Sources of Molecular Hydrogen on Earth. Elements, 16(1): 19–24. https://doi.org/10.2138/gselements.16.1.19 |
Kravtsov, A. I., 1967. Geochemical Flow Sheet on Methane and Liquid Hydrocarbon Formation during Magmatism and Main Criteria in Prospecting for Gas-Oil Deposits. In: Vses, D., ed., Genezis Nefti Gaza, Sovesheh. 314–325 (in Russian) |
Lin, L. H., Hall, J., Lippmann-Pipke, J., et al., 2005. Radiolytic H2 in Continental Crust: Nuclear Power for Deep Subsurface Microbial Communities. Geochemistry, Geophysics, Geosystems, 6(7): 1–13. https://doi.org/10.1029/2004GC000907 |
Liu, Q. Y., Dai, J. X., Jin, Z. J., et al., 2016. Abnormal Carbon and Hydrogen Isotopes of Alkane Gases from the Qingshen Gas Field, Songliao Basin, China, Suggesting Abiogenic Alkanes? Journal of Asian Earth Sciences, 115: 285–297. https://doi.org/10.1016/j.jseaes.2015.10.005 |
Liu, Q. Y., Dai, J. X., Li, J., et al., 2008. Hydrogen Isotope Composition of Natural Gases from the Tarim Basin and Its Indication of Depositional Environments of the Source Rocks. Science in China Series D: Earth Sciences, 51(2): 300–311. https://doi.org/10.1007/s11430-008-0006-7 |
Liu, Q. Y., Jin, Z. J., Meng, Q. Q., et al., 2015. Genetic Types of Natural Gas and Filling Patterns in Daniudi Gas Field, Ordos Basin, China. Journal of Asian Earth Sciences, 107: 1–11. https://doi.org/10.1016/j.jseaes.2015.04.001 |
Liu, Q. Y., Worden, R. H., Jin, Z. J., et al., 2014. Thermochemical Sulphate Reduction (TSR) versus Maturation and Their Effects on Hydrogen Stable Isotopes of very Dry Alkane Gases. Geochimica et Cosmochimica Acta, 137: 208–220. https://doi.org/10.1016/j.gca.2014.03.013 |
Liu, Q. Y., Wu, X. Q., Huang, X. W., et al., 2024. Integrated Geochemical Identification of Natural Hydrogen Sources. Science Bulletin, 69(19): 2993–2996. https://doi.org/10.1016/j.scib.2024.07.004 |
Liu, Q. Y., Wu, X. Q., Jia, H. C., et al., 2022. Geochemical Characteristics of Helium in Natural Gas from the Daniudi Gas Field, Ordos Basin, Central China. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.823308 |
Liu, Q. Y., Wu, X. Q., Wang, X. F., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane: A Review of Genetic Identification of Natural Gas. Earth-Science Reviews, 190: 247–272. https://doi.org/10.1016/j.earscirev.2018.11.017 |
Lupton, J. E., 1983. Terrestrial Inert Gases: Isotope Tracer Studies and Clues to Primordial Components in the Mantle. Annual Review of Earth and Planetary Sciences, 11: 371–414 https://doi.org/10.1146/annurev.ea.11.050183.002103 |
Lupton, J. E., Baker, E. T., Massoth, G. J., 1999. Helium, Heat, and the Generation of Hydrothermal Event Plumes at Mid-Ocean Ridges. Earth and Planetary Science Letters, 171(3): 343–350. https://doi.org/10.1016/S0012-821X(99)00149-1 |
Macgeehan, D. J., Hodgson, C. J., 1980. The Relationship of Gold Mineralization to Volcanic and Metamorphic Features in the Area of the Campbell and Dickenson Mines, Red Lake District, Ontario. Genesis of Archean, Volcanic-Hosted Gold Deposits, 5293: 212–243 |
Mahmoudi, H., Mahmoudi, M., Doustdar, O., et al., 2017. A Review of Fischer Tropsch Synthesis Process, Mechanism, Surface Chemistry and Catalyst Formulation. Biofuels Engineering, 2(1): 11–31. https://doi.org/10.1515/bfuel-2017-0002 |
Mamyrin, B. A., Anufriyev, G. S., Kamenskiy, I. L., et al., 1970. Determination of the Isotopic Composition of Atmospheric Helium. Geochemistry International, 7: 478–505 |
Mamyrin, B. A., Tolstikhin, L., 1984. Helium Isotopes in Nature. Elsevier, Amsterdam |
Marty, B., Gunnlaugsson, E., Jambon, A., et al., 1991. Gas Geochemistry of Geothermal Fluids, the Hengill Area, Southwest Rift Zone of Iceland. Chemical Geology, 91(3): 207–225 |
Marty, B., Tolstikhin, I. N., 1998. CO2 Fluxes from Mid-Ocean Ridges, Arcs and Plumes. Chemical Geology, 145(3/4): 233–248. https://doi.org/10.1016/S0009-2541(97)00145-9 |
Mastalerz, M., Schimmelmann, A., 2002. Isotopically Exchangeable Organic Hydrogen in Coal Relates to Thermal Maturity and Maceral Composition. Organic Geochemistry, 33(8): 921–931. https://doi.org/10.1016/S0146-6380(02)00064-5 |
McCollom, T. M., Klein, F., Moskowitz, B., et al., 2020. Hydrogen Generation and Iron Partitioning during Experimental Serpentinization of an Olivine-Pyroxene Mixture. Geochimica et Cosmochimica Acta, 282: 55–75. https://doi.org/10.1016/j.gca.2020.05.016 |
McCollom, T. M., Seewald, J. S., 2001. A Reassessment of the Potential for Reduction of Dissolved CO2 to Hydrocarbons during Serpentinization of Olivine. Geochimica et Cosmochimica Acta, 65(21): 3769–3778. https://doi.org/10.1016/S0016-7037(01)00655-X |
Meng, Q. Q., Sun, Y. H., Tong, J. Y., et al., 2015. Distribution and Geochemical Characteristics of Hydrogen in Natural Gas from the Jiyang Depression, Eastern China. Acta Geologica Sinica: English Edition, 89(5): 1616–1624. https://doi.org/10.1111/1755-6724.12568 |
Milkov, A. V., 2022. Molecular Hydrogen in Surface and Subsurface Natural Gases: Abundance, Origins and Ideas for Deliberate Exploration. Earth-Science Reviews, 230: 104063. https://doi.org/10.1016/j.earscirev.2022.104063 |
Neal, C., Stanger, G., 1983. Hydrogen Generation from Mantle Source Rocks in Oman. Earth and Planetary Science Letters, 66: 315–320. https://doi.org/10.1016/0012-821X(83)90144-9 |
Newell, K. D., Doveton, J. H., Merriam, D. F., et al., 2007. H2-Rich and Hydrocarbon Gas Recovered in a Deep Precambrian Well in Northeastern Kansas. Natural Resources Research, 16(3): 277–292. https://doi.org/10.1007/s11053-007-9052-7 |
Ni, Y. Y., Dai, J. X., Tao, S. Z., et al., 2014. Helium Signatures of Gases from the Sichuan Basin, China. Organic Geochemistry, 74: 33–43. https://doi.org/10.1016/j.orggeochem.2014.03.007 |
Ni, Y. Y., Liao, F. R., Dai, J. X., et al., 2012. Using Carbon and Hydrogen Isotopes to Quantify Gas Maturity, Formation Temperature, and Formation Age—Specific Applications for Gas Fields from the Tarim Basin, China. Energy Exploration & Exploitation, 30(2): 273–293. https://doi.org/10.1260/0144-5987.30.2.273 |
Ni, Y. Y., Ma, Q. S., Ellis, G. S., et al., 2011. Fundamental Studies on Kinetic Isotope Effect (KIE) of Hydrogen Isotope Fractionation in Natural Gas Systems. Geochimica et Cosmochimica Acta, 75(10): 2696–2707. https://doi.org/10.1016/j.gca.2011.02.016 |
Oxburgh, E. R., O'Nions, R. K., Hill, R. I., 1986. Helium Isotopes in Sedimentary Basins. Nature, 324(6098): 632–635. https://doi.org/10.1038/324632a0 |
Ozima, M., Podosek, F. A., 2004. Noble Gas Geochemistry (2nd Ed). Cambridge University Press, Cambridge |
Pang, X. Q., Zhao, W. Z., Su, A. G., et al., 2005. Geochemistry and Origin of the Giant Quaternary Shallow Gas Accumulations in the Eastern Qaidam Basin, NW China. Organic Geochemistry, 36(12): 1636–1649. https://doi.org/10.1016/j.orggeochem.2005.08.013 |
Peng, W. L., Liu, Q. Y., Zhang, Y., et al., 2022. The First Extra-Large Helium-Rich Gas Field Identified in a Tight Sandstone of the Dongsheng Gas Field, Ordos Basin, China. Science China Earth Sciences, 65(5): 874–881. https://doi.org/10.1007/s11430-021-9898-y |
Poreda, R. J., Jenden, P. D., Kaplan, I. R., et al., 1986. Mantle Helium in Sacramento Basin Natural Gas Wells. Geochimica et Cosmochimica Acta, 50(12): 2847–2853. https://doi.org/10.1016/0016-7037(86)90231-0 |
Poreda, R., Craig, H., 1989. Helium Isotope Ratios in Circum-Pacific Volcanic Arcs. Nature, 338(6215): 473–478. https://doi.org/10.1038/338473a0 |
Prinzhofer, A., Battani, A., 2003. Gas Isotopes Tracing: An Important Tool for Hydrocarbons Exploration. Oil & Gas Science and Technology, 58(2): 299–311. https://doi.org/10.2516/ogst:2003018 |
Prinzhofer, A., Moretti, I., Françolin, J., et al., 2019. Natural Hydrogen Continuous Emission from Sedimentary Basins: The Example of a Brazilian H2-Emitting Structure. International Journal of Hydrogen Energy, 44(12): 5676–5685. https://doi.org/10.1016/j.ijhydene.2019.01.119 |
Prinzhofer, A., Tahara Cissé, C. S., Diallo, A. B., 2018. Discovery of a Large Accumulation of Natural Hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43(42): 19315–19326. https://doi.org/10.1016/j.ijhydene.2018.08.193 |
Proskurowski, G., Lilley, M. D., Kelley, D. S., et al., 2006. Low Temperature Volatile Production at the Lost City Hydrothermal Field, Evidence from a Hydrogen Stable Isotope Geothermometer. Chemical Geology, 229(4): 331–343. https://doi.org/10.1016/j.chemgeo.2005.11.005 |
Reeves, E. P., Seewald, J. S., Sylva, S. P., 2012. Hydrogen Isotope Exchange between N-Alkanes and Water under Hydrothermal Conditions. Geochimica et Cosmochimica Acta, 77: 582–599. https://doi.org/10.1016/j.gca.2011.10.008 |
Reitenbach, V., Ganzer, L., Albrecht, D., et al., 2015. Influence of Added Hydrogen on Underground Gas Storage: A Review of Key Issues. Environmental Earth Sciences, 73(11): 6927–6937. https://doi.org/10.1007/s12665-015-4176-2 |
Rigollet, C., Prinzhofer, A., 2022. Natural Hydrogen: A New Source of Carbon-Free and Renewable Energy that Can Compete with Hydrocarbons. First Break, 40(10): 78–84. https://doi.org/10.3997/1365-2397.fb2022087 |
Salvi, S., Williams-Jones, A. E., 1997. Fischer-Tropsch Synthesis of Hydrocarbons during Sub-Solidus Alteration of the Strange Lake Peralkaline Granite, Quebec/Labrador, Canada. Geochimica et Cosmochimica Acta, 61(1): 83–99. https://doi.org/10.1016/S0016-7037(96)00313-4 |
Sano, Y., Urabe, A., Wakita, H., et al., 1993. Origin of Hydrogen-Nitrogen Gas Seeps, Oman. Applied Geochemistry, 8(1): 1–8. https://doi.org/10.1016/0883-2927(93)90053-J |
Schimmelmann, A., Boudou, J. P., Lewan, M. D., et al., 2001. Experimental Controls on D/H and 13C/12C Ratios of Kerogen, Bitumen and Oil during Hydrous Pyrolysis. Organic Geochemistry, 32(8): 1009–1018. https://doi.org/10.1016/S0146-6380(01)00059-6 |
Schimmelmann, A., Lewan, M. D., Wintsch, R. P., 1999. D/H Isotope Ratios of Kerogen, Bitumen, Oil, and Water in Hydrous Pyrolysis of Source Rocks Containing Kerogen Types Ⅰ, Ⅱ, ⅡS, and Ⅲ. Geochimica et Cosmochimica Acta, 63(22): 3751–3766. https://doi.org/10.1016/S0016-7037(99)00221-5 |
Schoell, M., 1980. The Hydrogen and Carbon Isotopic Composition of Methane from Natural Gases of Various Origins. Geochimica et Cosmochimica Acta, 44(5): 649–661. https://doi.org/10.1016/0016-7037(80)90155-6 |
Schoell, M., 1988. Multiple Origins of Methane in the Earth. Chemical Geology, 71(1/2/3): 1–10. https://doi.org/10.1016/0009-2541(88)90101-5 |
Schulmeister, M. K., Andeskie, A. S., Benison, K. C., 2019. The Science and Industry of the Permian Hutchinson Salt. Exploring Extreme and Unusual Geology in the Stable Midcontinent: Field Excursions for the 2019 GSA South-Central, North-Central, and Rocky Mountain Sections Joint Meeting. Geological Society of America, 52: 25–36. https://doi.org/10.1130/2019.0052(02) |
Shangguan, Z. G., Huo, W. G., 2002. δD Values of Escaped H2 from Hot Springs at the Tengchong Rehai Geothermal Area and Its Origin. Chinese Science Bulletin, 47(2): 148–150. https://doi.org/10.1360/02tb9034 |
Shen, P., Shen, Q. X., Wang, X. B., et al., 1988. Characteristics of Isotope Composition of Gasiform Hydrocarbon and Identification of Coal-Type Gas. Science in China Series D, 31(6): 734–747 (in Chinese) |
Sherwood Lollar, B., Frape, S. K., Fritz, P., et al., 1993. Evidence for Bacterially Generated Hydrocarbon Gas in Canadian Shield and Fennoscandian Shield Rocks. Geochimica et Cosmochimica Acta, 57(23/24): 5073–5085. https://doi.org/10.1016/0016-7037(93)90609-Z |
Sherwood Lollar, B., Lacrampe-Couloume, G., Slater, G. F., et al., 2006. Unravelling Abiogenic and Biogenic Sources of Methane in the Earth's Deep Subsurface. Chemical Geology, 226(3/4): 328–339. https://doi.org/10.1016/j.chemgeo.2005.09.027 |
Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., et al., 2008. Isotopic Signatures of CH4 and Higher Hydrocarbon Gases from Precambrian Shield Sites: A Model for Abiogenic Polymerization of Hydrocarbons. Geochimica et Cosmochimica Acta, 72(19): 4778–4795. https://doi.org/10.1016/j.gca.2008.07.004 |
Sherwood Lollar, B., Onstott, T. C., Lacrampe-Couloume, G., et al., 2014. The Contribution of the Precambrian Continental Lithosphere to Global H2 Production. Nature, 516(7531): 379–382. https://doi.org/10.1038/nature14017 |
Sherwood Lollar, B., Westgate, T. D., Ward, J. A., et al., 2002. Abiogenic Formation of Alkanes in the Earth's Crust as a Minor Source for Global Hydrocarbon Reservoirs. Nature, 416(6880): 522–524. https://doi.org/10.1038/416522a |
Shuai, Y. H., Zhang, S. C., Su, A. G., et al., 2010. Geochemical Evidence for Strong Ongoing Methanogenesis in Sanhu Region of Qaidam Basin. Science in China Series D: Earth Sciences, 53(1): 84–90. https://doi.org/10.1007/s11430-009-0081-4 |
Šmigáň, P., Greksák, M., Kozánková, J., et al., 1990. Methanogenic Bacteria as a Key Factor Involved in Changes of Town Gas Stored in an Underground Reservoir. FEMS Microbiology Letters, 73(3): 221–224. https://doi.org/10.1016/0378-1097(90)90733-7 |
Stiegel, G. J., Ramezan, M., 2006. Hydrogen from Coal Gasification: An Economical Pathway to a Sustainable Energy Future. International Journal of Coal Geology, 65(3/4): 173–190. https://doi.org/10.1016/j.coal.2005.05.002 |
Suda, K., Ueno, Y., Yoshizaki, M., et al., 2014. Origin of Methane in Serpentinite-Hosted Hydrothermal Systems: The CH4-H2-H2O Hydrogen Isotope Systematics of the Hakuba Happo Hot Spring. Earth and Planetary Science Letters, 386: 112–125. https://doi.org/10.1016/j.epsl.2013.11.001 |
Taran, Y. A., Kliger, G. A., Sevastianov, V. S., 2007. Carbon Isotope Effects in the Open-System Fischer-Tropsch Synthesis. Geochimica et Cosmochimica Acta, 71(18): 4474–4487. https://doi.org/10.1016/j.gca.2007.06.057 |
Telling, J., Boyd, E. S., Bone, N., et al., 2015. Rock Comminution as a Source of Hydrogen for Subglacial Ecosystems. Nature Geoscience, 8(11): 851–855. https://doi.org/10.1038/ngeo2533 |
Thayer, T. P., 1966. Serpentinization Considered as a Constant-Volume Metasomatic Process. American Mineralogist, 51(5/6): 685–710 |
Tuo, J. C., Philp, R. P., 2003. Occurrence and Distribution of High Molecular Weight Hydrocarbons in Selected Non-Marine Source Rocks from the Liaohe, Qaidam and Tarim Basins, China. Organic Geochemistry, 34(11): 1543–1558. https://doi.org/10.1016/S0146-6380(03)00174-8 |
Vacquand, C., 2011. Genèse et Mobilité de l'hydrogène Naturel: Source D'énergie ou Vecteur D'énergie Stockable?: [Dissertation]. IFPEN-IPGP, Paris. 1–174 (in French) |
Vacquand, C., Deville, E., Beaumont, V., et al., 2018. Reduced Gas Seepages in Ophiolitic Complexes: Evidences for Multiple Origins of the H2-CH4-N2 Gas Mixtures. Geochimica et Cosmochimica Acta, 223: 437–461. https://doi.org/10.1016/j.gca.2017.12.018 |
Vovk, I. F., 1987. Radiolytic Salt Enrichment and Brine in the Crystalline Basement of the East European Platform. In: Fritz, P., Frape, S. K., eds., Saline Water and Gases in Crystalline Rocks. Geological Association of Canada Special Paper, 33: 197–210 |
Wakita, H., Sano, Y., 1983. 3He/4He Ratios in CH4-Rich Natural Gases Suggest Magmatic Origin. Nature, 305(5937): 792–794. https://doi.org/10.1038/305792a0 |
Wang, L., Jin, Z. J., Lyu, Z. Y., et al., 2024. Research Progress in Underground Hydrogen Storage. Earth Science, 49(6): 2044–2057 (in Chinese with English Abstract) |
Wang, X. F., Liu, Q. Y., Liu, W. H., et al., 2022. Accumulation Mechanism of Mantle-Derived Helium Resources in Petroliferous Basins, Eastern China. Science China Earth Sciences, 65(12): 2322–2334. https://doi.org/10.1007/s11430-022-9977-8 |
Wang, X. F., Liu, W. H., Shi, B. G., et al., 2015. Hydrogen Isotope Characteristics of Thermogenic Methane in Chinese Sedimentary Basins. Organic Geochemistry, 83: 178–189. https://doi.org/10.1016/j.orggeochem.2015.03.010 |
Warr, O., Giunta, T., Ballentine, C. J., et al., 2019. Mechanisms and Rates of 4He, 40Ar, and H2 Production and Accumulation in Fracture Fluids in Precambrian Shield Environments. Chemical Geology, 530: 119322. https://doi.org/10.1016/j.chemgeo.2019.119322 |
Welhan, J. A., 1988. Origins of Methane in Hydrothermal Systems. Chemical Geology, 71(1-3): 183–198. https://doi.org/10.1016/0009-2541(88)90114-3 |
Welhan, J. A., Craig, H., 1979. Methane and Hydrogen in East Pacific Rise Hydrothermal Fluids. Geophysical Research Letters, 6(11): 829–831. https://doi.org/10.1029/GL006i011p00829 |
Welhan, J. A., Craig, H., 1983. Methan, Hydrogen and Helium in Hydrothermal Fluids at 21oN on the East Pacific Rise. Plenum Press, London and New York. 391–410 |
Welte, D. H., Schaefer, R. G., Yalçin, M. N., 1988. Gas Generation from Source Rocks: Aspects of a Quantitative Treatment. Chemical Geology, 71(1/2/3): 105–116. https://doi.org/10.1016/0009-2541(88)90109-X |
Whiticar, M. J., 1999. Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. Chemical Geology, 161(1/2/3): 291–314. https://doi.org/10.1016/S0009-2541(99)00092-3 |
Whiticar, M. J., Faber, E., Schoell, M., 1986. Biogenic Methane Formation in Marine and Freshwater Environments: CO2 Reduction vs. Acetate Fermentation—Isotope Evidence. Geochimica et Cosmochimica Acta, 50(5): 693–709. https://doi.org/10.1016/0016-7037(86)90346-7 |
Woolnough, W. G., 1934. Natural Gas in Australia and New Guinea. AAPG Bulletin, 18(2): 226–242. https://doi.org/10.1306/3D932C06-16B1-11D7-8645000102C1865D |
Xiao, X. M., Zhao, B. Q., Thu, Z. L., et al., 2005. Upper Paleozoic Petroleum System, Ordos Basin, China. Marine and Petroleum Geology, 22(8): 945–963. https://doi.org/10.1016/j.marpetgeo.2005.04.001 |
Xu, S., Nakai, S., Wakita, H., et al., 1995a. Helium Isotope Compositions in Sedimentary Basins in China. Applied Geochemistry, 10(6): 643–656. https://doi.org/10.1016/0883-2927(95)00033-X |
Xu, S., Nakai, S., Wakita, H., et al., 1995b. Mantle-Derived Noble Gases in Natural Gases from Songliao Basin, China. Geochimica et Cosmochimica Acta, 59(22): 4675–4683. https://doi.org/10.1016/0016-7037(95)00301-0 |
Xu, Y. C., Liu, W. H., Shen, P., et al., 2006. Carbon and Hydrogen Isotopic Characteristics of Natural Gases from the Luliang and Baoshan Basins in Yunnan Province, China. Science in China Series D: Earth Sciences, 49(9): 938–946. https://doi.org/10.1007/s11430-006-0938-8 |
Xu, Y. C., Shen, P., Tao, M. X., et al., 1997a. Geochemistry on Mantle-Derived Volatiles in Natural Gases from Eastern China Oil/Gas Provinces (Ⅱ). Science in China Series D: Earth Sciences, 40(3): 315–321. https://doi.org/10.1007/BF02877541 |
Xu, Y. C., Shen, P., Tao, M. X., et al., 1997b. Geochemistry on Mantle-Derived Volatiles in Natural Gases from Eastern China Oil/Gas Provinces (Ⅰ). Science in China Series D: Earth Sciences, 40(2): 120–129. https://doi.org/10.1007/BF02878370 |
Xu, Y., Liu, W., Shen, P., et al., 1998. Geochemistry of Noble Gas in Natural Gas. Science Press, Beijing. 275 (in Chinese) |
Yeh, H. W., Epstein, S., 1981. Hydrogen and Carbon Isotopes of Petroleum and Related Organic Matter. Geochimica et Cosmochimica Acta, 45(5): 753–762. https://doi.org/10.1016/0016-7037(81)90046-6 |
Zgonnik, V., 2020. The Occurrence and Geoscience of Natural hydrogen: A Comprehensive Review. Earth-Science Reviews, 203: 103140. https://doi.org/10.1016/j.earscirev.2020.103140 |
Zhou, Q. H., Feng, Z. H., Men, G. T., 2008. Present Geotemperature and Its Suggestion to Natural Gas Generation in Xujiaweizi Fault-Depression of the Northern Songliao Basin. Science in China Series D: Earth Sciences, 51(1): 207–220. https://doi.org/10.1007/s11430-008-5007-z |