Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Bo Liu, Mingguo Zhai. Prospects for Construction New Metamorphic Rock Database in Big Data Epoch. Journal of Earth Science, 2025, 36(2): 450-459. doi: 10.1007/s12583-024-0121-1
Citation: Bo Liu, Mingguo Zhai. Prospects for Construction New Metamorphic Rock Database in Big Data Epoch. Journal of Earth Science, 2025, 36(2): 450-459. doi: 10.1007/s12583-024-0121-1

Prospects for Construction New Metamorphic Rock Database in Big Data Epoch

doi: 10.1007/s12583-024-0121-1
More Information
  • Corresponding author: Mingguo Zhai, mgzhai@mail.iggcas.ac.cn
  • Received Date: 10 Aug 2024
  • Accepted Date: 21 Dec 2024
  • Issue Publish Date: 30 Apr 2025
  • Research into metamorphism plays a pivotal role in reconstructing the evolution of continent, particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities. In the big data era, the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks. Significant progress has been made in creating specialized databases, compiling comprehensive datasets, and utilizing data analytics to address complex scientific questions. However, many existing databases are inadequate in meeting the specific requirements of metamorphic research, resulting from a substantial amount of valuable data remaining uncollected. Therefore, constructing new databases that can cope with the development of the data era is necessary. This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this. Accordingly, several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified, aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Artemieva, I. M., Shulgin, A., 2019. Making and Altering the Crust: A Global Perspective on Crustal Structure and Evolution. Earth and Planetary Science Letters, 512: 8–16. https://doi.org/10.1016/j.epsl.2019.01.033
    Ashwal, L. D., Bybee, G. M., 2017. Crustal Evolution and the Temporality of Anorthosites. Earth-Science Reviews, 173: 307–330. https://doi.org/10.1016/j.earscirev.2017.09.002
    Bell, G., Hey, T., Szalay, A., 2009. Beyond the Data Deluge. Science, 323(5919): 297–1298
    Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961. https://doi.org/10.1130/g22853a.1
    Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46–59. https://doi.org/10.1016/j.gr.2009.11.004
    Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553–569. https://doi.org/10.1016/j.gsf.2014.02.005
    Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181–196. https://doi.org/10.2138/am-2018-6166
    Brown, M., Johnson, T., 2019. Time's Arrow, Time's Cycle: Granulite Metamorphism and Geodynamics. Mineralogical Magazine, 83(3): 323–338. https://doi.org/10.1180/mgm.2019.19
    Chowdhury, P., Chakraborty, S., Gerya, T. V., 2021. Time Will Tell: Secular Change in Metamorphic Timescales and the Tectonic Implications. Gondwana Research, 93: 291–310. https://doi.org/10.1016/j.gr.2021.02.003
    Chowdhury, P., Chakraborty, S., Gerya, T. V., et al., 2020. Peel-back Controlled Lithospheric Convergence Explains the Secular Transitions in Archean Metamorphism and Magmatism. Earth and Planetary Science Letters, 538: 116224. https://doi.org/10.1016/j.epsl.2020.116224
    Chowdhury, P., Gerya, T., Chakraborty, S., 2017. Emergence of Silicic Continents as the Lower Crust Peels off on a Hot Plate-Tectonic Earth. Nature Geoscience, 10: 698–703. https://doi.org/10.1038/ngeo3010
    Condie, K. C., Aster, R. C., van Hunen, J., 2016. A Great Thermal Divergence in the Mantle Beginning 2.5 Ga: Geochemical Constraints from Greenstone Basalts and Komatiites. Geoscience Frontiers, 7(4): 543–553. https://doi.org/10.1016/j.gsf.2016.01.006
    Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335(6074): 1334–1336. https://doi.org/10.1126/science.1216066
    Dhuime, B., Wuestefeld, A., Hawkesworth, C. J., 2015. Emergence of Modern Continental Crust about 3 Billion Years Ago. Nature Geoscience, 8: 552–555. https://doi.org/10.1038/ngeo2466
    England, P. C., Thompson, A. B., 1984. Pressure—Temperature—Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 25(4): 894–928. https://doi.org/10.1093/petrology/25.4.894
    Ganne, J., De Andrade, V., Weinberg, R. F., et al., 2012. Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, 5: 60–65. https://doi.org/10.1038/ngeo1321
    Ganne, J., Feng, X. J., 2017. Primary Magmas and Mantle Temperatures through Time. Geochemistry, Geophysics, Geosystems, 18(3): 872–888. https://doi.org/10.1002/2016gc006787
    Glassley, W. E., Korstgard, J. A., Sorensen, K., et al., 2014. A New UHP Metamorphic Complex in the 1.8 Ga Nagssugtoqidian Orogen of West Greenland. American Mineralogist, 99(7): 1315–1334. https://doi.org/10.2138/am.2014.4726
    Guo, H. D., 2018. Scientific Big Data—A Footstone of National Strategy for Big Data. Bulletin of Chinese Academy of Sciences, 33(8): 768–773 (in Chinese with English Abstract)
    Hamilton, W. B., 2011. Plate Tectonics Began in Neoproterozoic Time, and Plumes from Deep Mantle Have never Operated. Lithos, 123(1/2/3/4): 1–20. https://doi.org/10.1016/j.lithos.2010.12.007
    Harley, S. L., 1985. Garnet-Orthopyroxene Bearing Granulites from Enderby Land, Antarctica: Metamorphic Pressure Temperature-Time Evolution of the Archaean Napier Complex. Journal of Petrology, 26(4): 819–856. https://doi.org/10.1093/petrology/26.4.819
    Harley, S. L., 1989. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 126(3): 215. https://doi.org/10.1017/s0016756800022330
    Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters, 292(1/2): 79–88. https://doi.org/10.1016/j.epsl.2010.01.022
    Holder, R. M., Viete, D. R., Brown, M., et al., 2019. Metamorphism and the Evolution of Plate Tectonics. Nature, 572(7769): 378–381. https://doi.org/10.1038/s41586-019-1462-2
    Johnson, T. E., Kirkland, C. L., Gardiner, N. J., et al., 2019. Secular Change in TTG Compositions: Implications for the Evolution of Archaean Geodynamics. Earth and Planetary Science Letters, 505: 65–75. https://doi.org/10.1016/j.epsl.2018.10.022
    Labrosse, S., Jaupart, C., 2007. Thermal Evolution of the Earth: Secular Changes and Fluctuations of Plate Characteristics. Earth and Planetary Science Letters, 260(3/4): 465–481. https://doi.org/10.1016/j.epsl.2007.05.046
    Li, X. Y., Zhang, C., Behrens, H., et al., 2020a. Calculating Amphibole Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 362: 105469. https://doi.org/10.1016/j.lithos.2020.105469
    Li, X. Y., Zhang, C., Behrens, H., et al., 2020b. Calculating Biotite Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 356: 105371. https://doi.org/10.1016/j.lithos.2020.105371
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1–24. https://doi.org/10.1016/j.lithos.2004.04.048
    Miyashiro, A., 1961. Evolution of Metamorphic Belts. Journal of Petrology, 2(3): 277–311. https://doi.org/10.1093/petrology/2.3.277
    Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non-Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1/2/3/4): 21–36. https://doi.org/10.1016/j.lithos.2010.09.015
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267–310. https://doi.org/10.1029/95rg01302
    Scibiorski, E., Tohver, E., Jourdan, F., 2015. Rapid Cooling and Exhumation in the Western Part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia. Precambrian Research, 265: 232–248. https://doi.org/10.1016/j.precamres.2015.02.005
    Shen, Q. H., 1992. Early Precambrian Granulites in China. Advance in Earth Sciences, 7(1): 95–96 (in Chinese with English Abstract)
    Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2): 522–545. https://doi.org/10.1016/j.gr.2012.12.011
    Spear, F. S., Selverstone, J., Hickmott, D., et al., 1984. P-T Paths from Garnet Zoning: A New Technique for Deciphering Tectonic Processes in Crystalline Terranes. Geology, 12(2): 87–90. https://doi.org/10.1130/0091-7613(1984)1287:ppfgza>2.0.co;2 doi: 10.1130/0091-7613(1984)1287:ppfgza>2.0.co;2
    Stern, R. J., 2018. The Evolution of Plate Tectonics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2132): 20170406. https://doi.org/10.1098/rsta.2017.0406
    Tsujimori, T., Ernst, W. G., 2014. Lawsonite Blueschists and Lawsonite Eclogites as Proxies for Palaeo-Subduction Zone Processes: A Review. Journal of Metamorphic Geology, 32(5): 437–454. https://doi.org/10.1111/jmg.12057
    Viete, D. R., Lister, G. S., 2017. On the Significance of Short-Duration Regional Metamorphism. Journal of the Geological Society, 174(3): 377–392. https://doi.org/10.1144/jgs2016-060
    Wang, C. S., Hazen, R. M., Cheng, Q. M., et al., 2021. The Deep-Time Digital Earth Program: Data-Driven Discovery in Geosciences. National Science Review, 8(9): nwab027. https://doi.org/10.1093/nsr/nwab027
    Weller, O. M., St-Onge, M. R., 2017. Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen. Nature Geoscience, 10: 305–311. https://doi.org/10.1038/ngeo2904
    Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., et al., 2016. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Scientific Data, 3: 160018. https://doi.org/10.1038/sdata.2016.18
    Xu, C., Kynický, J., Song, W. L., et al., 2018. Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab. Nature Communications, 9(1): 2790. https://doi.org/10.1038/s41467-018-05140-5
    Yan, Y., Chen, J. L., Peng, R. M., et al., 2021. The Reworked and Metallogenic Effects on the Sediment-Hosted Zinc-Lead Deposits by Metamorphism: Implications of Data Mining. Acta Mineralogica Sinica, 41(3): 327–342
    Zhai, M. G., 2012. Evolution of the North China Craton and Early Plate Tectonics. Acta Geologica Sinica, 86(9): 1335–1349 (in Chinese with English Abstract)
    Zhai, M. G., Peng, P., 2020a. Origin of Early Continents and Beginning of Plate Tectonics. Science Bulletin, 65(12): 970–973. https://doi.org/10.1016/j.scib.2020.03.022
    Zhai, M. G., Zhang, Q., Chen, G. N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61(13): 1414–1420 (in Chinese with English Abstract)
    Zhai, M. G., Zhang, Y. B., Li, Q. L., et al., 2021. Cratonization, Lower Crust and Continental Lithosphere. Acta Petrologica Sinica, 37(1): 1–23 (in Chinese with English Abstract)
    Zhai, M. G., Zhao, L., Zhu, X. Y., et al., 2020b. Review and Overview for the Frontier Hotspot: Early Continents and Start of Plate Tectonics. Acta Petrologica Sinica, 36(8): 2249–2275 (in Chinese with English Abstract)
    Zhai, M. G., Liu, W. J., 2001. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 17(1): 28–38 (in Chinese with English Abstract)
    Zhai, M. G., Yang, S. F., Chen, N. H., et al., 2018. Big Data Epoch: Challenges and Opportunities for Geology. Bulletin of Chinese Academy of Sciences, 33(8): 825–831 (in Chinese with English Abstract)
    Zhao, Z. P., 1993. Evolution of Precambrian Crust of Sino-Korean Platform. Science Press, Beijing. 1–390
    Zheng, D. Y., Wu, S. X., Ma, C., et al., 2022. Zircon Classification from Cathodoluminescence Images Using Deep Learning. Geoscience Frontiers, 13(6): 101436. https://doi.org/10.1016/j.gsf.2022.101436
    Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46–73. https://doi.org/10.1016/j.jseaes.2017.03.009
    Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329–334. https://doi.org/10.1016/j.scib.2018.12.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(11) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return