Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Xiaoning Hu, Chen Yu, Zhenjiang Liu, Yingying Zhang, Zhenhong Li, Chuang Song, Bingquan Han, Haihui Liu, Jie Li. Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake. Journal of Earth Science, 2025, 36(1): 275-290. doi: 10.1007/s12583-024-0126-9
Citation: Xiaoning Hu, Chen Yu, Zhenjiang Liu, Yingying Zhang, Zhenhong Li, Chuang Song, Bingquan Han, Haihui Liu, Jie Li. Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake. Journal of Earth Science, 2025, 36(1): 275-290. doi: 10.1007/s12583-024-0126-9

Ongoing Compressional Tectonism and Regional Seismic Hazard Revealed by the 2023 Mw6.1 Jishishan Earthquake

doi: 10.1007/s12583-024-0126-9
More Information
  • Corresponding author: Chen Yu, chen.yu@chd.edu.cn
  • Received Date: 15 Apr 2024
  • Accepted Date: 22 Oct 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • On December 18, 2023, a Mw6.1 earthquake struck Jishishan County, Gansu Province, China, marking the most significant earthquake in the northeastern edge of the Tibetan Plateau since 2000. Given its proximate to the Loess Plateau, which is extremely susceptible to geohazards, this earthquake raises awareness about the seismic hazard of several mega-cities such as Xi'an in Northwest China. In this paper, we inferred that the rupture occurred on an east-dipping backthrust, resulting from the regional E-W contraction tectonic setting. Our dynamic model through teleseismic waves and static model through radar displacement measurements together reveal a unilateral, along-strike rupture, encountering a slip barrier at one side of the main slip patch causing a cluster of aftershocks. We also identified a high-dip structure, which is an early-stage backthrust fault whose dip becomes increasingly high due to regional compressional tectonism. Apart from the loaded fault segments, particularly on the fault linkage, which necessitate continuous examination, a detailed seismic hazard assessment of the west Qinling and Daotanghe-Linxia fault system identifies a seismic gap between Weiyuan and Dingxi with the potential for a Mw7.5 earthquake. Collectively, these findings provide valuable insights into the seismic behavior of the seismogenic fault as well as guidance on hazard mitigation in its surrounding fault systems.

     

  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Abrahamson, N. A., Silva, W. J., 1997. Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes. Seismological Research Letters, 68(1): 94–127. https://doi.org/10.1785/gssrl.68.1.94
    Aki, K., 1979. Characterization of Barriers on an Earthquake Fault. Journal of Geophysical Research: Solid Earth, 84(B11): 6140–6148. https://doi.org/10.1029/jb084ib11p06140
    Bao, H., Ampuero, J. P., Meng, L. S., et al., 2019. Early and Persistent Supershear Rupture of the 2018 Magnitude 7.5 Palu Earthquake. Nature Geoscience, 12(3): 200–205. https://doi.org/10.1038/s41561-018-0297-z
    Bloch, W., Metzger, S., Schurr, B., et al., 2022. The 2015–2017 Pamir Earthquake Sequence: Foreshocks, Main Shocks and Aftershocks, Seismotectonics, Fault Interaction and Fluid Processes. Geophysical Journal International, 233(1): 641–662. https://doi.org/10.1093/gji/ggac473
    Brune, J. N., 1968. Seismic Moment, Seismicity, and Rate of Slip along Major Fault Zones. Journal of Geophysical Research, 73(2): 777–784. https://doi.org/10.1029/jb073i002p00777
    Chen, B., Song, C., Chen, Y., et al., 2024. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/J.whugis20230497 (in Chinese with English Abstract)
    Chen, P., 2019. Active Tectonics of the Northeastern Tibetan Plateau: [Dissertation]. Kyoto University, Kyoto
    Chen, P., Lin, A. M., 2019. Tectonic Topography and Late Pleistocene Activity of the West Qinling Fault, Northeastern Tibetan Plateau. Journal of Asian Earth Sciences, 176: 68–78. https://doi.org/10.1016/j.jseaes.2019.02.007
    Chen, P., Shi, W., Hu, J. M., et al., 2021. Identification of the Seismogenic Fault of the 1654 M8.0 Tianshui Earthquake, Northeastern Tibetan Plateau. Seismological Research Letters, 92(5): 2943–2951. https://doi.org/10.1785/0220200256
    China Earthquake Compendium Compilation Group, 1988. Chinese Earthquake Compendium (780 BC–1986 AD). Seismological Press, Beijing. 1–155 (in Chinese)
    Clark, M. K., Farley, K. A., Zheng, D. W., et al., 2010. Early Cenozoic Faulting of the Northern Tibetan Plateau Margin from Apatite (U-Th)/He Ages. Earth and Planetary Science Letters, 296(1/2): 78–88. https://doi.org/10.1016/j.epsl.2010.04.051
    Correa-Mora, F., DeMets, C., Cabral-Cano, E., et al., 2008. Interplate Coupling and Transient Slip along the Subduction Interface beneath Oaxaca, Mexico. Geophysical Journal International, 175(1): 269–290. https://doi.org/10.1111/j.1365-246X.2008.03910.x
    Costantini, M., 1998. A Novel Phase Unwrapping Method Based on Network Programming. IEEE Transactions on Geoscience and Remote Sensing, 36(3): 813–821. https://doi.org/10.1109/36.673674
    Deng, Y. F., Peng, Z. G., Jing, L. Z., 2020. Systematic Search for Repeating Earthquakes along the Haiyuan Fault System in Northeastern Tibet. Journal of Geophysical Research (Solid Earth), 125(7): e2020JB019583. https://doi.org/10.1029/2020JB01958310.1002/essoar.10502283.1
    Dong, A. N., Dou, J., Li, C. D., et al., 2024. Accelerating Cross-Scene Co-Seismic Landslide Detection through Progressive Transfer Learning and Lightweight Deep Learning Strategies. IEEE Transactions on Geoscience and Remote Sensing, 62: 4410213. https://doi.org/10.1109/TGRS.2024.3424680
    Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657–1674. https://doi.org/10.13544/j.cnki.jeg.2020-515 (in Chinese with English Abstract)
    Dou, J., Yunus, A. P., Merghadi, A., et al., 2020. Different Sampling Strategies for Predicting Landslide Susceptibilities Are Deemed less Consequential with Deep Learning. Science of the Total Environment, 720: 137320. https://doi.org/10.1016/j.scitotenv.2020.137320
    Du, H. L., Xu, L. S., Chen, Y. T., 2009. Rupture Process of the 2008 Great Wenchuan Earthquake from the Analysis of the Alaska-Array Data. Chinese Journal of Geophysics, 52: 372–378 (in Chinese with English Abstract)
    England, P., Molnar, P., 1990. Right-Lateral Shear and Rotation as the Explanation for Strike-Slip Faulting in Eastern Tibet. Nature, 344(6262): 140–142. https://doi.org/10.1038/344140a0
    Fang, X. M., Liu, D. L., Song, C. H., et al., 2013. Oligocene Slow and Miocene-Quaternary Rapid Deformation and Uplift of the Yumu Shan and North Qilian Shan: Evidence from High-Resolution Magnetostratigraphy and Tectonosedimentology. Geological Society of London Special Publications, 373(1): 149–171. https://doi.org/10.1144/SP373.5
    Feng, W. P., Li, Z. H., 2010. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data. Progress in Geophysics, 25(4): 1189–1196. https://doi.org/10.3969/j.issn.1004-2903.2010.0
    Feng, W. P., Samsonov, S., Qiu, Q., et al., 2020. Orthogonal Fault Rupture and Rapid Postseismic Deformation Following 2019 Ridgecrest, California, Earthquake Sequence Revealed from Geodetic Observations. Geophysical Research Letters, 47(5): e2019GL086888. https://doi.org/10.1029/2019gl086888
    Feng, W. P., Xu, L. S., Xu, Z. H., et al., 2009. Source Parameters of the 2008 Gerze Mw6.4 and Mw5.9 Earthquakes from InSAR Measurements. Chinese Journal of Geophysics, 52(4): 983–993 (in Chinese with English Abstract)
    Freed, A. M., 2005. Earthquake Triggering by Static, Dynamic, and Postseismic Stress Transfer. Annual Review of Earth and Planetary Sciences, 33: 335–367. https://doi.org/10.1146/annurev.earth.33.092203.122505
    Fukahata, Y., Wright, T. J., 2008. A Non-Linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault with an Unknown Dip Angle. Geophysical Journal International, 173(2): 353–364. https://doi.org/10.1111/j.1365-246X.2007.03713.x
    Guo, Z. Q., Ogata, Y., 1995. Correlation between Characteristic Parameters of Aftershock Distributions in Time, Space and Magnitude. Geophysical Research Letters, 22(8): 993–996. https://doi.org/10.1029/95gl00707
    Han, L. F., Jing, L. Z., Yao, W. Q., et al., 2021. Coseismic Slip Gradient at the Western Terminus of the 1920 Haiyuan Mw 7.9 Earthquake. Journal of Structural Geology, 152(1): 104442. https://doi.org/10.1016/j.jsg.2021.104442
    Hardebeck, J. L., Llenos, A. L., Michael, A. J., et al., 2024. Aftershock Forecasting. Annual Review of Earth and Planetary Sciences, 52(1): 61–84. https://doi.org/10.1146/annurev-earth-040522-102129
    Heidarzadeh, M., Ishibe, T., Harada, T., et al., 2021. High Potential for Splay Faulting in the Molucca Sea, Indonesia: November 2019 Mw 7.2 Earthquake and Tsunami. Seismological Research Letters, 92(5): 2915–2926. https://doi.org/10.1785/0220200442
    Hirano, S., 2019. Modeling of Unilateral Rupture along very Long Reverse Faults. Journal of Geophysical Research: Solid Earth, 124(1): 1057–1071. https://doi.org/10.1029/2018jb016511
    Hough, B. G., Garzione, C. N., Wang, Z., et al., 2011. Stable Isotope Evidence for Topographic Growth and Basin Segmentation: Implications for the Evolution of the NE Tibetan Plateau. Geological Society of America Bulletin, 123(1/2): 168–185. https://doi.org/10.1130/B30090.1
    Huang, R. Q., Li, W. L., 2009. Analysis of the Geo-Hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 68(3): 363–371. https://doi.org/10.1007/s10064-009-0207-0
    Ishii, M., Shearer, P. M., Houston, H., et al., 2005. Extent, Duration and Speed of the 2004 Sumatra-Andaman Earthquake Imaged by the Hi-Net Array. Nature, 435(7044): 933–936. https://doi.org/10.1038/nature03675
    Ishii, M., Shearer, P. M., Houston, H., et al., 2007. Teleseismic P Wave Imaging of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Sumatra Earthquake Ruptures Using the Hi-Net Array. Journal of Geophysical Research: Solid Earth, 112(B11): B11307. https://doi.org/10.1029/2006jb004700
    Kaverina, A., Dreger, D., Price, E., 2002. The Combined Inversion of Seismic and Geodetic Data for the Source Process of the 16 October 1999 Mw 7.1 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 92(4): 1266–1280. https://doi.org/10.1785/0120000907
    Kikuchi, M., Kanamori, H., 1991. Inversion of Complex Body Waves—Ⅲ. Bulletin of the Seismological Society of America, 81(6): 2335–2350. https://doi.org/10.1785/bssa0810062335
    King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin-Seismological Society of America, 84(3): 935–953. https://doi.org/10.1029/94JB00611
    Kiser, E., Ishii, M., 2017. Back-Projection Imaging of Earthquakes. Annual Review of Earth and Planetary Sciences, 45: 271–299. https://doi.org/10.1146/annurev-earth-063016-015801
    Krüger, F., Ohrnberger, M., 2005. Tracking the Rupture of the Mw = 9.3 Sumatra Earthquake over 1 150 km at Teleseismic Distance. Nature, 435(7044): 937–939. https://doi.org/10.1038/nature03696
    Lease, R. O., Burbank, D. W., Clark, M. K., et al., 2011. Middle Miocene Reorganization of Deformation along the Northeastern Tibetan Plateau. Geology, 39(4): 359–362. https://doi.org/10.1130/g31356.1
    Lease, R. O., Burbank, D. W., Zhang, H. P., et al., 2012. Cenozoic Shortening Budget for the Northeastern Edge of the Tibetan Plateau: Is Lower Crustal Flow Necessary? Tectonics, 31(3): TC3011. https://doi.org/10.1029/2011tc003066
    Li, K., Tapponnier, P., Xu, X. W., et al., 2023. The 2022, Ms 6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re-Activation, Slip-Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412
    Li, Z. M., Tian, Q. J., Tu, H. W., 2009. Remote Sensing Characteristics of Lajishan Fault. Plateau Earthquake Research, 21(1): 26–31 (in Chinese with English Abstract)
    Lin, J., Stein, R. S., 2004. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and nearby Thrust and Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 109(B2): B02303. https://doi.org/10.1029/2003jb002607
    McGuire, J. J., Zhao, L., Jordan, T. H., 2002. Predominance of Unilateral Rupture for a Global Catalog of Large Earthquakes. Bulletin of the Seismological Society of America, 92(8): 3309–3317. https://doi.org/10.1785/0120010293
    Meng, L. S., Inbal, A., Ampuero, J. P., 2011. A Window into the Complexity of the Dynamic Rupture of the 2011 Mw 9 Tohoku-Oki Earthquake. Geophysical Research Letters, 38(7): L00G07. https://doi.org/10.1029/2011gl048118
    Meng, L. S., Zhang, A. L., Yagi, Y., 2016. Improving back Projection Imaging with a Novel Physics-Based Aftershock Calibration Approach: A Case Study of the 2015 Gorkha Earthquake. Geophysical Research Letters, 43(2): 628–636. https://doi.org/10.1002/2015gl067034
    Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419–426. https://doi.org/10.1126/science.189.4201.419
    Morad, D., Lyakhovsky, V., Hatzor, Y. H., et al., 2022. Stress Heterogeneity and the Onset of Faulting along Geometrically Irregular Faults. Geophysical Research Letters, 49(17): e2021GL097591. https://doi.org/10.1029/2021gl097591
    Nanjo, K., Nagahama, H., 2000. Spatial Distribution of Aftershocks and the Fractal Structure of Active Fault Systems. Pure and Applied Geophysics, 157(4): 575–588. https://doi.org/10.1007/PL00001108
    Ninomiya, Y., Fu, B. H., 2016. Regional Lithological Mapping in the Tibetan Plateau and Surrounding Area Using Aster Data. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 10–15, 2016, Beijing, China. 6356–6359. https://doi.org/10.1109/IGARSS.2016.7730661
    Okada, Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 82(2): 1018–1040. https://doi.org/10.1785/bssa0820021018
    Ozawa, S., Ando, R., Dunham, E. M., 2023. Quantifying the Probability of Rupture Arrest at Restraining and Releasing Bends Using Earthquake Sequence Simulations. Earth and Planetary Science Letters, 617: 118276. https://doi.org/10.1016/j.epsl.2023.118276
    Pan, J. W., Li, H. B., Chevalier, M. L., et al., 2022. Co-Seismic Rupture of the 2021, Mw 7.4 Maduo Earthquake (Northern Tibet): Short-Cutting of the Kunlun Fault Big Bend. Earth and Planetary Science Letters, 594: 117703. https://doi.org/10.1016/j.epsl.2022.117703
    Pan, J. W., Li, H. B., Si, J. L., et al., 2014. Rupture Process of the Wenchuan Earthquake (Mw 7.9) from Surface Ruptures and Fault Striations Characteristics. Tectonophysics, 619/620: 13–28. https://doi.org/10.1016/j.tecto.2013.06.028
    Peltzer, G., Tapponnier, P., Zhang, Z. T., et al., 1985. Neogene and Quaternary Faulting in and along the Qinling Shan. Nature, 317(6037): 500–505. https://doi.org/10.1038/317500a0
    Qi, S. W., Xu, Q., Lan, H. X., et al., 2010. Spatial Distribution Analysis of Landslides Triggered by 2008.5. 12 Wenchuan Earthquake, China. Engineering Geology, 116(1/2): 95–108. https://doi.org/10.1016/j.enggeo.2010.07.011
    Sato, H. P., Sekiguchi, T., Kojiroi, R., et al., 2005. Overlaying Landslides Distribution on the Earthquake Source, Geological and Topographical Data: The Mid Niigata Prefecture Earthquake in 2004, Japan. Landslides, 2(2): 143–152. https://doi.org/10.1007/s10346-005-0053-5
    Sherrod, B., Gomberg, J., 2014. Crustal Earthquake Triggering by Pre-Historic Great Earthquakes on Subduction Zone Thrusts. Journal of Geophysical Research: Solid Earth, 119(2): 1273–1294. https://doi.org/10.1002/2013jb010635
    Sreejith, K. M., Sunil, P. S., Agrawal, R., et al., 2016. Coseismic and Early Postseismic Deformation Due to the 25 April 2015, Mw 7.8 Gorkha, Nepal, Earthquake from InSAR and GPS Measurements. Geophysical Research Letters, 43(7): 3160–3168. https://doi.org/10.1002/2016gl067907
    Sykes, L. R., 1971. Aftershock Zones of Great Earthquakes, Seismicity Gaps, and Earthquake Prediction for Alaska and the Aleutians. Journal of Geophysical Research, 76(32): 8021–8041. https://doi.org/10.1029/jb076i032p08021
    Sykes, L. R., 1978. Intraplate Seismicity, Reactivation of Preexisting Zones of Weakness, Alkaline Magmatism, and Other Tectonism Postdating Continental Fragmentation. Reviews of Geophysics, 16(4): 621–688. https://doi.org/10.1029/rg016i004p00621
    Tapponnier, P., Peltzer, G., Le Dain, A. Y., et al., 1982. Propagating Extrusion Tectonics in Asia: New Insights from Simple Experiments with Plasticine. Geology, 10(12): 611. https://doi.org/10.1130/0091-7613(1982)10<611:petian>2.0.co;2 doi: 10.1130/0091-7613(1982)10<611:petian>2.0.co;2
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671–1677. https://doi.org/10.1126/science.105978
    Tian, J. J., Li, T. T., Pei, X. J., et al., 2024. Experimental Study on Multistage Seismic Damage Process of Bedding Rock Slope: A Case Study of the Xinmo Landslide. Journal of Earth Science, 35(5): 1594–1612. https://doi.org/10.1007/s12583-023-1829-z
    Tian, X. B., Zhang, Z. J., 2013. Bulk Crustal Properties in NE Tibet and Their Implications for Deformation Model. Gondwana Research, 24(2): 548–559. https://doi.org/10.1016/j.gr.2012.12.024
    Waldhauser, F., Ellsworth, W. L., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353–1368. https://doi.org/10.1785/0120000006
    Wang, E. Q., Zhang, Q., Burchfiel, C. B., 2000. Qinghai Laji Mountain: A Multi-Stage Uplifting Structural Window. Geological Sciences, 35(4): 8 (in Chinese with English Abstract)
    Wang, L. M., Wu, Z. J., Xia, K., et al., 2019. Amplification of Thickness and Topography of Loess Deposit on Seismic Ground Motion and Its Seismic Design Methods. Soil Dynamics and Earthquake Engineering, 126: 105090. https://doi.org/10.1016/j.soildyn.2018.02.021
    Watson, A. R., Elliott, J. R., Walters, R. J., 2022. Interseismic Strain Accumulation across the Main Recent Fault, SW Iran, from Sentinel-1 InSAR Observations. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB022674. https://doi.org/10.1029/2021JB022674
    Wegnüller, U., Werner, C., Strozzi, T., et al., 2016. Sentinel-1 Support in the GAMMA Software. Procedia Computer Science, 100: 1305–1312. https://doi.org/10.1016/j.procs.2016.09.246
    Wetzler, N., Lay, T., Brodsky, E. E., et al., 2018. Systematic Deficiency of Aftershocks in Areas of High Coseismic Slip for Large Subduction Zone Earthquakes. Science Advances, 4(2): eaao3225. https://doi.org/10.1126/sciadv.aao3225
    Wood, H. O., 1912. The Elastic-Rebound Theory of Earthquakes. Bulletin of the Seismological Society of America, 2(1): 98–100. https://doi.org/10.1785/bssa0020010098
    Wu, J. W., Miao, C. Y., Zheng, H. Y., et al., 2018. Meteorological and Hydrological Drought on the Loess Plateau, China: Evolutionary Characteristics, Impact, and Propagation. Journal of Geophysical Research (Atmospheres), 123(20): 11, 569–11, 584. https://doi.org/10.1029/2018JD029145
    Xiao, G. Q., Guo, Z. T., Dupont-Nivet, G., et al., 2012. Evidence for Northeastern Tibetan Plateau Uplift between 25 and 20 Ma in the Sedimentary Archive of the Xining Basin, NorthWestern China. Earth and Planetary Science Letters, 317: 185–195. https://doi.org/10.1016/j.epsl.2011.11.008
    Xu, C., 2015. Preparation of Earthquake-Triggered Landslide Inventory Maps Using Remote Sensing and GIS Technologies: Principles and Case Studies. Geoscience Frontiers, 6(6): 825–836. https://doi.org/10.1016/j.gsf.2014.03.004
    Xu, C., Xu, X. W., Yu, G. H., 2013a. Landslides Triggered by Slipping-Fault-Generated Earthquake on a Plateau: An Example of the 14 April 2010, Ms 7.1, Yushu, China Earthquake. Landslides, 10(4): 421–431. https://doi.org/10.1007/s10346-012-0340-x
    Xu, C., Xu, X. W., Zheng, W. Z., et al., 2013b. Landslides Triggered by the April 20, 2013 Lushan, Sichuan Province Ms 7.0 Strong Earthquake of China. Seismology and Geology, 35(3): 641–660. https://doi.org/10.3969/j.issn.0253-4967.2013.03.018 (in Chinese with English Abstract)
    Xu, L. W., Mohanna, S., Meng, L. S., et al., 2023a. The Overall-Subshear and Multi-Segment Rupture of the 2023 Mw7.8 Kahramanmaraş, Turkey Earthquake in Millennia Supercycle. Communications Earth & Environment, 4: 379. https://doi.org/10.1038/s43247-023-01030-x
    Xu, L. W., Zhang, Y. J., Ji, C., et al., 2023b. Understanding the Rupture Kinematics and Slip Model of the 2021 Mw 7.4 Maduo Earthquake: A Bilateral Event on Bifurcating Faults. Journal of Geophysical Research: Solid Earth, 128(4): essoar. 10511643. https://doi.org/10.1029/2022jb025936
    Xu, S. Q., Fukuyama, E., Ben-Zion, Y., et al., 2015. Dynamic Rupture Activation of Backthrust Fault Branching. Tectonophysics, 644: 161–183. https://doi.org/10.1016/j.tecto.2015.01.011
    Xu, Y. K., George, D. L., Kim, J., et al., 2021. Landslide Monitoring and Runout Hazard Assessment by Integrating Multi-Source Remote Sensing and Numerical Models: An Application to the Gold Basin Landslide Complex, Northern Washington. Landslides, 18(3): 1131–1141. https://doi.org/10.1007/s10346-020-01533-0
    Yabuki, T., Matsu'ura, M., 1992. Geodetic Data Inversion Using a Bayesian Information Criterion for Spatial Distribution of Fault Slip. Geophysical Journal International, 109(2): 363–375. https://doi.org/10.1111/j.1365-246X.1992.tb00102.x
    Yang, Z. G., Chen, Y. T., Zhang, X. M., et al., 2019. S-Wave Velocity Structure and Radial Anisotropy in Eastern and North-Eastern Margins of Tibetan Plateau. Chinese Journal of Geophysics, 62(12): 4554–4570 (in Chinese with English Abstract)
    Yu, C., Li, Z. H., Penna, N. T., et al., 2018. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research (Solid Earth), 123(10): 9202–9222. https://doi.org/10.1029/2017JB015305
    Yu, C., Li, Z. H., Song, C., 2021. Geodetic Constraints on Recent Subduction Earthquakes and Future Seismic Hazards in the Southwestern Coast of Mexico. Geophysical Research Letters, 48(13): e2021GL094192. https://doi.org/10.1029/2021gl094192
    Yuan, D. Y., 2003. Tectonic Deformation Features and Spatial-Temporal Evolution in the Northeastern Margin of the Qinghai-Tibetan Plateau since the Late Cenozoic Time: [Dissertation]. China Earthquake Administration Institute of Geology, Beijing (in Chinese with English Abstract)
    Yuan, D. Y., Ge, W. P., Chen, Z. W., et al., 2013. The Growth of Northeastern Tibet and Its Relevance to Large-Scale Continental Geodynamics: A Review of Recent Studies. Tectonics, 32(5): 1358–1370. https://doi.org/10.1002/tect.20081
    Yuan, D., Zhang, P., Lei Z. S., et al., 2005. Preliminary Study on New Activity Characteristics of Lajishan Fault Zone in Qinghai. China Earthquake, 21(01): 93–102 (in Chinese with English Abstract)
    Zhang, B., He, W. G., Fang, L. H., et al., 2015. Surveys on Surface Rupture Phenomena of Gansu Kangle M6(3/4) Earthquake in 1936. Journal of Seismological Research, 38(2): 262–271, 333 (in Chinese with English Abstract)
    Zhang, H., Ge, Z., 2010. Tracking the Rupture of the 2008 Wenchuan Earthquake by Using the Relative Back-Projection Method. Bulletin of the Seismological Society of America, 100(5B): 2551–2560. https://doi.org/10.1785/0120090243
    Zhang, Y. F., Shan, X. J., Gong, W. Y., et al., 2021. The Ambiguous Fault Geometry Derived from InSAR Measurements of Buried Thrust Earthquakes: A Synthetic Data Based Study. Geophysical Journal International, 225(3): 1799–1811. https://doi.org/10.1093/gji/ggab021
    Zhang, Y. Y., An, Y. R., Long, F., et al., 2022. Short-Term Foreshock and Aftershock Patterns of the 2021 Ms6.4 Yangbi Earthquake Sequence. Seismological Research Letters, 93(1): 21–32. https://doi.org/10.1785/0220210154
    Zhang, Y., Zhang, D. L., Li, X. J., et al., 2018. Fault Structural Control on Earthquake Strong Ground Motions: The 2008 Wenchuan Earthquake as an Example. Pure and Applied Geophysics, 175(2): 597–609. https://doi.org/10.1007/s00024-017-1738-0
    Zhang, Z. J., Bai, Z. M., Klemperer, S. L., et al., 2013. Crustal Structure across Northeastern Tibet from Wide-Angle Seismic Profiling: Constraints on the Caledonian Qilian Orogeny and Its Reactivation. Tectonophysics, 606: 140–159. https://doi.org/10.1016/j.tecto.2013.02.040
    Zhang, Z., Zhang, P., Wang, Q., 2010. The Structure and Seismogenic Mechanism of Longmenshan High Dip-Angle Reverse Fault. Chinese Journal of Geophysics, 53(9): 2068-2082 (in Chinese with English Abstract)
    Zhou, H. F., Ye, F., Fu, W. X., et al., 2024. Dynamic Effect of Landslides Triggered by Earthquake: A Case Study in Moxi Town of Luding County, China. Journal of Earth Science, 35(1): 221–234
    Zhou, Y. S., He, C. R., 2009. The Rheological Structures of Crust and Mechanics of High-Angle Reverse Fault Slip for Wenchuan Ms8.0 Earthquake. Chinese Journal of Geophysics, 52(2): 474–484 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(9) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return