Bucci, F., Santangelo, M., Cardinali, M., et al., 2016. Landslide Distribution and Size in Response to Quaternary Fault Activity: The Peloritani Range, NE Sicily, Italy. Earth Surface Processes and Landforms, 41(5): 711–720. https://doi.org/10.1002/esp.3898 |
Cao, C., Zhu, K. X., Xu, P. H., et al., 2022. Refined Landslide Susceptibility Analysis Based on InSAR Technology and UAV Multi-Source Data. Journal of Cleaner Production, 368: 133146. https://doi.org/10.1016/j.jclepro.2022.133146 |
Carabella, C., Cinosi, J., Piattelli, V., et al., 2022. Earthquake-Induced Landslides Susceptibility Evaluation: A Case Study from the Abruzzo Region (Central Italy). Catena, 208: 105729. https://doi.org/10.1016/j.catena.2021.105729 |
Carlini, M., Chelli, A., Vescovi, P., et al., 2016. Tectonic Control on the Development and Distribution of Large Landslides in the Northern Apennines (Italy). Geomorphology, 253: 425–437. https://doi.org/10.1016/j.geomorph.2015.10.028 |
Chen, L., Ma, P. F., Yu, C., et al., 2023. Landslide Susceptibility Assessment in Multiple Urban Slope Settings with a Landslide Inventory Augmented by InSAR Techniques. Engineering Geology, 327: 107342. https://doi.org/10.1016/j.enggeo.2023.107342 |
Cogan, J., Gratchev, I., Wang, G. H., 2018. Rainfall-Induced Shallow Landslides Caused by Ex-Tropical Cyclone Debbie, 31st March 2017. Landslides, 15(6): 1215–1221. https://doi.org/10.1007/s10346-018-0982-4 |
Costantini, M., Ferretti, A., Minati, F., et al., 2017. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-SkyMed Radar Data. Remote Sensing of Environment, 202: 250–275. https://doi.org/10.1016/j.rse.2017.07.017 |
Dai, C., Li, W. L., Lu, H. Y., et al., 2023. Landslide Hazard Assessment Method Considering the Deformation Factor: A Case Study of Zhouqu, Gansu Province, Northwest China. Remote Sensing, 15(3): 596. https://doi.org/10.3390/rs15030596 |
Fan, X. M., Juang, C. H., Wasowski, J., et al., 2018. What we Have Learned from the 2008 Wenchuan Earthquake and Its Aftermath: A Decade of Research and Challenges. Engineering Geology, 241: 25–32. https://doi.org/10.1016/j.enggeo.2018.05.004 |
Frattini, P., Crosta, G. B., 2013. The Role of Material Properties and Landscape Morphology on Landslide Size Distributions. Earth and Planetary Science Letters, 361: 310–319. https://doi.org/10.1016/j.epsl.2012.10.029 |
Froude, M. J., Petley, D. N., 2018. Global Fatal Landslide Occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8): 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018 |
Geertsema, M., Pojar, J. J., 2007. Influence of Landslides on Biophysical Diversity—A Perspective from British Columbia. Geomorphology, 89(1/2): 55–69. https://doi.org/10.1016/j.geomorph.2006.07.019 |
Gui, X. G., Liang, S. Y., Zhao, H. L., et al., 2020. Spatial Distribution Pattern of Landslides and Its Influencing Factors in the Baxie River Basin Based on Fractal Theory. China Earthquake Engineering Journal, 42(1): 250–258. https://doi.org/10.3969/j.issn.1000-0844.2020.01.250 (in Chinese with English Abstract) |
He, J. Y., Qiu, H. J., Qu, F. H., et al., 2021. Prediction of Spatiotemporal Stability and Rainfall Threshold of Shallow Landslides Using the TRIGRS and Scoops3D Models. CATENA, 197: 104999. https://doi.org/10.1016/j.catena.2020.104999 |
Hou, R. N., Li, Z., Ye, W. H., et al., 2024. A Small Landslide Induced a Large Disaster Prior to the Heavy Rainy Season in Jinkouhe, Sichuan, China: Characteristics, Mechanism, and Lessons. Landslides, 21(6): 1353–1365. https://doi.org/10.1007/s10346-024-02213-z |
Hu, S., Qiu, H. J., Wang, N. L., et al., 2022. Movement Process, Geomorphological Changes, and Influencing Factors of a Reactivated Loess Landslide on the Right Bank of the Middle of the Yellow River, China. Landslides, 19(6): 1265–1295. https://doi.org/10.1007/s10346-022-01856-0 |
Kasai, M., Yamada, T., 2019. Topographic Effects on Frequency-Size Distribution of Landslides Triggered by the Hokkaido Eastern Iburi Earthquake in 2018. Earth, Planets and Space, 71(1): 89. https://doi.org/10.1186/s40623-019-1069-8 |
Katz, O., Morgan, J. K., Aharonov, E., et al., 2014. Controls on the Size and Geometry of Landslides: Insights from Discrete Element Numerical Simulations. Geomorphology, 220: 104–113. https://doi.org/10.1016/j.geomorph.2014.05.021 |
Keefer, D. K., Larsen, M. C., 2007. Assessing Landslide Hazards. Science, 316(5828): 1136–1138. https://doi.org/10.1126/science.1143308 |
Keijsers, J. G. S., Schoorl, J. M., Chang, K. T., et al., 2011. Calibration and Resolution Effects on Model Performance for Predicting Shallow Landslide Locations in Taiwan. Geomorphology, 133(3/4): 168–177. https://doi.org/10.1016/j.geomorph.2011.03.020 |
Kirschbaum, D., Stanley, T., Zhou, Y. P., 2015. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology, 249: 4–15. https://doi.org/10.1016/j.geomorph.2015.03.016 |
Korup, O., 2005. Geomorphic Imprint of Landslides on Alpine River Systems, Southwest New Zealand. Earth Surface Processes and Landforms, 30(7): 783–800. https://doi.org/10.1002/esp.1171 |
Korup, O., Densmore, A. L., Schlunegger, F., 2010. The Role of Landslides in Mountain Range Evolution. Geomorphology, 120(1/2): 77–90. https://doi.org/10.1016/j.geomorph.2009.09.017 |
Laimer, H. J., 2017. Anthropogenically Induced Landslides: A Challenge for Railway Infrastructure in Mountainous Regions. Engineering Geology, 222: 92–101. https://doi.org/10.1016/j.enggeo.2017.03.015 |
Li, C. R., Wang, M., Liu, K., 2018. A Decadal Evolution of Landslides and Debris Flows after the Wenchuan Earthquake. Geomorphology, 323: 1–12. https://doi.org/10.1016/j.geomorph.2018.09.010 |
Li, W. P., Wu, Y. M., Gao, X., et al., 2024. The Distribution Pattern of Ground Movement and Co-Seismic Landslides: a Case Study of the 5 September 2022 Luding Earthquake, China. Journal of Geophysical Research: Earth Surface, 129(5): e2023JF007534. https://doi.org/10.1029/2023jf007534 |
Lin, Z., Kaneda, H., Mukoyama, S., et al., 2013. Detection of Subtle Tectonic–Geomorphic Features in Densely Forested Mountains by very High-Resolution Airborne LiDAR Survey. Geomorphology, 182: 104–115. https://doi.org/10.1016/j.geomorph.2012.11.001 |
Liu, Z. J., Qiu, H. J., Ma, S. Y., et al., 2021. Surface Displacement and Topographic Change Analysis of the Changhe Landslide on September 14, 2019, China. Landslides, 18(4): 1471–1483. https://doi.org/10.1007/s10346-021-01626-4 |
Liucci, L., Melelli, L., Suteanu, C., 2015. Scale-Invariance in the Spatial Development of Landslides in the Umbria Region (Italy). Pure and Applied Geophysics, 172(7): 1959–1973. https://doi.org/10.1007/s00024-014-0877-9 |
Lu, H. Y., Li, W. L., Xu, Q., et al., 2024. Active Landslide Detection Using Integrated Remote Sensing Technologies for a Wide Region and Multiple Stages: a Case Study in Southwestern China. Science of the Total Environment, 931: 172709. https://doi.org/10.1016/j.scitotenv.2024.172709 |
Ma, P. F., Cui, Y. F., Wang, W. X., et al., 2021. Coupling InSAR and Numerical Modeling for Characterizing Landslide Movements under Complex Loads in Urbanized Hillslopes. Landslides, 18(5): 1611–1623. https://doi.org/10.1007/s10346-020-01604-2 |
Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29(6): 687–711. https://doi.org/10.1002/esp.1064 |
Mao, Z. J., Zhang, J. G., Zhong, J. X., et al., 2023. Sensitivity Analysis on Factors Influencing Loess Terrace Landslide Potential Using Certainty Factor Method. Bulletin of Soil and Water Conservation, 43(2): 183–192, 340. https://doi.org/10.1088/1757-899X (in Chinese with English Abstract) |
Meng, Q. K., Li, W. L., Raspini, F., et al., 2021. Time-Series Analysis of the Evolution of Large-Scale Loess Landslides Using InSAR and UAV Photogrammetry Techniques: A Case Study in Hongheyan, Gansu Province, Northwest China. Landslides, 18(1): 251–265. https://doi.org/10.1007/s10346-020-01490-8 |
Parker, R. N., Densmore, A. L., Rosser, N. J., et al., 2011. Mass Wasting Triggered by the 2008 Wenchuan Earthquake Is Greater than Orogenic Growth. Nature Geoscience, 4(7): 449–452. https://doi.org/10.1038/ngeo1154 |
Pei, Y. Q., Qiu, H. J., Hu, S., et al., 2021. Appraisal of Tectonic-Geomorphic Features in the Hindu Kush-Himalayas. Earth and Space Science, 8(5): e2020EA001386. https://doi.org/10.1029/2020ea001386 |
Petley, D., 2012. Global Patterns of Loss of Life from Landslides. Geology, 40(10): 927–930. https://doi.org/10.1130/g33217.1 |
Piacentini, D., Troiani, F., Daniele, G., et al., 2018. Historical Geospatial Database for Landslide Analysis: The Catalogue of Landslide OCcurrences in the Emilia-Romagna Region (CLOCkER). Landslides, 15(4): 811–822. https://doi.org/10.1007/s10346-018-0962-8 |
Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., et al., 2014. Assessment of Fractal Dimension and Geometrical Characteristics of the Landslides Identified in North of Tehran, Iran. Environmental Earth Sciences, 71(8): 3617–3626. https://doi.org/10.1007/s12665-013-2753-9 |
Qiu, H. J., Su, L. L., Tang, B. Z., et al., 2024a. The Effect of Location and Geometric Properties of Landslides Caused by Rainstorms and Earthquakes. Earth Surface Processes and Landforms, 49(7): 2067–2079. https://doi.org/10.1002/esp.5816 |
Qiu, H. J., Cui, P., Regmi, A. D., et al., 2018. The Effects of Slope Length and Slope Gradient on the Size Distributions of Loess Slides: Field Observations and Simulations. Geomorphology, 300: 69–76. https://doi.org/10.1016/j.geomorph.2017.10.020 |
Qiu, H. J., Ma, S. Y., Cui Y. F., et al., 2020a. Reconsider the Role of Landslides. Journal of Northwest University (Natural Science Edition), 50(3): 377–385 (in Chinese with English Abstract) |
Qiu, H. J., Hu, S., Wang, X. G., et al., 2020b. Size and Spatial Distribution of Loess Slides on the Chinese Loess Plateau. Physical Geography, 41(2): 126–144. https://doi.org/10.1080/02723646.2019.1601153 |
Qiu, H. J., Hu, S., Yang, D. D., et al., 2021. Comparing Landslide Size Probability Distribution at the Landscape Scale (Loess Plateau and the Qinba Mountains, Central China) Using Double Pareto and Inverse Gamma. Bulletin of Engineering Geology and the Environment, 80(2): 1035–1046. https://doi.org/10.1007/s10064-020-02037-w |
Qiu, H. J., Liu, Y., Tang, B. Z., et al., 2024b. More Catastrophic Flow Events may Follow the Chamoli Rock and Ice Avalanche under Climate Change. Journal of Earth Science, 35(4): 1382–1384. https://doi.org/10.1007/s12583-024-1997-5 |
Qiu, H. J., Regmi, A. D., Cui, P., et al., 2016. Size Distribution of Loess Slides in Relation to Local Slope Height within Different Slope Morphologies. Catena, 145: 155–163. https://doi.org/10.1016/j.catena.2016.06.005 |
Regmi, N. R., Walter, J. I., 2020. Detailed Mapping of Shallow Landslides in Eastern Oklahoma and Western Arkansas and Potential Triggering by Oklahoma Earthquakes. Geomorphology, 366: 106806. https://doi.org/10.1016/j.geomorph.2019.05.026 |
Restrepo, C., Walker, L. R., Shiels, A. B., et al., 2009. Landsliding and Its Multiscale Influence on Mountainscapes. BioScience, 59(8): 685–698. https://doi.org/10.1525/bio.2009.59.8.10 |
Roering, J., 2012. Landslides Limit Mountain Relief. Nature Geoscience, 5(7): 446–447. https://doi.org/10.1038/ngeo1511 |
Rossi, G., Catani, F., Leoni, L., et al., 2013. HIRESSS: A Physically Based Slope Stability Simulator for HPC Applications. Natural Hazards and Earth System Sciences, 13(1): 151–166. https://doi.org/10.5194/nhess-13-151-2013 |
Schmidt, K. M., Montgomery, D. R., 1995. Limits to Relief. Science, 270(5236): 617–620. https://doi.org/10.1126/science.270.5236.617 |
Schrumpf, M., Guggenberger, G., Valarezo, C., et al., 2001. Tropical Montane Rain Forest Soils. Development and Nutrient Status along an Altitudinal Gradient in the South Ecuadorian Andes. Erde, 132(1): 43–59. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14319473 |
Shan, Y. F., Xu, Z., Zhou, S. S., et al., 2023. Landslide Hazard Assessment Combined with InSAR Deformation: A Case Study in the Zagunao River Basin, Sichuan Province, Southwestern China. Remote Sensing, 16(1): 99. https://doi.org/10.3390/rs16010099 |
Shroder, J. F., Owen, L. A., Seong, Y. B., et al., 2011. The Role of Mass Movements on Landscape Evolution in the Central Karakoram: Discussion and Speculation. Quaternary International, 236(1/2): 34–47. https://doi.org/10.1016/j.quaint.2010.05.024 |
Talebi, A., Uijlenhoet, R., Troch, P. A., 2007. Soil Moisture Storage and Hillslope Stability. Natural Hazards and Earth System Sciences, 7(5): 523–534. https://doi.org/10.5194/nhess-7-523-2007 |
Teshebaeva, K., Echtler, H., Bookhagen, B., et al., 2019. Deep-Seated Gravitational Slope Deformation (DSGSD) and Slow-Moving Landslides in the Southern Tien Shan Mountains: New Insights from InSAR, Tectonic and Geomorphic Analysis. Earth Surface Processes and Landforms, 44(12): 2333–2348. https://doi.org/10.1002/esp.4648 |
Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268–281. https://doi.org/10.1016/j.epsl.2018.11.005 |
Van Den Eeckhaut, M., Poesen, J., Govers, G., et al., 2007. Characteristics of the Size Distribution of Recent and Historical Landslides in a Populated Hilly Region. Earth and Planetary Science Letters, 256(3/4): 588–603. https://doi.org/10.1016/j.epsl.2007.01.040 |
Vargas-Cuervo, G., Hernández-Peña, Y. T., Zafra-Mejía, C. A., 2024. Challenges for Sustainable Urban Planning: a Spatiotemporal Analysis of Complex Landslide Risk in a Latin American Megacity. Sustainability, 16(8): 3133. https://doi.org/10.3390/su16083133 |
Wang, Q. K., Xing, A. G., Xu, X. Y., et al., 2024. Formation Mechanism and Dynamic Process of Open-Pit Coal Mine Landslides: a Case Study of the Xinjing Landslide in Inner Mongolia, China. Landslides, 21(3): 541–556. https://doi.org/10.1007/s10346-023-02193-6 |
Wei, Y. D., Qiu, H. J., Liu, Z. J., et al., 2024. Refined and Dynamic Susceptibility Assessment of Landslides Using InSAR and Machine Learning Models. Geoscience Frontiers, 15(6): 101890. https://doi.org/10.1016/j.gsf.2024.101890 |
Weidinger, J. T., Wang, J. D., Ma, N. X., 2002. The Earthquake-Triggered Rock Avalanche of Cui Hua, Qin Ling Mountains, P. R. of China—The Benefits of a Lake-Damming Prehistoric Natural Disaster. Quaternary International, 93: 207–214. https://doi.org/10.1016/S1040-6182(02)00019-8 |
Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957–966. https://doi.org/10.13203/j.whugis20190088 (in Chinese with English Abstract) |
Yang, D. D., Qiu, H. J., Hu, S., et al., 2021. Influence of Successive Landslides on Topographic Changes Revealed by Multitemporal High-Resolution UAS-Based DEM. Catena, 202: 105229. https://doi.org/10.1016/j.catena.2021.105229 |
Yang, L. W., Xu, Y. Q., Gao, J. X., et al., 2023. Research Progresses on the Geological Environment of High-Locality Landslide. Water Resources and Hydropower Engineering, 54(S1): 333–340 (in Chinese with English Abstract) |
Zhang, Z., Liu, M., Tan, Y. J., et al., 2024. Landslide Hazard Cascades Can Trigger Earthquakes. Nature Communications, 15(1): 2878. https://doi.org/10.1038/s41467-024-47130-w |
Zhou, C., Cao, Y., Hu, X., et al., 2022. Enhanced Dynamic Landslide Hazard Mapping Using MT-InSAR Method in the Three Gorges Reservoir Area. Landslides, 19(7): 1585–1597. https://doi.org/10.1007/s10346-021-01796-1 |
Zhu, Y. R., Qiu, H. J., Yang, D. D., et al., 2021. Pre- and Post-Failure Spatiotemporal Evolution of Loess Landslides: a Case Study of the Jiangou Landslide in Ledu, China. Landslides, 18(10): 3475–3484. https://doi.org/10.1007/s10346-021-01714-5 |
Zhuang, J. Q., Peng, J. B., Wang, G. H., et al., 2017. Prediction of Rainfall-Induced Shallow Landslides in the Loess Plateau, Yan'an, China, Using the TRIGRS Model. Earth Surface Processes and Landforms, 42(6): 915–927. https://doi.org/10.1002/esp.4050 |