Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Haijun Qiu, Yingdong Wei. Landslide Geomorphology: Pattern, Process and Stability. Journal of Earth Science, 2025, 36(1): 327-332. doi: 10.1007/s12583-024-0131-z
Citation: Haijun Qiu, Yingdong Wei. Landslide Geomorphology: Pattern, Process and Stability. Journal of Earth Science, 2025, 36(1): 327-332. doi: 10.1007/s12583-024-0131-z

Landslide Geomorphology: Pattern, Process and Stability

doi: 10.1007/s12583-024-0131-z
More Information
  • Corresponding author: Yingdong Wei, yingdongwei@stumail.nwu.edu.cn
  • Received Date: 30 Sep 2024
  • Accepted Date: 10 Oct 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Bucci, F., Santangelo, M., Cardinali, M., et al., 2016. Landslide Distribution and Size in Response to Quaternary Fault Activity: The Peloritani Range, NE Sicily, Italy. Earth Surface Processes and Landforms, 41(5): 711–720. https://doi.org/10.1002/esp.3898
    Cao, C., Zhu, K. X., Xu, P. H., et al., 2022. Refined Landslide Susceptibility Analysis Based on InSAR Technology and UAV Multi-Source Data. Journal of Cleaner Production, 368: 133146. https://doi.org/10.1016/j.jclepro.2022.133146
    Carabella, C., Cinosi, J., Piattelli, V., et al., 2022. Earthquake-Induced Landslides Susceptibility Evaluation: A Case Study from the Abruzzo Region (Central Italy). Catena, 208: 105729. https://doi.org/10.1016/j.catena.2021.105729
    Carlini, M., Chelli, A., Vescovi, P., et al., 2016. Tectonic Control on the Development and Distribution of Large Landslides in the Northern Apennines (Italy). Geomorphology, 253: 425–437. https://doi.org/10.1016/j.geomorph.2015.10.028
    Chen, L., Ma, P. F., Yu, C., et al., 2023. Landslide Susceptibility Assessment in Multiple Urban Slope Settings with a Landslide Inventory Augmented by InSAR Techniques. Engineering Geology, 327: 107342. https://doi.org/10.1016/j.enggeo.2023.107342
    Cogan, J., Gratchev, I., Wang, G. H., 2018. Rainfall-Induced Shallow Landslides Caused by Ex-Tropical Cyclone Debbie, 31st March 2017. Landslides, 15(6): 1215–1221. https://doi.org/10.1007/s10346-018-0982-4
    Costantini, M., Ferretti, A., Minati, F., et al., 2017. Analysis of Surface Deformations over the Whole Italian Territory by Interferometric Processing of ERS, Envisat and COSMO-SkyMed Radar Data. Remote Sensing of Environment, 202: 250–275. https://doi.org/10.1016/j.rse.2017.07.017
    Dai, C., Li, W. L., Lu, H. Y., et al., 2023. Landslide Hazard Assessment Method Considering the Deformation Factor: A Case Study of Zhouqu, Gansu Province, Northwest China. Remote Sensing, 15(3): 596. https://doi.org/10.3390/rs15030596
    Fan, X. M., Juang, C. H., Wasowski, J., et al., 2018. What we Have Learned from the 2008 Wenchuan Earthquake and Its Aftermath: A Decade of Research and Challenges. Engineering Geology, 241: 25–32. https://doi.org/10.1016/j.enggeo.2018.05.004
    Frattini, P., Crosta, G. B., 2013. The Role of Material Properties and Landscape Morphology on Landslide Size Distributions. Earth and Planetary Science Letters, 361: 310–319. https://doi.org/10.1016/j.epsl.2012.10.029
    Froude, M. J., Petley, D. N., 2018. Global Fatal Landslide Occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8): 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
    Geertsema, M., Pojar, J. J., 2007. Influence of Landslides on Biophysical Diversity—A Perspective from British Columbia. Geomorphology, 89(1/2): 55–69. https://doi.org/10.1016/j.geomorph.2006.07.019
    Gui, X. G., Liang, S. Y., Zhao, H. L., et al., 2020. Spatial Distribution Pattern of Landslides and Its Influencing Factors in the Baxie River Basin Based on Fractal Theory. China Earthquake Engineering Journal, 42(1): 250–258. https://doi.org/10.3969/j.issn.1000-0844.2020.01.250 (in Chinese with English Abstract)
    He, J. Y., Qiu, H. J., Qu, F. H., et al., 2021. Prediction of Spatiotemporal Stability and Rainfall Threshold of Shallow Landslides Using the TRIGRS and Scoops3D Models. CATENA, 197: 104999. https://doi.org/10.1016/j.catena.2020.104999
    Hou, R. N., Li, Z., Ye, W. H., et al., 2024. A Small Landslide Induced a Large Disaster Prior to the Heavy Rainy Season in Jinkouhe, Sichuan, China: Characteristics, Mechanism, and Lessons. Landslides, 21(6): 1353–1365. https://doi.org/10.1007/s10346-024-02213-z
    Hu, S., Qiu, H. J., Wang, N. L., et al., 2022. Movement Process, Geomorphological Changes, and Influencing Factors of a Reactivated Loess Landslide on the Right Bank of the Middle of the Yellow River, China. Landslides, 19(6): 1265–1295. https://doi.org/10.1007/s10346-022-01856-0
    Kasai, M., Yamada, T., 2019. Topographic Effects on Frequency-Size Distribution of Landslides Triggered by the Hokkaido Eastern Iburi Earthquake in 2018. Earth, Planets and Space, 71(1): 89. https://doi.org/10.1186/s40623-019-1069-8
    Katz, O., Morgan, J. K., Aharonov, E., et al., 2014. Controls on the Size and Geometry of Landslides: Insights from Discrete Element Numerical Simulations. Geomorphology, 220: 104–113. https://doi.org/10.1016/j.geomorph.2014.05.021
    Keefer, D. K., Larsen, M. C., 2007. Assessing Landslide Hazards. Science, 316(5828): 1136–1138. https://doi.org/10.1126/science.1143308
    Keijsers, J. G. S., Schoorl, J. M., Chang, K. T., et al., 2011. Calibration and Resolution Effects on Model Performance for Predicting Shallow Landslide Locations in Taiwan. Geomorphology, 133(3/4): 168–177. https://doi.org/10.1016/j.geomorph.2011.03.020
    Kirschbaum, D., Stanley, T., Zhou, Y. P., 2015. Spatial and Temporal Analysis of a Global Landslide Catalog. Geomorphology, 249: 4–15. https://doi.org/10.1016/j.geomorph.2015.03.016
    Korup, O., 2005. Geomorphic Imprint of Landslides on Alpine River Systems, Southwest New Zealand. Earth Surface Processes and Landforms, 30(7): 783–800. https://doi.org/10.1002/esp.1171
    Korup, O., Densmore, A. L., Schlunegger, F., 2010. The Role of Landslides in Mountain Range Evolution. Geomorphology, 120(1/2): 77–90. https://doi.org/10.1016/j.geomorph.2009.09.017
    Laimer, H. J., 2017. Anthropogenically Induced Landslides: A Challenge for Railway Infrastructure in Mountainous Regions. Engineering Geology, 222: 92–101. https://doi.org/10.1016/j.enggeo.2017.03.015
    Li, C. R., Wang, M., Liu, K., 2018. A Decadal Evolution of Landslides and Debris Flows after the Wenchuan Earthquake. Geomorphology, 323: 1–12. https://doi.org/10.1016/j.geomorph.2018.09.010
    Li, W. P., Wu, Y. M., Gao, X., et al., 2024. The Distribution Pattern of Ground Movement and Co-Seismic Landslides: a Case Study of the 5 September 2022 Luding Earthquake, China. Journal of Geophysical Research: Earth Surface, 129(5): e2023JF007534. https://doi.org/10.1029/2023jf007534
    Lin, Z., Kaneda, H., Mukoyama, S., et al., 2013. Detection of Subtle Tectonic–Geomorphic Features in Densely Forested Mountains by very High-Resolution Airborne LiDAR Survey. Geomorphology, 182: 104–115. https://doi.org/10.1016/j.geomorph.2012.11.001
    Liu, Z. J., Qiu, H. J., Ma, S. Y., et al., 2021. Surface Displacement and Topographic Change Analysis of the Changhe Landslide on September 14, 2019, China. Landslides, 18(4): 1471–1483. https://doi.org/10.1007/s10346-021-01626-4
    Liucci, L., Melelli, L., Suteanu, C., 2015. Scale-Invariance in the Spatial Development of Landslides in the Umbria Region (Italy). Pure and Applied Geophysics, 172(7): 1959–1973. https://doi.org/10.1007/s00024-014-0877-9
    Lu, H. Y., Li, W. L., Xu, Q., et al., 2024. Active Landslide Detection Using Integrated Remote Sensing Technologies for a Wide Region and Multiple Stages: a Case Study in Southwestern China. Science of the Total Environment, 931: 172709. https://doi.org/10.1016/j.scitotenv.2024.172709
    Ma, P. F., Cui, Y. F., Wang, W. X., et al., 2021. Coupling InSAR and Numerical Modeling for Characterizing Landslide Movements under Complex Loads in Urbanized Hillslopes. Landslides, 18(5): 1611–1623. https://doi.org/10.1007/s10346-020-01604-2
    Malamud, B. D., Turcotte, D. L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29(6): 687–711. https://doi.org/10.1002/esp.1064
    Mao, Z. J., Zhang, J. G., Zhong, J. X., et al., 2023. Sensitivity Analysis on Factors Influencing Loess Terrace Landslide Potential Using Certainty Factor Method. Bulletin of Soil and Water Conservation, 43(2): 183–192, 340. https://doi.org/10.1088/1757-899X (in Chinese with English Abstract)
    Meng, Q. K., Li, W. L., Raspini, F., et al., 2021. Time-Series Analysis of the Evolution of Large-Scale Loess Landslides Using InSAR and UAV Photogrammetry Techniques: A Case Study in Hongheyan, Gansu Province, Northwest China. Landslides, 18(1): 251–265. https://doi.org/10.1007/s10346-020-01490-8
    Parker, R. N., Densmore, A. L., Rosser, N. J., et al., 2011. Mass Wasting Triggered by the 2008 Wenchuan Earthquake Is Greater than Orogenic Growth. Nature Geoscience, 4(7): 449–452. https://doi.org/10.1038/ngeo1154
    Pei, Y. Q., Qiu, H. J., Hu, S., et al., 2021. Appraisal of Tectonic-Geomorphic Features in the Hindu Kush-Himalayas. Earth and Space Science, 8(5): e2020EA001386. https://doi.org/10.1029/2020ea001386
    Petley, D., 2012. Global Patterns of Loss of Life from Landslides. Geology, 40(10): 927–930. https://doi.org/10.1130/g33217.1
    Piacentini, D., Troiani, F., Daniele, G., et al., 2018. Historical Geospatial Database for Landslide Analysis: The Catalogue of Landslide OCcurrences in the Emilia-Romagna Region (CLOCkER). Landslides, 15(4): 811–822. https://doi.org/10.1007/s10346-018-0962-8
    Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., et al., 2014. Assessment of Fractal Dimension and Geometrical Characteristics of the Landslides Identified in North of Tehran, Iran. Environmental Earth Sciences, 71(8): 3617–3626. https://doi.org/10.1007/s12665-013-2753-9
    Qiu, H. J., Su, L. L., Tang, B. Z., et al., 2024a. The Effect of Location and Geometric Properties of Landslides Caused by Rainstorms and Earthquakes. Earth Surface Processes and Landforms, 49(7): 2067–2079. https://doi.org/10.1002/esp.5816
    Qiu, H. J., Cui, P., Regmi, A. D., et al., 2018. The Effects of Slope Length and Slope Gradient on the Size Distributions of Loess Slides: Field Observations and Simulations. Geomorphology, 300: 69–76. https://doi.org/10.1016/j.geomorph.2017.10.020
    Qiu, H. J., Ma, S. Y., Cui Y. F., et al., 2020a. Reconsider the Role of Landslides. Journal of Northwest University (Natural Science Edition), 50(3): 377–385 (in Chinese with English Abstract)
    Qiu, H. J., Hu, S., Wang, X. G., et al., 2020b. Size and Spatial Distribution of Loess Slides on the Chinese Loess Plateau. Physical Geography, 41(2): 126–144. https://doi.org/10.1080/02723646.2019.1601153
    Qiu, H. J., Hu, S., Yang, D. D., et al., 2021. Comparing Landslide Size Probability Distribution at the Landscape Scale (Loess Plateau and the Qinba Mountains, Central China) Using Double Pareto and Inverse Gamma. Bulletin of Engineering Geology and the Environment, 80(2): 1035–1046. https://doi.org/10.1007/s10064-020-02037-w
    Qiu, H. J., Liu, Y., Tang, B. Z., et al., 2024b. More Catastrophic Flow Events may Follow the Chamoli Rock and Ice Avalanche under Climate Change. Journal of Earth Science, 35(4): 1382–1384. https://doi.org/10.1007/s12583-024-1997-5
    Qiu, H. J., Regmi, A. D., Cui, P., et al., 2016. Size Distribution of Loess Slides in Relation to Local Slope Height within Different Slope Morphologies. Catena, 145: 155–163. https://doi.org/10.1016/j.catena.2016.06.005
    Regmi, N. R., Walter, J. I., 2020. Detailed Mapping of Shallow Landslides in Eastern Oklahoma and Western Arkansas and Potential Triggering by Oklahoma Earthquakes. Geomorphology, 366: 106806. https://doi.org/10.1016/j.geomorph.2019.05.026
    Restrepo, C., Walker, L. R., Shiels, A. B., et al., 2009. Landsliding and Its Multiscale Influence on Mountainscapes. BioScience, 59(8): 685–698. https://doi.org/10.1525/bio.2009.59.8.10
    Roering, J., 2012. Landslides Limit Mountain Relief. Nature Geoscience, 5(7): 446–447. https://doi.org/10.1038/ngeo1511
    Rossi, G., Catani, F., Leoni, L., et al., 2013. HIRESSS: A Physically Based Slope Stability Simulator for HPC Applications. Natural Hazards and Earth System Sciences, 13(1): 151–166. https://doi.org/10.5194/nhess-13-151-2013
    Schmidt, K. M., Montgomery, D. R., 1995. Limits to Relief. Science, 270(5236): 617–620. https://doi.org/10.1126/science.270.5236.617
    Schrumpf, M., Guggenberger, G., Valarezo, C., et al., 2001. Tropical Montane Rain Forest Soils. Development and Nutrient Status along an Altitudinal Gradient in the South Ecuadorian Andes. Erde, 132(1): 43–59. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14319473
    Shan, Y. F., Xu, Z., Zhou, S. S., et al., 2023. Landslide Hazard Assessment Combined with InSAR Deformation: A Case Study in the Zagunao River Basin, Sichuan Province, Southwestern China. Remote Sensing, 16(1): 99. https://doi.org/10.3390/rs16010099
    Shroder, J. F., Owen, L. A., Seong, Y. B., et al., 2011. The Role of Mass Movements on Landscape Evolution in the Central Karakoram: Discussion and Speculation. Quaternary International, 236(1/2): 34–47. https://doi.org/10.1016/j.quaint.2010.05.024
    Talebi, A., Uijlenhoet, R., Troch, P. A., 2007. Soil Moisture Storage and Hillslope Stability. Natural Hazards and Earth System Sciences, 7(5): 523–534. https://doi.org/10.5194/nhess-7-523-2007
    Teshebaeva, K., Echtler, H., Bookhagen, B., et al., 2019. Deep-Seated Gravitational Slope Deformation (DSGSD) and Slow-Moving Landslides in the Southern Tien Shan Mountains: New Insights from InSAR, Tectonic and Geomorphic Analysis. Earth Surface Processes and Landforms, 44(12): 2333–2348. https://doi.org/10.1002/esp.4648
    Valagussa, A., Marc, O., Frattini, P., et al., 2019. Seismic and Geological Controls on Earthquake-Induced Landslide Size. Earth and Planetary Science Letters, 506: 268–281. https://doi.org/10.1016/j.epsl.2018.11.005
    Van Den Eeckhaut, M., Poesen, J., Govers, G., et al., 2007. Characteristics of the Size Distribution of Recent and Historical Landslides in a Populated Hilly Region. Earth and Planetary Science Letters, 256(3/4): 588–603. https://doi.org/10.1016/j.epsl.2007.01.040
    Vargas-Cuervo, G., Hernández-Peña, Y. T., Zafra-Mejía, C. A., 2024. Challenges for Sustainable Urban Planning: a Spatiotemporal Analysis of Complex Landslide Risk in a Latin American Megacity. Sustainability, 16(8): 3133. https://doi.org/10.3390/su16083133
    Wang, Q. K., Xing, A. G., Xu, X. Y., et al., 2024. Formation Mechanism and Dynamic Process of Open-Pit Coal Mine Landslides: a Case Study of the Xinjing Landslide in Inner Mongolia, China. Landslides, 21(3): 541–556. https://doi.org/10.1007/s10346-023-02193-6
    Wei, Y. D., Qiu, H. J., Liu, Z. J., et al., 2024. Refined and Dynamic Susceptibility Assessment of Landslides Using InSAR and Machine Learning Models. Geoscience Frontiers, 15(6): 101890. https://doi.org/10.1016/j.gsf.2024.101890
    Weidinger, J. T., Wang, J. D., Ma, N. X., 2002. The Earthquake-Triggered Rock Avalanche of Cui Hua, Qin Ling Mountains, P. R. of China—The Benefits of a Lake-Damming Prehistoric Natural Disaster. Quaternary International, 93: 207–214. https://doi.org/10.1016/S1040-6182(02)00019-8
    Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957–966. https://doi.org/10.13203/j.whugis20190088 (in Chinese with English Abstract)
    Yang, D. D., Qiu, H. J., Hu, S., et al., 2021. Influence of Successive Landslides on Topographic Changes Revealed by Multitemporal High-Resolution UAS-Based DEM. Catena, 202: 105229. https://doi.org/10.1016/j.catena.2021.105229
    Yang, L. W., Xu, Y. Q., Gao, J. X., et al., 2023. Research Progresses on the Geological Environment of High-Locality Landslide. Water Resources and Hydropower Engineering, 54(S1): 333–340 (in Chinese with English Abstract)
    Zhang, Z., Liu, M., Tan, Y. J., et al., 2024. Landslide Hazard Cascades Can Trigger Earthquakes. Nature Communications, 15(1): 2878. https://doi.org/10.1038/s41467-024-47130-w
    Zhou, C., Cao, Y., Hu, X., et al., 2022. Enhanced Dynamic Landslide Hazard Mapping Using MT-InSAR Method in the Three Gorges Reservoir Area. Landslides, 19(7): 1585–1597. https://doi.org/10.1007/s10346-021-01796-1
    Zhu, Y. R., Qiu, H. J., Yang, D. D., et al., 2021. Pre- and Post-Failure Spatiotemporal Evolution of Loess Landslides: a Case Study of the Jiangou Landslide in Ledu, China. Landslides, 18(10): 3475–3484. https://doi.org/10.1007/s10346-021-01714-5
    Zhuang, J. Q., Peng, J. B., Wang, G. H., et al., 2017. Prediction of Rainfall-Induced Shallow Landslides in the Loess Plateau, Yan'an, China, Using the TRIGRS Model. Earth Surface Processes and Landforms, 42(6): 915–927. https://doi.org/10.1002/esp.4050
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views(7) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return