Berkesi, M., Bali, E., Bodnar, R. J., et al., 2020. Carbonatite and Highly Peralkaline Nephelinite Melts from Oldoinyo Lengai Volcano, Tanzania: The Role of Natrite-Normative Fluid Degassing. Gondwana Research, 85: 76–83. https://doi.org/10.1016/j.gr.2020.03.013 |
Berndt, J., Klemme, S., 2022. Origin of Carbonatites-Liquid Immiscibility Caught in the Act. Nature Communications, 13(1): 2892. https://doi.org/10.1038/s41467-022-30500-7 |
Carter, L. B., Dasgupta, R., 2015. Hydrous Basalt-Limestone Interaction at Crustal Conditions: Implications for Generation of Ultracalcic Melts and Outflux of CO2 at Volcanic Arcs. Earth and Planetary Science Letters, 427: 202–214. https://doi.org/10.1016/j.epsl.2015.06.053 |
Charlier, B., Grove, T. L., 2012. Experiments on Liquid Immiscibility along Tholeiitic Liquid Lines of Descent. Contributions to Mineralogy and Petrology, 164(1): 27–44. https://doi.org/10.1007/s00410-012-0723-y |
Chen, C. F., Förster, M. W., Foley, S. F., et al., 2023. Carbonate-Rich Crust Subduction Drives the Deep Carbon and Chlorine Cycles. Nature, 620(7974): 576–581. https://doi.org/10.1038/s41586-023-06211-4 |
Chen, W., Kamenetsky, V. S., Simonetti, A., 2013. Evidence for the Alkaline Nature of Parental Carbonatite Melts at Oka Complex in Canada. Nature Communications, 4(1): 2687. https://doi.org/10.1038/ncomms3687 |
Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1–13. https://doi.org/10.1016/j.epsl.2010.06.039 |
Dasgupta, R., Hirschmann, M. M., Smith, N. D., 2007. Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11): 2093–2124. https://doi.org/10.1093/petrology/egm053 |
Dasgupta, R., Hirschmann, M. M., Stalker, K., 2006. Immiscible Transition from Carbonate-Rich to Silicate-Rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-Undersaturated Ocean Island Lavas. Journal of Petrology, 47(4): 647–671. https://doi.org/10.1093/petrology/egi088 |
Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013. Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle. Nature, 493(7431): 211–215. https://doi.org/10.1038/nature11731 |
Dong, Y., Ge, W. C., Yang, H., et al., 2014. Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing'an Range, NE China, and Its Tectonic Implications. Lithos, 205: 168–184. https://doi.org/10.1016/j.lithos.2014.07.004 |
Eguchi, J., Dasgupta, R., 2018. A CO2 Solubility Model for Silicate Melts from Fluid Saturation to Graphite or Diamond Saturation. Chemical Geology, 487: 23–38. https://doi.org/10.1016/j.chemgeo.2018.04.012 |
Erdmann, S., Chen, L. H., Liu, J. Q., et al., 2019. Hot, Volatile-Poor, and Oxidized Magmatism above the Stagnant Pacific Plate in Eastern China in the Cenozoic. Geochemistry, Geophysics, Geosystems, 20(11): 4849–4868. https://doi.org/10.1029/2019gc008425 |
Fischer, L. A., Wang, M., Charlier, B., et al., 2016. Immiscible Iron- and Silica-Rich Liquids in the Upper Zone of the Bushveld Complex. Earth and Planetary Science Letters, 443: 108–117. https://doi.org/10.1016/j.epsl.2016.03.016 |
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162 |
Gerbode, C., Dasgupta, R., 2010. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2·9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 51(10): 2067–2088. https://doi.org/10.1093/petrology/egq049 |
Grassi, D., Schmidt, M. W., 2011. Melting of Carbonated Pelites at 8–13 GPa: Generating K-Rich Carbonatites for Mantle Metasomatism. Contributions to Mineralogy and Petrology, 162(1): 169–191. https://doi.org/10.1007/s00410-010-0589-9 |
Guzmics, T., Berkesi, M., Bodnar, R. J., et al., 2019. Natrocarbonatites: A Hidden Product of Three-Phase Immiscibility. Geology, 47(6): 527–530. https://doi.org/10.1130/g46125.1 |
Guzmics, T., Mitchell, R. H., Szabó, C., et al., 2011. Carbonatite Melt Inclusions in Coexisting Magnetite, Apatite and Monticellite in Kerimasi Calciocarbonatite, Tanzania: Melt Evolution and Petrogenesis. Contributions to Mineralogy and Petrology, 161(2): 177–196. https://doi.org/10.1007/s00410-010-0525-z |
Guzmics, T., Mitchell, R. H., Szabó, C., et al., 2012. Liquid Immiscibility between Silicate, Carbonate and Sulfide Melts in Melt Inclusions Hosted in Co-Precipitated Minerals from Kerimasi Volcano (Tanzania): Evolution of Carbonated Nephelinitic Magma. Contributions to Mineralogy and Petrology, 164(1): 101–122. https://doi.org/10.1007/s00410-012-0728-6 |
Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1/2): 357–368. https://doi.org/10.1016/S0012-821X(03)00361-3 |
Hou, T., Charlier, B., Holtz, F., et al., 2018. Immiscible Hydrous Fe-Ca-P Melt and the Origin of Iron Oxide-Apatite Ore Deposits. Nature Communications, 9(1): 1415. https://doi.org/10.1038/s41467-018-03761-4 |
Huang, H., Wang, T., Guo, L., et al., 2024. Crustal Modification Influenced by Multiple Convergent Systems: Insights from Mesozoic Magmatism in Northeastern China. Earth-Science Reviews, 252: 104737. https://doi.org/10.1016/j.earscirev.2024.104737 |
Ji, Z., Ge, W. C., Wang, Q. H., et al., 2016. Petrogenesis of Early Cretaceous Volcanic Rocks of the Manketouebo Formation in the Wuchagou Region, Central Great Xing'an Range, NE China, and Tectonic Implications: Geochronological, Geochemical, and Hf Isotopic Evidence. International Geology Review, 58(5): 556–573. https://doi.org/10.1080/00206814.2015.1095132 |
Ji, Z., Meng, Q. A., Wan, C. B., et al., 2019. Geodynamic Evolution of Flat-Slab Subduction of Paleo-Pacific Plate: Constraints from Jurassic Adakitic Lavas in the Hailar Basin, NE China. Tectonics, 38(12): 4301–4319. https://doi.org/10.1029/2019tc005687 |
Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., et al., 2013. Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 54(8): 1555–1583. https://doi.org/10.1093/petrology/egt023 |
Kiseeva, E. S., Yaxley, G. M., Hermann, J., et al., 2012. An Experimental Study of Carbonated Eclogite at 3.5–5.5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. Journal of Petrology, 53(4): 727–759. https://doi.org/10.1093/petrology/egr078 |
Kjarsgaard, B. A., Hamilton, D. L., Peterson, T. D., 1995. Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai. In: Bell, K., Keller, J., eds., Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. Springer Berlin Heidelberg, Berlin, Heidelberg. 163–190. https://doi.org/10.1007/978-3-642-79182-6_13 |
Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111–120. https://doi.org/10.1093/nsr/nww070 |
Litasov, K., Ohtani, E., 2010. The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32GPa and Carbonatite Liquid in the Deep Mantle. Earth and Planetary Science Letters, 295(1/2): 115–126. https://doi.org/10.1016/j.epsl.2010.03.030 |
Liu, M., Zhang, D., Di, Y. J., et al., 2022. Protracted Extraction of High-Silica Melts from an Upper-Crustal Magma Reservoir Recorded by the Wuchagou Volcanic Rocks in Central Great Xing'an Range, NE China. Lithos, 422: 106752. https://doi.org/10.1016/j.lithos.2022.106752 |
Liu, S. G., Teng, F. Z., Yang, W., et al., 2011. High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton. Earth and Planetary Science Letters, 308(1/2): 131–140. https://doi.org/10.1016/j.epsl.2011.05.047 |
Liu, S. G., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169–178. https://doi.org/10.1016/j.epsl.2016.03.051 |
Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473 |
Ma, Q., Zhong, Y. T., Yin, Q. Z., et al., 2024. High-Resolution Chronostratigraphy of Late Mesozoic Sequences in Northern North China: Implications for the Linkages among Intracontinental Orogeny, Volcanism, Jehol Biota, and Pacific Plate Subduction. Geology, 52(1): 45–50. https://doi.org/10.1130/g51535.1 |
Meng, Q. R., 2003. What Drove Late Mesozoic Extension of the Northern China–Mongolia Tract?. Tectonophysics, 369(3/4): 155–174. https://doi.org/10.1016/S0040-1951(03)00195-1 |
Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343–352. https://doi.org/10.1038/s41586-019-1643-z |
Sieber, M. J., Wilke, M., Appelt, O., et al., 2022. Melting Relations of Ca–Mg Carbonates and Trace Element Signature of Carbonate Melts up to 9 GPa—a Proxy for Melting of Carbonated Mantle Lithologies. European Journal of Mineralogy, 34(5): 411–424. https://doi.org/10.5194/ejm-34-411-2022 |
Sverjensky, D. A., Stagno, V., Huang, F., 2014. Important Role for Organic Carbon in Subduction-Zone Fluids in the Deep Carbon Cycle. Nature Geoscience, 7: 909–913. https://doi.org/10.1038/ngeo2291 |
Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149: 79–90. https://doi.org/10.1016/j.lithos.2011.12.001 |
Tang, Z. Y., Sun, D. Y., Mao, A. Q., 2020. Geochemistry of Late Mesozoic Volcanic Rocks in the Central Great Xing'an Range, NE China: Petrogenesis and Crustal Growth in Comparison with Adjacent Areas. International Geology Review, 62(1): 1–28. https://doi.org/10.1080/00206814.2019.1590867 |
Thomsen, T. B., Schmidt, M. W., 2008. Melting of Carbonated Pelites at 2.5–5.0 GPa, Silicate-Carbonatite Liquid Immiscibility, and Potassium-Carbon Metasomatism of the Mantle. Earth and Planetary Science Letters, 267(1/2): 17–31. https://doi.org/10.1016/j.epsl.2007.11.027 |
Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76–79. https://doi.org/10.1038/nature16174 |
Tian, H. C., Yang, W., Li, S. G., et al., 2016. Origin of Low δ26Mg Basalts with EM-I Component: Evidence for Interaction between Enriched Lithosphere and Carbonated Asthenosphere. Geochimica et Cosmochimica Acta, 188: 93–105. https://doi.org/10.1016/j.gca.2016.05.021 |
Wang, F., Zhou, X. H., Zhang, L. C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1/2): 179–198. https://doi.org/10.1016/j.epsl.2006.09.007 |
Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022 |
Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019 |
Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 1998. The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds. Geodynamics Series. Washington, D. C. : American Geophysical Union: 167–195. https://doi.org/10.1029/gd027p0167 |
Yang, W. B., Niu, H. C., Cheng, L. R., et al., 2015. Geochronology, Geochemistry and Geodynamic Implications of the Late Mesozoic Volcanic Rocks in the Southern Great Xing'an Mountains, NE China. Journal of Asian Earth Sciences, 113: 454–470. https://doi.org/10.1016/j.jseaes.2014.12.002 |
Yang, W., Teng, F. Z., Zhang, H. F., et al., 2012. Magnesium Isotopic Systematics of Continental Basalts from the North China Craton: Implications for Tracing Subducted Carbonate in the Mantle. Chemical Geology, 328: 185–194. https://doi.org/10.1016/j.chemgeo.2012.05.018 |
Yaxley, G. M., Brey, G. P., 2004. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 146(5): 606–619. https://doi.org/10.1007/s00410-003-0517-3 |
Ying, J. F., Zhou, X. H., Zhang, L. C., et al., 2010. Geochronological and Geochemical Investigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing'an Range and Their Tectonic Implications. International Journal of Earth Sciences, 99(2): 357–378. https://doi.org/10.1007/s00531-008-0395-z |
Zhang, C., Ma, C. Q., Liao, Q. N., et al., 2011. Implications of Subduction and Subduction Zonemigration of the Paleo-Pacific Plate Beneath Eastern North China, Based on Distribution, Geochronology, and Geochemistry of Late Mesozoic Volcanic Rocks. International Journal of Earth Sciences, 100(7): 1665–1684. https://doi.org/10.1007/s00531-010-0582-6 |
Zhang, J. H., Ge, W. C., Wu, F. Y., et al., 2008. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China. Lithos, 102(1/2): 138–157. https://doi.org/10.1016/j.lithos.2007.08.011 |
Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3/4): 197–206. https://doi.org/10.1016/j.pepi.2008.11.009 |
Zhou, X. H., Armstrong, R. L., 1982. Cenozoic Volcanic Rocks of Eastern China—Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 58(3): 301–329. https://doi.org/10.1016/0012-821X(82)90083-8 |
Zhou, Z. H., Meng, Q. R., Zhu, R. X., et al., 2021. Spatiotemporal Evolution of the Jehol Biota: Responses to the North China Craton Destruction in the Early Cretaceous. Proceedings of the National Academy of Sciences of the United States of America, 118(34): e2107859118. https://doi.org/10.1073/pnas.2107859118 |
Zou, Z. Q., Wang, Z. C., Wang, X. J., et al., 2024. Calcium Isotopic Compositions of Eclogite Melts and Negligible Modification during Reaction with Lithospheric Mantle. Geochimica et Cosmochimica Acta, 367: 58–71. https://doi.org/10.1016/j.gca.2023.12.031 |