Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 1
Feb 2025
Turn off MathJax
Article Contents
Chao Zhang, Hongxu Pu, Jianqiang Liu, Xiaojun Wang, Wenqiang Yang, Zhenbing She, Shitou Wu, Gang Zeng, Lihui Chen, Francois Holtz. Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing'an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate. Journal of Earth Science, 2025, 36(1): 364-372. doi: 10.1007/s12583-024-0135-8
Citation: Chao Zhang, Hongxu Pu, Jianqiang Liu, Xiaojun Wang, Wenqiang Yang, Zhenbing She, Shitou Wu, Gang Zeng, Lihui Chen, Francois Holtz. Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing'an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate. Journal of Earth Science, 2025, 36(1): 364-372. doi: 10.1007/s12583-024-0135-8

Coexisting Carbonatite and Silicate Melt Inclusions in the Cretaceous Volcanic Rock from the Central Great Xing'an Range, Northeast China: Evidence for Recycled Carbonate from Subducted Paleo-Pacific Plate

doi: 10.1007/s12583-024-0135-8
More Information
  • Corresponding author: Chao Zhang, zhangchao@nwu.edu.cn
  • Received Date: 19 Nov 2024
  • Accepted Date: 05 Dec 2024
  • Available Online: 10 Feb 2025
  • Issue Publish Date: 28 Feb 2025
  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S6, Tables S1–S7) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0135-8.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Berkesi, M., Bali, E., Bodnar, R. J., et al., 2020. Carbonatite and Highly Peralkaline Nephelinite Melts from Oldoinyo Lengai Volcano, Tanzania: The Role of Natrite-Normative Fluid Degassing. Gondwana Research, 85: 76–83. https://doi.org/10.1016/j.gr.2020.03.013
    Berndt, J., Klemme, S., 2022. Origin of Carbonatites-Liquid Immiscibility Caught in the Act. Nature Communications, 13(1): 2892. https://doi.org/10.1038/s41467-022-30500-7
    Carter, L. B., Dasgupta, R., 2015. Hydrous Basalt-Limestone Interaction at Crustal Conditions: Implications for Generation of Ultracalcic Melts and Outflux of CO2 at Volcanic Arcs. Earth and Planetary Science Letters, 427: 202–214. https://doi.org/10.1016/j.epsl.2015.06.053
    Charlier, B., Grove, T. L., 2012. Experiments on Liquid Immiscibility along Tholeiitic Liquid Lines of Descent. Contributions to Mineralogy and Petrology, 164(1): 27–44. https://doi.org/10.1007/s00410-012-0723-y
    Chen, C. F., Förster, M. W., Foley, S. F., et al., 2023. Carbonate-Rich Crust Subduction Drives the Deep Carbon and Chlorine Cycles. Nature, 620(7974): 576–581. https://doi.org/10.1038/s41586-023-06211-4
    Chen, W., Kamenetsky, V. S., Simonetti, A., 2013. Evidence for the Alkaline Nature of Parental Carbonatite Melts at Oka Complex in Canada. Nature Communications, 4(1): 2687. https://doi.org/10.1038/ncomms3687
    Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1–13. https://doi.org/10.1016/j.epsl.2010.06.039
    Dasgupta, R., Hirschmann, M. M., Smith, N. D., 2007. Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 48(11): 2093–2124. https://doi.org/10.1093/petrology/egm053
    Dasgupta, R., Hirschmann, M. M., Stalker, K., 2006. Immiscible Transition from Carbonate-Rich to Silicate-Rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-Undersaturated Ocean Island Lavas. Journal of Petrology, 47(4): 647–671. https://doi.org/10.1093/petrology/egi088
    Dasgupta, R., Mallik, A., Tsuno, K., et al., 2013. Carbon-Dioxide-Rich Silicate Melt in the Earth's Upper Mantle. Nature, 493(7431): 211–215. https://doi.org/10.1038/nature11731
    Dong, Y., Ge, W. C., Yang, H., et al., 2014. Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing'an Range, NE China, and Its Tectonic Implications. Lithos, 205: 168–184. https://doi.org/10.1016/j.lithos.2014.07.004
    Eguchi, J., Dasgupta, R., 2018. A CO2 Solubility Model for Silicate Melts from Fluid Saturation to Graphite or Diamond Saturation. Chemical Geology, 487: 23–38. https://doi.org/10.1016/j.chemgeo.2018.04.012
    Erdmann, S., Chen, L. H., Liu, J. Q., et al., 2019. Hot, Volatile-Poor, and Oxidized Magmatism above the Stagnant Pacific Plate in Eastern China in the Cenozoic. Geochemistry, Geophysics, Geosystems, 20(11): 4849–4868. https://doi.org/10.1029/2019gc008425
    Fischer, L. A., Wang, M., Charlier, B., et al., 2016. Immiscible Iron- and Silica-Rich Liquids in the Upper Zone of the Bushveld Complex. Earth and Planetary Science Letters, 443: 108–117. https://doi.org/10.1016/j.epsl.2016.03.016
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892–897. https://doi.org/10.1038/nature03162
    Gerbode, C., Dasgupta, R., 2010. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2·9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 51(10): 2067–2088. https://doi.org/10.1093/petrology/egq049
    Grassi, D., Schmidt, M. W., 2011. Melting of Carbonated Pelites at 8–13 GPa: Generating K-Rich Carbonatites for Mantle Metasomatism. Contributions to Mineralogy and Petrology, 162(1): 169–191. https://doi.org/10.1007/s00410-010-0589-9
    Guzmics, T., Berkesi, M., Bodnar, R. J., et al., 2019. Natrocarbonatites: A Hidden Product of Three-Phase Immiscibility. Geology, 47(6): 527–530. https://doi.org/10.1130/g46125.1
    Guzmics, T., Mitchell, R. H., Szabó, C., et al., 2011. Carbonatite Melt Inclusions in Coexisting Magnetite, Apatite and Monticellite in Kerimasi Calciocarbonatite, Tanzania: Melt Evolution and Petrogenesis. Contributions to Mineralogy and Petrology, 161(2): 177–196. https://doi.org/10.1007/s00410-010-0525-z
    Guzmics, T., Mitchell, R. H., Szabó, C., et al., 2012. Liquid Immiscibility between Silicate, Carbonate and Sulfide Melts in Melt Inclusions Hosted in Co-Precipitated Minerals from Kerimasi Volcano (Tanzania): Evolution of Carbonated Nephelinitic Magma. Contributions to Mineralogy and Petrology, 164(1): 101–122. https://doi.org/10.1007/s00410-012-0728-6
    Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1/2): 357–368. https://doi.org/10.1016/S0012-821X(03)00361-3
    Hou, T., Charlier, B., Holtz, F., et al., 2018. Immiscible Hydrous Fe-Ca-P Melt and the Origin of Iron Oxide-Apatite Ore Deposits. Nature Communications, 9(1): 1415. https://doi.org/10.1038/s41467-018-03761-4
    Huang, H., Wang, T., Guo, L., et al., 2024. Crustal Modification Influenced by Multiple Convergent Systems: Insights from Mesozoic Magmatism in Northeastern China. Earth-Science Reviews, 252: 104737. https://doi.org/10.1016/j.earscirev.2024.104737
    Ji, Z., Ge, W. C., Wang, Q. H., et al., 2016. Petrogenesis of Early Cretaceous Volcanic Rocks of the Manketouebo Formation in the Wuchagou Region, Central Great Xing'an Range, NE China, and Tectonic Implications: Geochronological, Geochemical, and Hf Isotopic Evidence. International Geology Review, 58(5): 556–573. https://doi.org/10.1080/00206814.2015.1095132
    Ji, Z., Meng, Q. A., Wan, C. B., et al., 2019. Geodynamic Evolution of Flat-Slab Subduction of Paleo-Pacific Plate: Constraints from Jurassic Adakitic Lavas in the Hailar Basin, NE China. Tectonics, 38(12): 4301–4319. https://doi.org/10.1029/2019tc005687
    Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., et al., 2013. Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 54(8): 1555–1583. https://doi.org/10.1093/petrology/egt023
    Kiseeva, E. S., Yaxley, G. M., Hermann, J., et al., 2012. An Experimental Study of Carbonated Eclogite at 3.5–5.5 GPa—Implications for Silicate and Carbonate Metasomatism in the Cratonic Mantle. Journal of Petrology, 53(4): 727–759. https://doi.org/10.1093/petrology/egr078
    Kjarsgaard, B. A., Hamilton, D. L., Peterson, T. D., 1995. Peralkaline Nephelinite/Carbonatite Liquid Immiscibility: Comparison of Phase Compositions in Experiments and Natural Lavas from Oldoinyo Lengai. In: Bell, K., Keller, J., eds., Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. Springer Berlin Heidelberg, Berlin, Heidelberg. 163–190. https://doi.org/10.1007/978-3-642-79182-6_13
    Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111–120. https://doi.org/10.1093/nsr/nww070
    Litasov, K., Ohtani, E., 2010. The Solidus of Carbonated Eclogite in the System CaO-Al2O3-MgO-SiO2-Na2O-CO2 to 32GPa and Carbonatite Liquid in the Deep Mantle. Earth and Planetary Science Letters, 295(1/2): 115–126. https://doi.org/10.1016/j.epsl.2010.03.030
    Liu, M., Zhang, D., Di, Y. J., et al., 2022. Protracted Extraction of High-Silica Melts from an Upper-Crustal Magma Reservoir Recorded by the Wuchagou Volcanic Rocks in Central Great Xing'an Range, NE China. Lithos, 422: 106752. https://doi.org/10.1016/j.lithos.2022.106752
    Liu, S. G., Teng, F. Z., Yang, W., et al., 2011. High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton. Earth and Planetary Science Letters, 308(1/2): 131–140. https://doi.org/10.1016/j.epsl.2011.05.047
    Liu, S. G., Wang, Z. Z., Li, S. G., et al., 2016. Zinc Isotope Evidence for a Large-Scale Carbonated Mantle beneath Eastern China. Earth and Planetary Science Letters, 444: 169–178. https://doi.org/10.1016/j.epsl.2016.03.051
    Ma, Q., Xu, Y. G., 2021. Magmatic Perspective on Subduction of Paleo-Pacific Plate and Initiation of Big Mantle Wedge in East Asia. Earth-Science Reviews, 213: 103473. https://doi.org/10.1016/j.earscirev.2020.103473
    Ma, Q., Zhong, Y. T., Yin, Q. Z., et al., 2024. High-Resolution Chronostratigraphy of Late Mesozoic Sequences in Northern North China: Implications for the Linkages among Intracontinental Orogeny, Volcanism, Jehol Biota, and Pacific Plate Subduction. Geology, 52(1): 45–50. https://doi.org/10.1130/g51535.1
    Meng, Q. R., 2003. What Drove Late Mesozoic Extension of the Northern China–Mongolia Tract?. Tectonophysics, 369(3/4): 155–174. https://doi.org/10.1016/S0040-1951(03)00195-1
    Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343–352. https://doi.org/10.1038/s41586-019-1643-z
    Sieber, M. J., Wilke, M., Appelt, O., et al., 2022. Melting Relations of Ca–Mg Carbonates and Trace Element Signature of Carbonate Melts up to 9 GPa—a Proxy for Melting of Carbonated Mantle Lithologies. European Journal of Mineralogy, 34(5): 411–424. https://doi.org/10.5194/ejm-34-411-2022
    Sverjensky, D. A., Stagno, V., Huang, F., 2014. Important Role for Organic Carbon in Subduction-Zone Fluids in the Deep Carbon Cycle. Nature Geoscience, 7: 909–913. https://doi.org/10.1038/ngeo2291
    Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149: 79–90. https://doi.org/10.1016/j.lithos.2011.12.001
    Tang, Z. Y., Sun, D. Y., Mao, A. Q., 2020. Geochemistry of Late Mesozoic Volcanic Rocks in the Central Great Xing'an Range, NE China: Petrogenesis and Crustal Growth in Comparison with Adjacent Areas. International Geology Review, 62(1): 1–28. https://doi.org/10.1080/00206814.2019.1590867
    Thomsen, T. B., Schmidt, M. W., 2008. Melting of Carbonated Pelites at 2.5–5.0 GPa, Silicate-Carbonatite Liquid Immiscibility, and Potassium-Carbon Metasomatism of the Mantle. Earth and Planetary Science Letters, 267(1/2): 17–31. https://doi.org/10.1016/j.epsl.2007.11.027
    Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76–79. https://doi.org/10.1038/nature16174
    Tian, H. C., Yang, W., Li, S. G., et al., 2016. Origin of Low δ26Mg Basalts with EM-I Component: Evidence for Interaction between Enriched Lithosphere and Carbonated Asthenosphere. Geochimica et Cosmochimica Acta, 188: 93–105. https://doi.org/10.1016/j.gca.2016.05.021
    Wang, F., Zhou, X. H., Zhang, L. C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range (NE China): Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251(1/2): 179–198. https://doi.org/10.1016/j.epsl.2006.09.007
    Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31–47. https://doi.org/10.1144/0016-76492006-022
    Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2): 103–119. https://doi.org/10.1016/j.epsl.2005.02.019
    Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 1998. The Nature of the Cenozoic Lithosphere at Nushan, Eastern China. Flower, M. F. J., Chung, S. L., Lo, C. H., et al., eds. Geodynamics Series. Washington, D. C. : American Geophysical Union: 167–195. https://doi.org/10.1029/gd027p0167
    Yang, W. B., Niu, H. C., Cheng, L. R., et al., 2015. Geochronology, Geochemistry and Geodynamic Implications of the Late Mesozoic Volcanic Rocks in the Southern Great Xing'an Mountains, NE China. Journal of Asian Earth Sciences, 113: 454–470. https://doi.org/10.1016/j.jseaes.2014.12.002
    Yang, W., Teng, F. Z., Zhang, H. F., et al., 2012. Magnesium Isotopic Systematics of Continental Basalts from the North China Craton: Implications for Tracing Subducted Carbonate in the Mantle. Chemical Geology, 328: 185–194. https://doi.org/10.1016/j.chemgeo.2012.05.018
    Yaxley, G. M., Brey, G. P., 2004. Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites. Contributions to Mineralogy and Petrology, 146(5): 606–619. https://doi.org/10.1007/s00410-003-0517-3
    Ying, J. F., Zhou, X. H., Zhang, L. C., et al., 2010. Geochronological and Geochemical Investigation of the Late Mesozoic Volcanic Rocks from the Northern Great Xing'an Range and Their Tectonic Implications. International Journal of Earth Sciences, 99(2): 357–378. https://doi.org/10.1007/s00531-008-0395-z
    Zhang, C., Ma, C. Q., Liao, Q. N., et al., 2011. Implications of Subduction and Subduction Zonemigration of the Paleo-Pacific Plate Beneath Eastern North China, Based on Distribution, Geochronology, and Geochemistry of Late Mesozoic Volcanic Rocks. International Journal of Earth Sciences, 100(7): 1665–1684. https://doi.org/10.1007/s00531-010-0582-6
    Zhang, J. H., Ge, W. C., Wu, F. Y., et al., 2008. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China. Lithos, 102(1/2): 138–157. https://doi.org/10.1016/j.lithos.2007.08.011
    Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3/4): 197–206. https://doi.org/10.1016/j.pepi.2008.11.009
    Zhou, X. H., Armstrong, R. L., 1982. Cenozoic Volcanic Rocks of Eastern China—Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 58(3): 301–329. https://doi.org/10.1016/0012-821X(82)90083-8
    Zhou, Z. H., Meng, Q. R., Zhu, R. X., et al., 2021. Spatiotemporal Evolution of the Jehol Biota: Responses to the North China Craton Destruction in the Early Cretaceous. Proceedings of the National Academy of Sciences of the United States of America, 118(34): e2107859118. https://doi.org/10.1073/pnas.2107859118
    Zou, Z. Q., Wang, Z. C., Wang, X. J., et al., 2024. Calcium Isotopic Compositions of Eclogite Melts and Negligible Modification during Reaction with Lithospheric Mantle. Geochimica et Cosmochimica Acta, 367: 58–71. https://doi.org/10.1016/j.gca.2023.12.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(11) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return