Albrecht, J., Peters, M. K., Becker, J. N., et al., 2021. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology & Evolution, 5(12): 1582-1593, https://doi.org/10.1038/s41559-021-01550-9 |
Anderson, T.-H.,Domsch, K. H., 2010. Soil microbial biomass: The eco-physiological approach. Soil Biology and Biochemistry, 42(12): 2039-2043, https://doi.org/10.1016/j.soilbio.2010.06.026 |
Auguet, J.-C., Barberan, A.,Casamayor, E. O., 2009. Global ecological patterns in uncultured Archaea. The ISME Journal, 4(2): 182-190, http://dx.doi.org/10.1038/ismej.2009.109 |
Benjamini, Y.,Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1): 289-300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x |
Bolyen, E., Rideout, J. R., Dillon, M. R., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852-857, https://doi.org/10.1038/s41587-019-0209-9 |
Bulseco, A. N., Giblin, A. E., Tucker, J., et al., 2019. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Global Change Biology, 25(10): 3224-3241, https://doi.org/10.1111/gcb.14726 |
Callahan, B. J., McMurdie, P. J., Rosen, M. J., et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7): 581-583, https://doi.org/10.1038/nmeth.3869 |
Chen, Y., Liu, F., Kang, L., et al., 2021. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 27(14): 3218-3229, https://doi.org/10.1111/gcb.15487 |
Cheng, J., Xu, L., Wu, J., et al., 2022. Responses of ecosystem respiration and methane fluxes to warming and nitrogen addition in a subtropical littoral wetland. CATENA, 215: 106335, https://doi.org/10.1016/j.catena.2022.106335 |
Dai, Z., Liu, G., Chen, H., et al., 2020. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal, 14(3): 757-770, https://doi.org/10.1038/s41396-019-0567-9 |
DeForest, J. L., Zak, D. R., Pregitzer, K. S., et al., 2004. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 36(6): 965-971, https://doi.org/10.1016/j.soilbio.2004.02.011 |
Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., et al., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2): 210-220, https://doi.org/10.1038/s41559-019-1084-y |
Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. Journal of Geophysical Research: Biogeosciences, 113(G4): G04041, https://doi.org/10.1029/2007JG000637 |
Edgar, R. C., 2016. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv: 074161, https://doi.org/10.1101/074161 |
Elser, J. J., Andersen, T., Baron, J. S., et al., 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954): 835-837, https://doi.org/10.1126/science.1176199 |
Feng, X., Qin, S., Zhang, D., et al., 2022. Nitrogen input enhances microbial carbon use efficiency by altering plant–microbe–mineral interactions. Global Change Biology, 28(16): 4845-4860, https://doi.org/10.1111/gcb.16229 |
Gao, Y., Jia, Y., Yu, G., et al., 2019. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China. Journal of Cleaner Production, 208: 530-540, https://doi.org/10.1016/j.jclepro.2018.10.137 |
Gudasz, C., Bastviken, D., Steger, K., et al., 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305): 478-481, https://doi.org/10.1038/nature09186 |
Harms, H., Schlosser, D.,Wick, L. Y., 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9: 177, https://doi.org/10.1038/nrmicro2519 |
Heathcote, A. J., Anderson, N. J., Prairie, Y. T., et al., 2015. Large increases in carbon burial in northern lakes during the Anthropocene. Nature Communications, 6(1): 10016, https://doi.org/10.1038/ncomms10016 |
Herlemann, D. P., Labrenz, M., Jürgens, K., et al., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10): 1571-1579, https://doi.org/10.1038/ismej.2011.41 |
Janssens, I. A., Dieleman, W., Luyssaert, S., et al., 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5): 315-322, https://doi.org/10.1038/ngeo844 |
6968-4 |
Jia, J., Sun, K., Lü, S., et al., 2022. Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years. Science Bulletin, 67(22): 2345-2357, https://doi.org/10.1016/j.scib.2022.10.023 |
Jiang, H., Dong, H., Yu, B., et al., 2009. Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 26(3): 199-211, https://doi.org/10.1080/01490450902744004 |
Jiang, H., Huang, J., Li, L., et al., 2021. Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of The Total Environment, 765: 142675, https://doi.org/10.1016/j.scitotenv.2020.142675 |
Jochum, M., Fischer, M., Isbell, F., et al., 2020. The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology & Evolution, 4(11): 1485-1494, https://doi.org/10.1038/s41559-020-1280-9 |
Lai, J., Zou, Y., Zhang, J., et al., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13(4): 782-788, https://doi.org/10.1111/2041-210X.13800 |
Lai, J., Zou, Y., Zhang, S., et al., 2022. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15(6): 1302-1307, https://doi.org/10.1093/jpe/rtac096 |
Liu, Q., Yang, J., Wang, B., et al., 2022. Influence of salinity on the diversity and composition of carbohydrate metabolism, nitrogen and sulfur cycling genes in lake surface sediments. Frontiers in Microbiology, 13: 1019010, https://doi.org/10.3389/fmicb.2022.1019010 |
Liu, W., Liu, L., Yang, X., et al., 2021. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 27(16): 3939-3950, https://doi.org/10.1111/gcb.15681 |
Liu, Y., Priscu, J. C., Xiong, J., et al., 2016. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiology Ecology, 92(3): fiw033, http://dx.doi.org/10.1093/femsec/fiw033 |
Louca, S., Jacques, S. M. S., Pires, A. P. F., et al., 2016. High taxonomic variability despite stable functional structure across microbial communities. Nature Ecology & Evolution, 1: 0015, https://doi.org/10.1038/s41559-016-0015 |
Lozupone, C. A.,Knight, R., 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(27): 11436-11440, http://dx.doi.org/10.1073/pnas.0611525104 |
Lu, X., Vitousek, P. M., Mao, Q., et al., 2021. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2020790118, https://doi.org/10.1073/pnas.2020790118 |
Ma, X., Wang, T., Shi, Z., et al., 2022. Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity. Microbiome, 10(1): 112, https://doi.org/10.1186/s40168-022-01309-9 |
Malik, A. A., Puissant, J., Buckeridge, K. M., et al., 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9(1): 3591, https://doi.org/10.1038/s41467-018-05980-1 |
McCrackin, M. L.,Elser, J. J., 2010. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology, 91(2): 528-539, https://doi.org/10.1890/08-2210.1 |
McCrackin, M. L.,Elser, J. J., 2011. Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition. Global Biogeochemical Cycles, 25(4), https://doi.org/10.1029/2010GB003897 |
Mendonça, R., Müller, R. A., Clow, D., et al., 2017. Organic carbon burial in global lakes and reservoirs. Nature Communications, 8(1): 1694, https://doi.org/10.1038/s41467-017-01789-6 |
Nottingham, A. T., Turner, B. L., Stott, A. W., et al., 2015. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry, 80: 26-33, https://doi.org/10.1016/j.soilbio.2014.09.012 |
Oren, A., 2011. Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology, 13(8): 1908-1923, http://dx.doi.org/10.1111/j.1462-2920.2010.02365.x |
Pan, C., Liu, C., Zhao, H., et al., 2013. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. European Journal of Soil Biology, 55: 13-19, https://doi.org/10.1016/j.ejsobi.2012.09.009 |
Pascault, N., Ranjard, L., Kaisermann, A., et al., 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems, 16(5): 810-822, https://doi.org/10.1007/s10021-013-9650-7 |
Pilla, R. M., Griffiths, N. A., Gu, L., et al., 2022. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going? Global Change Biology, 28(19): 5601-5629, https://doi.org/10.1111/gcb.16324 |
Reed, H. E.,Martiny, J. B., 2013. Microbial composition affects the functioning of estuarine sediments. The ISME Journal, 7(4): 868-879, https://doi.org/10.1038/ismej.2012.154 |
Riggs, C. E.,Hobbie, S. E., 2016. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 99: 54-65, https://doi.org/10.1016/j.soilbio.2016.04.023 |
Rivkin, R. B.,Legendre, L., 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science, 291(5512): 2398-2400, https://doi.org/10.1126/science.291.5512.2398 |
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., et al., 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11): 1252-1264, https://doi.org/10.1111/j.1461-0248.2008.01245.x |
Song, C., Luo, S., Liu, K., et al., 2022. Widespread declines in water salinity of the endorheic Tibetan Plateau lakes. Environmental Research Communications, 4(9): 091002, https://dx.doi.org/10.1088/2515-7620/ac9351 |
Spohn, M.,Chodak, M., 2015. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biology and Biochemistry, 81: 128-133, https://doi.org/10.1016/j.soilbio.2014.11.008 |
Sun, M., Li, M., Zhou, Y., et al., 2023. Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands. Science of The Total Environment, 856: 158939, https://doi.org/10.1016/j.scitotenv.2022.158939 |
Tian, J., Dungait, J. A. J., Lu, X., et al., 2019. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology, 25(10): 3267-3281, https://doi.org/10.1111/gcb.14750 |
Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2): 2298-2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298 |
Wang, X., Feng, J., Ao, G., et al., 2023. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biology and Biochemistry, 179: 108982, https://doi.org/10.1016/j.soilbio.2023.108982 |
Wen, S., Hu, A., Jiang, S., et al., 2024. Temperature sensitivity of organic carbon decomposition in lake sediments is mediated by chemodiversity. Global Change Biology, 30(2): e17158, https://doi.org/10.1111/gcb.17158 |
Willis, R. B., Montgomery, M. E.,Allen, P. R., 1996. Improved method for manual, colorimetric determination of total Kjeldahl nitrogen using salicylate. Journal of Agricultural and Food Chemistry, 44(7): 1804-1807, https://doi.org/10.1021/jf950522b |
Woolway, R. I., Kraemer, B. M., Lenters, J. D., et al., 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8): 388-403, https://doi.org/10.1038/s43017-020-0067-5 |
Wu, Q. L., Zwart, G., Schauer, M., et al., 2006. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Applied and Environmental Microbiology, 72(8): 5478-5485, http://dx.doi.org/10.1128/aem.00767-06 |
Wu, Z., Li, J., Sun, Y., et al., 2022. Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nature Geoscience, 15(6): 464-468, https://doi.org/10.1038/s41561-022-00958-7 |
Wurtsbaugh, W. A., Miller, C., Null, S. E., et al., 2017. Decline of the world's saline lakes. Nature Geoscience, 10(11): 816-821, https://doi.org/10.1038/ngeo3052 |
Xu, C., Xu, X., Ju, C., et al., 2021. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Global Change Biology, 27(6): 1170-1180, https://doi.org/10.1111/gcb.15489 |
Xun, F., Li, B., Chen, H., et al., 2022. Effect of salinity in alpine lakes on the southern Tibetan Plateau on greenhouse gas diffusive fluxes. Journal of Geophysical Research: Biogeosciences, 127(7): e2022JG006984, https://doi.org/10.1029/2022JG006984 |
Yan, F., Sillanpää, M., Kang, S., et al., 2018. Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. Journal of Geophysical Research: Biogeosciences, 123(7): 2091-2103, https://doi.org/10.1029/2017JG004379 |
Yan, L.,Zheng, M., 2015. Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010. Geomorphology, 246: 68-78, https://doi.org/10.1016/j.geomorph.2015.06.006 |
Yang, G., Peng, Y., Abbott, B. W., et al., 2021. Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Global Change Biology, 27(22): 5818-5830, https://doi.org/10.1111/gcb.15845 |
Yang, J., Jiang, H., Wu, G., et al., 2016. Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of western China. Frontiers in Microbiology, 7: 1782, https://doi.org/10.3389/fmicb.2016.01782 |
Yang, J., Ma, L. a., Jiang, H., et al., 2016. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Scientific Reports, 6: 25078, https://doi.org/10.1038/srep25078 |
Yang, J., Jiang, H., Wu, G., et al., 2018. Phylum-level archaeal distributions in the sediments of chinese lakes with a large range of salinity. Geomicrobiology Journal, 35(5): 404-410, https://doi.org/10.1080/01490451.2017.1382611 |
525-9 |
Yang, J., Chen, Y., She, W., et al., 2020. Deciphering linkages between microbial communities and priming effects in lake sediments with different salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611, https://doi.org/10.1029/2019JG005611 |
20-0689-0 |
Yang, J., Jiang, H., Sun, X., et al., 2020. Minerals play key roles in driving prokaryotic and fungal communities in the surface sediments of the Qinghai-Tibetan lakes. FEMS Microbiology Ecology, 96(4): fiaa035, https://doi.org/10.1093/femsec/fiaa035 |
Yang, J., Jiang, H., Sun, X., et al., 2021. Distinct co-occurrence patterns of prokaryotic community between the waters and sediments in lakes with different salinity. FEMS Microbiology Ecology, 97(1): fiaa234, https://doi.org/10.1093/femsec/fiaa234 |
Yang, J., Han, M., Zhao, Z., et al., 2022. Microbial response to multiple-level addition of grass organic matter in lake sediments with different salinity. FEMS Microbiology Ecology, 98(4): fiac046, https://doi.org/10.1093/femsec/fiac046 |
Yang, J., Han, M., Zhao, Z., et al., 2022. Positive priming effects induced by allochthonous and autochthonous organic matter input in the lake sediments with different salinity. Geophysical Research Letters, 49(5): e2021GL096133, https://doi.org/10.1029/2021GL096133 |
Yang, J., Han, M., Wang, B., et al., 2023. Predominance of positive priming effects induced by algal and terrestrial organic matter input in saline lake sediments. Geochimica et Cosmochimica Acta, 349: 126-134, https://doi.org/10.1016/j.gca.2023.04.005 |
Yao, F., Livneh, B., Rajagopalan, B., et al., 2023. Satellites reveal widespread decline in global lake water storage. Science, 380(6646): 743-749, https://doi.org/10.1126/science.abo2812 |
Ye, C., Chen, D., Hall, S. J., et al., 2018. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters, 21(8): 1162-1173, https://doi.org/10.1111/ele.13083 |
Zhao, B., Xing, P.,Wu, Q. L., 2021. Interactions between bacteria and fungi in macrophyte leaf litter decomposition. Environmental Microbiology, 23(2): 1130-1144, https://doi.org/10.1111/1462-2920.15261 |