Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Turn off MathJax
Article Contents
Jian Yang, Bingfu Yao, Min Cai, Mingxian Han, Zenghui Wu, Pingping Zhang, Haiyi Xiao, Jibin Han, Xiying Zhang, Hongchen Jiang. Salinity change overrides nitrogen increase in affecting microbial abundance, diversity, community composition and organic carbon mineralization in saline lakes. Journal of Earth Science. doi: 10.1007/s12583-024-0139-4
Citation: Jian Yang, Bingfu Yao, Min Cai, Mingxian Han, Zenghui Wu, Pingping Zhang, Haiyi Xiao, Jibin Han, Xiying Zhang, Hongchen Jiang. Salinity change overrides nitrogen increase in affecting microbial abundance, diversity, community composition and organic carbon mineralization in saline lakes. Journal of Earth Science. doi: 10.1007/s12583-024-0139-4

Salinity change overrides nitrogen increase in affecting microbial abundance, diversity, community composition and organic carbon mineralization in saline lakes

doi: 10.1007/s12583-024-0139-4
Funds:

This research was supported by grants from the National Natural Science Foundation of China (Grant Nos. 42272356, 92251304), the Kunlun Talented People of Qinghai Province, High-end Innovation and Entrepreneurship talents (Grant to Jiang Hongchen), the Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes (The Science and Technology Plan Project of Qinghai Province Incentive Fund, grant No. 2024-KFKT-A08), the 111 Program (State Administration of Foreign Experts Affairs &

the Ministry of Education of China, grant B18049), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0805), the Science and Technology Plan Project of Qinghai Province (Grant No. 2022-ZJ-Y08), and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

  • Received Date: 04 Dec 2024
    Available Online: 06 Jan 2025
  • Saline lakes are simultaneously affected by salinity change due to climate change and increased nitrogen (N) input from human activities and atmosphere deposition. However, it is poorly known about how the salinity change and increased N input synchronously influence microbial community and its associated organic carbon mineralization in saline lakes. Here, lake sediments with different salinity (0.7–376.3 g L-1) were employed to establish microcosm experiments, supplemented with different concentrations of NH4NO3, followed by incubation for 6 months and subsequent analyses of geochemistry and microbial community composition of the incubated sediments. The results showed that salinity change relative to nitrogen increase had a greater impact on microbial abundance, diversity, community structure and organic carbon mineralization in the studied lake sediments. Salinity increase significantly (P <0.05) reduced CO2 production rates and bacterial diversity in lake sediments with different amounts of N additions, and the magnitude of the effect of salinity decreased with increasing N. Taken together, our results provide a more comprehensive understanding of the synchronous effects of salinity changes and increased N input on microbial abundance, diversity, community structure, and organic carbon mineralization in lakes with a wide salinity range.

     

  • loading
  • Albrecht, J., Peters, M. K., Becker, J. N., et al., 2021. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology & Evolution, 5(12): 1582-1593, https://doi.org/10.1038/s41559-021-01550-9
    Anderson, T.-H.,Domsch, K. H., 2010. Soil microbial biomass: The eco-physiological approach. Soil Biology and Biochemistry, 42(12): 2039-2043, https://doi.org/10.1016/j.soilbio.2010.06.026
    Auguet, J.-C., Barberan, A.,Casamayor, E. O., 2009. Global ecological patterns in uncultured Archaea. The ISME Journal, 4(2): 182-190, http://dx.doi.org/10.1038/ismej.2009.109
    Benjamini, Y.,Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1): 289-300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
    Bolyen, E., Rideout, J. R., Dillon, M. R., et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8): 852-857, https://doi.org/10.1038/s41587-019-0209-9
    Bulseco, A. N., Giblin, A. E., Tucker, J., et al., 2019. Nitrate addition stimulates microbial decomposition of organic matter in salt marsh sediments. Global Change Biology, 25(10): 3224-3241, https://doi.org/10.1111/gcb.14726
    Callahan, B. J., McMurdie, P. J., Rosen, M. J., et al., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7): 581-583, https://doi.org/10.1038/nmeth.3869
    Chen, Y., Liu, F., Kang, L., et al., 2021. Large-scale evidence for microbial response and associated carbon release after permafrost thaw. Global Change Biology, 27(14): 3218-3229, https://doi.org/10.1111/gcb.15487
    Cheng, J., Xu, L., Wu, J., et al., 2022. Responses of ecosystem respiration and methane fluxes to warming and nitrogen addition in a subtropical littoral wetland. CATENA, 215: 106335, https://doi.org/10.1016/j.catena.2022.106335
    Dai, Z., Liu, G., Chen, H., et al., 2020. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal, 14(3): 757-770, https://doi.org/10.1038/s41396-019-0567-9
    DeForest, J. L., Zak, D. R., Pregitzer, K. S., et al., 2004. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest. Soil Biology and Biochemistry, 36(6): 965-971, https://doi.org/10.1016/j.soilbio.2004.02.011
    Delgado-Baquerizo, M., Reich, P. B., Trivedi, C., et al., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4(2): 210-220, https://doi.org/10.1038/s41559-019-1084-y
    Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 emissions from saline lakes: A global estimate of a surprisingly large flux. Journal of Geophysical Research: Biogeosciences, 113(G4): G04041, https://doi.org/10.1029/2007JG000637
    Edgar, R. C., 2016. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv: 074161, https://doi.org/10.1101/074161
    Elser, J. J., Andersen, T., Baron, J. S., et al., 2009. Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954): 835-837, https://doi.org/10.1126/science.1176199
    Feng, X., Qin, S., Zhang, D., et al., 2022. Nitrogen input enhances microbial carbon use efficiency by altering plant–microbe–mineral interactions. Global Change Biology, 28(16): 4845-4860, https://doi.org/10.1111/gcb.16229
    Gao, Y., Jia, Y., Yu, G., et al., 2019. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China. Journal of Cleaner Production, 208: 530-540, https://doi.org/10.1016/j.jclepro.2018.10.137
    Gudasz, C., Bastviken, D., Steger, K., et al., 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466(7305): 478-481, https://doi.org/10.1038/nature09186
    Harms, H., Schlosser, D.,Wick, L. Y., 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology, 9: 177, https://doi.org/10.1038/nrmicro2519
    Heathcote, A. J., Anderson, N. J., Prairie, Y. T., et al., 2015. Large increases in carbon burial in northern lakes during the Anthropocene. Nature Communications, 6(1): 10016, https://doi.org/10.1038/ncomms10016
    Herlemann, D. P., Labrenz, M., Jürgens, K., et al., 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10): 1571-1579, https://doi.org/10.1038/ismej.2011.41
    Janssens, I. A., Dieleman, W., Luyssaert, S., et al., 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5): 315-322, https://doi.org/10.1038/ngeo844
    6968-4
    Jia, J., Sun, K., Lü, S., et al., 2022. Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years. Science Bulletin, 67(22): 2345-2357, https://doi.org/10.1016/j.scib.2022.10.023
    Jiang, H., Dong, H., Yu, B., et al., 2009. Diversity and abundance of ammonia-oxidizing archaea and bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 26(3): 199-211, https://doi.org/10.1080/01490450902744004
    Jiang, H., Huang, J., Li, L., et al., 2021. Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of The Total Environment, 765: 142675, https://doi.org/10.1016/j.scitotenv.2020.142675
    Jochum, M., Fischer, M., Isbell, F., et al., 2020. The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology & Evolution, 4(11): 1485-1494, https://doi.org/10.1038/s41559-020-1280-9
    Lai, J., Zou, Y., Zhang, J., et al., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13(4): 782-788, https://doi.org/10.1111/2041-210X.13800
    Lai, J., Zou, Y., Zhang, S., et al., 2022. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15(6): 1302-1307, https://doi.org/10.1093/jpe/rtac096
    Liu, Q., Yang, J., Wang, B., et al., 2022. Influence of salinity on the diversity and composition of carbohydrate metabolism, nitrogen and sulfur cycling genes in lake surface sediments. Frontiers in Microbiology, 13: 1019010, https://doi.org/10.3389/fmicb.2022.1019010
    Liu, W., Liu, L., Yang, X., et al., 2021. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 27(16): 3939-3950, https://doi.org/10.1111/gcb.15681
    Liu, Y., Priscu, J. C., Xiong, J., et al., 2016. Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiology Ecology, 92(3): fiw033, http://dx.doi.org/10.1093/femsec/fiw033
    Louca, S., Jacques, S. M. S., Pires, A. P. F., et al., 2016. High taxonomic variability despite stable functional structure across microbial communities. Nature Ecology & Evolution, 1: 0015, https://doi.org/10.1038/s41559-016-0015
    Lozupone, C. A.,Knight, R., 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104(27): 11436-11440, http://dx.doi.org/10.1073/pnas.0611525104
    Lu, X., Vitousek, P. M., Mao, Q., et al., 2021. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118(16): e2020790118, https://doi.org/10.1073/pnas.2020790118
    Ma, X., Wang, T., Shi, Z., et al., 2022. Long-term nitrogen deposition enhances microbial capacities in soil carbon stabilization but reduces network complexity. Microbiome, 10(1): 112, https://doi.org/10.1186/s40168-022-01309-9
    Malik, A. A., Puissant, J., Buckeridge, K. M., et al., 2018. Land use driven change in soil pH affects microbial carbon cycling processes. Nature Communications, 9(1): 3591, https://doi.org/10.1038/s41467-018-05980-1
    McCrackin, M. L.,Elser, J. J., 2010. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecology, 91(2): 528-539, https://doi.org/10.1890/08-2210.1
    McCrackin, M. L.,Elser, J. J., 2011. Greenhouse gas dynamics in lakes receiving atmospheric nitrogen deposition. Global Biogeochemical Cycles, 25(4), https://doi.org/10.1029/2010GB003897
    Mendonça, R., Müller, R. A., Clow, D., et al., 2017. Organic carbon burial in global lakes and reservoirs. Nature Communications, 8(1): 1694, https://doi.org/10.1038/s41467-017-01789-6
    Nottingham, A. T., Turner, B. L., Stott, A. W., et al., 2015. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry, 80: 26-33, https://doi.org/10.1016/j.soilbio.2014.09.012
    Oren, A., 2011. Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology, 13(8): 1908-1923, http://dx.doi.org/10.1111/j.1462-2920.2010.02365.x
    Pan, C., Liu, C., Zhao, H., et al., 2013. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. European Journal of Soil Biology, 55: 13-19, https://doi.org/10.1016/j.ejsobi.2012.09.009
    Pascault, N., Ranjard, L., Kaisermann, A., et al., 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems, 16(5): 810-822, https://doi.org/10.1007/s10021-013-9650-7
    Pilla, R. M., Griffiths, N. A., Gu, L., et al., 2022. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going? Global Change Biology, 28(19): 5601-5629, https://doi.org/10.1111/gcb.16324
    Reed, H. E.,Martiny, J. B., 2013. Microbial composition affects the functioning of estuarine sediments. The ISME Journal, 7(4): 868-879, https://doi.org/10.1038/ismej.2012.154
    Riggs, C. E.,Hobbie, S. E., 2016. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 99: 54-65, https://doi.org/10.1016/j.soilbio.2016.04.023
    Rivkin, R. B.,Legendre, L., 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science, 291(5512): 2398-2400, https://doi.org/10.1126/science.291.5512.2398
    Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., et al., 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11): 1252-1264, https://doi.org/10.1111/j.1461-0248.2008.01245.x
    Song, C., Luo, S., Liu, K., et al., 2022. Widespread declines in water salinity of the endorheic Tibetan Plateau lakes. Environmental Research Communications, 4(9): 091002, https://dx.doi.org/10.1088/2515-7620/ac9351
    Spohn, M.,Chodak, M., 2015. Microbial respiration per unit biomass increases with carbon-to-nutrient ratios in forest soils. Soil Biology and Biochemistry, 81: 128-133, https://doi.org/10.1016/j.soilbio.2014.11.008
    Sun, M., Li, M., Zhou, Y., et al., 2023. Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands. Science of The Total Environment, 856: 158939, https://doi.org/10.1016/j.scitotenv.2022.158939
    Tian, J., Dungait, J. A. J., Lu, X., et al., 2019. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology, 25(10): 3267-3281, https://doi.org/10.1111/gcb.14750
    Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2): 2298-2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298
    Wang, X., Feng, J., Ao, G., et al., 2023. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biology and Biochemistry, 179: 108982, https://doi.org/10.1016/j.soilbio.2023.108982
    Wen, S., Hu, A., Jiang, S., et al., 2024. Temperature sensitivity of organic carbon decomposition in lake sediments is mediated by chemodiversity. Global Change Biology, 30(2): e17158, https://doi.org/10.1111/gcb.17158
    Willis, R. B., Montgomery, M. E.,Allen, P. R., 1996. Improved method for manual, colorimetric determination of total Kjeldahl nitrogen using salicylate. Journal of Agricultural and Food Chemistry, 44(7): 1804-1807, https://doi.org/10.1021/jf950522b
    Woolway, R. I., Kraemer, B. M., Lenters, J. D., et al., 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8): 388-403, https://doi.org/10.1038/s43017-020-0067-5
    Wu, Q. L., Zwart, G., Schauer, M., et al., 2006. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Applied and Environmental Microbiology, 72(8): 5478-5485, http://dx.doi.org/10.1128/aem.00767-06
    Wu, Z., Li, J., Sun, Y., et al., 2022. Imbalance of global nutrient cycles exacerbated by the greater retention of phosphorus over nitrogen in lakes. Nature Geoscience, 15(6): 464-468, https://doi.org/10.1038/s41561-022-00958-7
    Wurtsbaugh, W. A., Miller, C., Null, S. E., et al., 2017. Decline of the world's saline lakes. Nature Geoscience, 10(11): 816-821, https://doi.org/10.1038/ngeo3052
    Xu, C., Xu, X., Ju, C., et al., 2021. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Global Change Biology, 27(6): 1170-1180, https://doi.org/10.1111/gcb.15489
    Xun, F., Li, B., Chen, H., et al., 2022. Effect of salinity in alpine lakes on the southern Tibetan Plateau on greenhouse gas diffusive fluxes. Journal of Geophysical Research: Biogeosciences, 127(7): e2022JG006984, https://doi.org/10.1029/2022JG006984
    Yan, F., Sillanpää, M., Kang, S., et al., 2018. Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. Journal of Geophysical Research: Biogeosciences, 123(7): 2091-2103, https://doi.org/10.1029/2017JG004379
    Yan, L.,Zheng, M., 2015. Influence of climate change on saline lakes of the Tibet Plateau, 1973–2010. Geomorphology, 246: 68-78, https://doi.org/10.1016/j.geomorph.2015.06.006
    Yang, G., Peng, Y., Abbott, B. W., et al., 2021. Phosphorus rather than nitrogen regulates ecosystem carbon dynamics after permafrost thaw. Global Change Biology, 27(22): 5818-5830, https://doi.org/10.1111/gcb.15845
    Yang, J., Jiang, H., Wu, G., et al., 2016. Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of western China. Frontiers in Microbiology, 7: 1782, https://doi.org/10.3389/fmicb.2016.01782
    Yang, J., Ma, L. a., Jiang, H., et al., 2016. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Scientific Reports, 6: 25078, https://doi.org/10.1038/srep25078
    Yang, J., Jiang, H., Wu, G., et al., 2018. Phylum-level archaeal distributions in the sediments of chinese lakes with a large range of salinity. Geomicrobiology Journal, 35(5): 404-410, https://doi.org/10.1080/01490451.2017.1382611
    525-9
    Yang, J., Chen, Y., She, W., et al., 2020. Deciphering linkages between microbial communities and priming effects in lake sediments with different salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611, https://doi.org/10.1029/2019JG005611
    20-0689-0
    Yang, J., Jiang, H., Sun, X., et al., 2020. Minerals play key roles in driving prokaryotic and fungal communities in the surface sediments of the Qinghai-Tibetan lakes. FEMS Microbiology Ecology, 96(4): fiaa035, https://doi.org/10.1093/femsec/fiaa035
    Yang, J., Jiang, H., Sun, X., et al., 2021. Distinct co-occurrence patterns of prokaryotic community between the waters and sediments in lakes with different salinity. FEMS Microbiology Ecology, 97(1): fiaa234, https://doi.org/10.1093/femsec/fiaa234
    Yang, J., Han, M., Zhao, Z., et al., 2022. Microbial response to multiple-level addition of grass organic matter in lake sediments with different salinity. FEMS Microbiology Ecology, 98(4): fiac046, https://doi.org/10.1093/femsec/fiac046
    Yang, J., Han, M., Zhao, Z., et al., 2022. Positive priming effects induced by allochthonous and autochthonous organic matter input in the lake sediments with different salinity. Geophysical Research Letters, 49(5): e2021GL096133, https://doi.org/10.1029/2021GL096133
    Yang, J., Han, M., Wang, B., et al., 2023. Predominance of positive priming effects induced by algal and terrestrial organic matter input in saline lake sediments. Geochimica et Cosmochimica Acta, 349: 126-134, https://doi.org/10.1016/j.gca.2023.04.005
    Yao, F., Livneh, B., Rajagopalan, B., et al., 2023. Satellites reveal widespread decline in global lake water storage. Science, 380(6646): 743-749, https://doi.org/10.1126/science.abo2812
    Ye, C., Chen, D., Hall, S. J., et al., 2018. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters, 21(8): 1162-1173, https://doi.org/10.1111/ele.13083
    Zhao, B., Xing, P.,Wu, Q. L., 2021. Interactions between bacteria and fungi in macrophyte leaf litter decomposition. Environmental Microbiology, 23(2): 1130-1144, https://doi.org/10.1111/1462-2920.15261
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(28) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return