Aktug, B., Ozener, H., Dogru, A., et al., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 94: 1–12. https://doi.org/10.1016/j.jog.2016.01.001 |
Barbot, S., Luo, H., Wang, T., et al., 2023. Slip Distribution of the February 6, 2023 MW7.8 and MW7.6, Kahramanmaraş, Turkey Earthquake Sequence in the East Anatolian Fault Zone. Seismica, 2(3): 1–17. https://doi.org/10.26443/seismica.v2i3.502 |
Bayrak, E., Yılmaz, Ş., Softa, M., et al., 2015. Earthquake Hazard Analysis for East Anatolian Fault Zone, Turkey. Natural Hazards, 76(2): 1063–1077. https://doi.org/10.1007/s11069-014-1541-5 |
Bletery, Q., Cavalié, O., Nocquet, J. M., et al., 2020. Distribution of Interseismic Coupling along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophysical Research Letters, 47(16): e2020GL087775. https://doi.org/10.1029/2020gl087775 |
Blewitt, G., Hammond, W., Kreemer, C., 2018. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99, https://doi.org/10.1029/2018eo104623 |
Cakir, Z., Doğan, U., Akoğlu, A. M., et al., 2023. Arrest of the MW6.8 January 24, 2020 Elaziğ (Turkey) Earthquake by Shallow Fault Creep. Earth and Planetary Science Letters, 608: 118085. https://doi.org/10.1016/j.epsl.2023.118085 |
Chen, C. W., Zebker, H. A., 2002. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1709–1719. https://doi.org/10.1109/tgrs.2002.802453 |
Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 MW7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297–303. https://doi.org/10.1007/s12583-023-1316-6 |
Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society of London Special Publications, 290(1): 1–12. https://doi.org/10.1144/sp290.1 |
Duman, T. Y., Emre, Ö., 2013. The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics. Geological Society, London, Special Publications, 372(1): 495–529. https://doi.org/10.1144/sp372.14 |
Fang, N., Sun, K., Huang, C., et al., 2024. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 MS6.2 Jishishan Earthquake. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/j.whugis20240036 (in Chinese with English Abstract) |
Fialko, Y., Sandwell, D., Simons, M., et al., 2005. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit. Nature, 435(7040): 295–299. https://doi.org/10.1038/nature03425 |
Gao, H., Liao, M., Feng, G., 2021. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sensing, 13(9): 1678. https://www.mdpi.com/2072-4292/13/9/1678 doi: 10.3390/rs13091678 |
Goldstein, R. M., Werner, C. L., 1998. Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters, 25(21): 4035–4038. https://doi.org/10.1029/1998gl900033 |
He, K. F., Wen, Y. M., Xu, C. J., et al., 2022. Fault Geometry and Slip Distribution of the 2021 MW7.4 Maduo, China, Earthquake Inferred from InSAR Measurements and Relocated Aftershocks. Seismological Research Letters, 93(1): 8–20. https://doi.org/10.1785/0220210204 |
He, L. J., Feng, G. C., Xu, W. B., et al., 2023. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence from InSAR and Optical Data. Geophysical Research Letters, 50(17): e2023GL104693. https://doi.org/10.1029/2023gl104693 |
He, P., Wen, Y. M., Wang, X. H., et al., 2024. The N-S Direction Strike-Slip Activities in the Pamir Hinterland under Oblique Convergence: The 2015 and 2023 Earthquakes. Geophysical Journal International, 238(2): 1150–1163. https://doi.org/10.1093/gji/ggae214 |
Hu, J., Li, Z. W., Ding, X. L., et al., 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133: 1–17. https://doi.org/10.1016/j.earscirev.2014.02.005 |
Jia, Z., Jin, Z. Y., Marchandon, M., et al., 2023. The Complex Dynamics of the 2023 Kahramanmaraş, Turkey, MW7.8–7.7 Earthquake Doublet. Science, 381(6661): 985–990. https://doi.org/10.1126/science.adi0685 |
Jiang, K., Xu, W. B., Xie, L., 2024. Unwrap Intractable C-Band Coseismic Interferograms: An Improved SNAPHU Method with Range Offset Gradients as Prior Information. Journal of Geophysical Research: Solid Earth, 129(10): e2024JB028826. https://doi.org/10.1029/2024jb028826 |
Jin, Z. Y., Fialko, Y., 2021. Coseismic and Early Postseismic Deformation due to the 2021 M7.4 Maduo (China) Earthquake. Geophysical Research Letters, 48(21): e2021GL095213. https://doi.org/10.1029/2021gl095213 |
Jónsson, S., 2002. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bulletin of the Seismological Society of America, 92(4): 1377–1389. https://doi.org/10.1785/0120000922 |
Kaneko, Y., Fialko, Y., 2011. Shallow Slip Deficit Due to Large Strike-Slip Earthquakes in Dynamic Rupture Simulations with Elasto-Plastic Off-Fault Response. Geophysical Journal International, 186(3): 1389–1403. https://doi.org/10.1111/j.1365-246x.2011.05117.x |
Kusky, T. M., Bozkurt, E., Meng, J. N., et al., 2023. Twin Earthquakes Devastate Southeast Türkiye and Syria: First Report from the Epicenters. Journal of Earth Science, 34(2): 291–296. https://doi.org/10.1007/s12583-023-1317-5 |
Li, Z. W., Xu, W. B., Hu, J., et al., 2022. Partial Geoscience Parameters Inversion from InSAR Observation. Acta Geodaetica et Cartographica Sinica, 51(7): 1458–1475 (in Chinese with English Abstract) |
Lomax, A., 2023. Precise, NLL-SSST-Coherence Hypocenter Catalog for the 2023 MW7.8 and MW7.6 SE Turkey Earthquake Sequence. v3.0 [Data Set], Zenodo, https://doi.org/10.5281/zenodo.8089273 |
Ma, Z. F., Li, C. L., Jiang, Y., et al., 2024. Space Geodetic Insights to the Dramatic Stress Rotation Induced by the February 2023 Turkey-Syria Earthquake Doublet. Geophysical Research Letters, 51(6): e2023GL107788. https://doi.org/10.1029/2023gl107788 |
Melgar, D., Geng, J. H., Crowell, B. W., et al., 2015. Seismogeodesy of the 2014 MW6.1 Napa Earthquake, California: Rapid Response and Modeling of Fast Rupture on a Dipping Strike-Slip Fault. Journal of Geophysical Research: Solid Earth, 120(7): 5013–5033. https://doi.org/10.1002/2015jb011921 |
Merryman Boncori, J. P., 2019. Measuring Coseismic Deformation with Spaceborne Synthetic Aperture Radar: A Review. Frontiers in Earth Science, 7: 16. https://doi.org/10.3389/feart.2019.00016 |
Nalbant, S. S., McCloskey, J., Steacy, S., et al., 2002. Stress Accumulation and Increased Seismic Risk in Eastern Turkey. Earth and Planetary Science Letters, 195(3/4): 291–298. https://doi.org/10.1016/s0012-821x(01)00592-1 |
Okada, Y., 1985. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4): 1135–1154. https://doi.org/10.1785/bssa0750041135 |
Pousse-Beltran, L., Nissen, E., Bergman, E. A., et al., 2020. The 2020 MW6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophysical Research Letters, 47(13): e2020GL088136. https://doi.org/10.1029/2020gl088136 |
Provost, F., Karabacak, V., Malet, J. P., et al., 2024. High-Resolution Co-Seismic Fault Offsets of the 2023 Türkiye Earthquake Ruptures Using Satellite Imagery. Scientific Reports, 14(1): 6834. https://doi.org/10.1038/s41598-024-55009-5 |
Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 111(B5): B05411. https://doi.org/10.1029/2005jb004051 |
Reitman, N. G., Briggs, R. W., Barnhart, W. D., et al., 2023. Fault Rupture Mapping of the 6 February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence from Satellite Data. U. S. Geological Survey Data Release, ver. 1.1 |
Simão, N. M., Nalbant, S. S., Sunbul, F., et al., 2016. Central and Eastern Anatolian Crustal Deformation Rate and Velocity Fields Derived from GPS and Earthquake Data. Earth and Planetary Science Letters, 433: 89–98. https://doi.org/10.1016/j.epsl.2015.10.041 |
Wang, K., Fialko, Y., 2014. Space Geodetic Observations and Models of Postseismic Deformation due to the 2005 M7.6 Kashmir (Pakistan) Earthquake. Journal of Geophysical Research: Solid Earth, 119(9): 7306–7318. https://doi.org/10.1002/2014jb011122 |
Wang, K., Xu, X. H., Hu, Y., 2024. Kinematics of the 2023 Kahramanmaraş Earthquake Doublet: Biased Near-Fault Data and Shallow Slip Deficit. Seismological Research Letters, https://doi.org/10.1785/0220240062 |
Wang, R., Parolai, S., Ge, M., et al., 2013. The 2011 MW9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bulletin of the Seismological Society of America, 103(2B): 1336–1347. https://doi.org/10.1785/0120110264 |
Weiss, J. R., Walters, R. J., Morishita, Y., et al., 2020. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 47(17): e2020GL087376. https://doi.org/10.1029/2020gl087376 |
Werner, C., Wegmüller, U., Strozzi, T., et al., 2000. Gamma Sar and Interferometric Processing Software. Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 1620: 1620 |
Wessel, P., Smith, W. H. F., Scharroo, R., et al., 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45): 409–410. https://doi.org/10.1002/2013eo450001 |
Xu, C. J., Zhou, L. X., Yin, Z., 2017. Construction and Geodesy Slip Inversion Analysis of 2013 MS7.0 Lushan in China Earthquake's Curved Fault Model. Geomatics and Information Science of Wuhan University, 42(11): 1665–1672 (in Chinese with English Abstract) |
Xu, L., Aoki, Y., Wang, J. Q., et al., 2024. The 2023 MW7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard. Seismological Research Letters, 95(2A): 562–573. https://doi.org/10.1785/0220230146 |
Xu, W. B., Feng, G. C., Meng, L. S., et al., 2018. Transpressional Rupture Cascade of the 2016 MW7.8 Kaikoura Earthquake, New Zealand. Journal of Geophysical Research: Solid Earth, 123(3): 2396–2409. https://doi.org/10.1002/2017jb015168 |
Xu, W. B., Liu, X. G., Bürgmann, R., et al., 2022. Space Geodetic Evidence of Basement-Involved Thick-Skinned Orogeny and Fault Frictional Heterogeneity of the Papuan Fold Belt, Papua New Guinea. Journal of Geophysical Research: Solid Earth, 127(8): e2022JB024227. https://doi.org/10.1029/2022jb024227 |
Xu, X. H., Tong, X. P., Sandwell, D. T., et al., 2016. Refining the Shallow Slip Deficit. Geophysical Journal International, 204(3): 1867–1886. https://doi.org/10.1093/gji/ggv563 |
Zhang, Y. J., Tang, X. W., Liu, D. C., et al., 2023. Geometric Controls on Cascading Rupture of the 2023 Kahramanmaraş Earthquake Doublet. Nature Geoscience, 16: 1054–1060. https://doi.org/10.1038/s41561-023-01283-3 |
Zhao, L., Xu, W., Xie, L., et al., 2023. Fault Geometry and Low Frictional Control of the Near-Field Postseismic Deformation of the 2021 MW7.3 Maduo Earthquake. Tectonophysics, 863: 230000 (in Chinese with English Abstract) doi: 10.1016/j.tecto.2023.230000 |