Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 36 Issue 2
Apr 2025
Turn off MathJax
Article Contents
Chengyuan Bai, Wenbin Xu, Lei Zhao, Kai Sun, Lei Xie. 3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaraş Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data. Journal of Earth Science, 2025, 36(2): 812-822. doi: 10.1007/s12583-024-0146-5
Citation: Chengyuan Bai, Wenbin Xu, Lei Zhao, Kai Sun, Lei Xie. 3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaraş Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data. Journal of Earth Science, 2025, 36(2): 812-822. doi: 10.1007/s12583-024-0146-5

3D Coseismic Deformation and Fault Slip Model of the 2023 Kahramanmaraş Earthquake Sequence Constrained by GPS, ALOS-2 and Sentinel-1 Data

doi: 10.1007/s12583-024-0146-5
More Information
  • Corresponding author: Wenbin Xu, wenbin.xu@csu.edu.cn
  • Received Date: 26 Nov 2024
  • Accepted Date: 23 Dec 2024
  • Issue Publish Date: 30 Apr 2025
  • Electronic Supplementary Materials: Supplementary materials (Figures S1–S8; Table S1) are available in the online version of this article at https://doi.org/10.1007/s12583-024-0146-5.
    Conflict of Interest
    The authors declare that they have no conflict of interest.
  • loading
  • Aktug, B., Ozener, H., Dogru, A., et al., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 94: 1–12. https://doi.org/10.1016/j.jog.2016.01.001
    Barbot, S., Luo, H., Wang, T., et al., 2023. Slip Distribution of the February 6, 2023 MW7.8 and MW7.6, Kahramanmaraş, Turkey Earthquake Sequence in the East Anatolian Fault Zone. Seismica, 2(3): 1–17. https://doi.org/10.26443/seismica.v2i3.502
    Bayrak, E., Yılmaz, Ş., Softa, M., et al., 2015. Earthquake Hazard Analysis for East Anatolian Fault Zone, Turkey. Natural Hazards, 76(2): 1063–1077. https://doi.org/10.1007/s11069-014-1541-5
    Bletery, Q., Cavalié, O., Nocquet, J. M., et al., 2020. Distribution of Interseismic Coupling along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophysical Research Letters, 47(16): e2020GL087775. https://doi.org/10.1029/2020gl087775
    Blewitt, G., Hammond, W., Kreemer, C., 2018. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99, https://doi.org/10.1029/2018eo104623
    Cakir, Z., Doğan, U., Akoğlu, A. M., et al., 2023. Arrest of the MW6.8 January 24, 2020 Elaziğ (Turkey) Earthquake by Shallow Fault Creep. Earth and Planetary Science Letters, 608: 118085. https://doi.org/10.1016/j.epsl.2023.118085
    Chen, C. W., Zebker, H. A., 2002. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1709–1719. https://doi.org/10.1109/tgrs.2002.802453
    Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 MW7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297–303. https://doi.org/10.1007/s12583-023-1316-6
    Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society of London Special Publications, 290(1): 1–12. https://doi.org/10.1144/sp290.1
    Duman, T. Y., Emre, Ö., 2013. The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics. Geological Society, London, Special Publications, 372(1): 495–529. https://doi.org/10.1144/sp372.14
    Fang, N., Sun, K., Huang, C., et al., 2024. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 MS6.2 Jishishan Earthquake. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/j.whugis20240036 (in Chinese with English Abstract)
    Fialko, Y., Sandwell, D., Simons, M., et al., 2005. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit. Nature, 435(7040): 295–299. https://doi.org/10.1038/nature03425
    Gao, H., Liao, M., Feng, G., 2021. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sensing, 13(9): 1678. https://www.mdpi.com/2072-4292/13/9/1678 doi: 10.3390/rs13091678
    Goldstein, R. M., Werner, C. L., 1998. Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters, 25(21): 4035–4038. https://doi.org/10.1029/1998gl900033
    He, K. F., Wen, Y. M., Xu, C. J., et al., 2022. Fault Geometry and Slip Distribution of the 2021 MW7.4 Maduo, China, Earthquake Inferred from InSAR Measurements and Relocated Aftershocks. Seismological Research Letters, 93(1): 8–20. https://doi.org/10.1785/0220210204
    He, L. J., Feng, G. C., Xu, W. B., et al., 2023. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence from InSAR and Optical Data. Geophysical Research Letters, 50(17): e2023GL104693. https://doi.org/10.1029/2023gl104693
    He, P., Wen, Y. M., Wang, X. H., et al., 2024. The N-S Direction Strike-Slip Activities in the Pamir Hinterland under Oblique Convergence: The 2015 and 2023 Earthquakes. Geophysical Journal International, 238(2): 1150–1163. https://doi.org/10.1093/gji/ggae214
    Hu, J., Li, Z. W., Ding, X. L., et al., 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133: 1–17. https://doi.org/10.1016/j.earscirev.2014.02.005
    Jia, Z., Jin, Z. Y., Marchandon, M., et al., 2023. The Complex Dynamics of the 2023 Kahramanmaraş, Turkey, MW7.8–7.7 Earthquake Doublet. Science, 381(6661): 985–990. https://doi.org/10.1126/science.adi0685
    Jiang, K., Xu, W. B., Xie, L., 2024. Unwrap Intractable C-Band Coseismic Interferograms: An Improved SNAPHU Method with Range Offset Gradients as Prior Information. Journal of Geophysical Research: Solid Earth, 129(10): e2024JB028826. https://doi.org/10.1029/2024jb028826
    Jin, Z. Y., Fialko, Y., 2021. Coseismic and Early Postseismic Deformation due to the 2021 M7.4 Maduo (China) Earthquake. Geophysical Research Letters, 48(21): e2021GL095213. https://doi.org/10.1029/2021gl095213
    Jónsson, S., 2002. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bulletin of the Seismological Society of America, 92(4): 1377–1389. https://doi.org/10.1785/0120000922
    Kaneko, Y., Fialko, Y., 2011. Shallow Slip Deficit Due to Large Strike-Slip Earthquakes in Dynamic Rupture Simulations with Elasto-Plastic Off-Fault Response. Geophysical Journal International, 186(3): 1389–1403. https://doi.org/10.1111/j.1365-246x.2011.05117.x
    Kusky, T. M., Bozkurt, E., Meng, J. N., et al., 2023. Twin Earthquakes Devastate Southeast Türkiye and Syria: First Report from the Epicenters. Journal of Earth Science, 34(2): 291–296. https://doi.org/10.1007/s12583-023-1317-5
    Li, Z. W., Xu, W. B., Hu, J., et al., 2022. Partial Geoscience Parameters Inversion from InSAR Observation. Acta Geodaetica et Cartographica Sinica, 51(7): 1458–1475 (in Chinese with English Abstract)
    Lomax, A., 2023. Precise, NLL-SSST-Coherence Hypocenter Catalog for the 2023 MW7.8 and MW7.6 SE Turkey Earthquake Sequence. v3.0 [Data Set], Zenodo, https://doi.org/10.5281/zenodo.8089273
    Ma, Z. F., Li, C. L., Jiang, Y., et al., 2024. Space Geodetic Insights to the Dramatic Stress Rotation Induced by the February 2023 Turkey-Syria Earthquake Doublet. Geophysical Research Letters, 51(6): e2023GL107788. https://doi.org/10.1029/2023gl107788
    Melgar, D., Geng, J. H., Crowell, B. W., et al., 2015. Seismogeodesy of the 2014 MW6.1 Napa Earthquake, California: Rapid Response and Modeling of Fast Rupture on a Dipping Strike-Slip Fault. Journal of Geophysical Research: Solid Earth, 120(7): 5013–5033. https://doi.org/10.1002/2015jb011921
    Merryman Boncori, J. P., 2019. Measuring Coseismic Deformation with Spaceborne Synthetic Aperture Radar: A Review. Frontiers in Earth Science, 7: 16. https://doi.org/10.3389/feart.2019.00016
    Nalbant, S. S., McCloskey, J., Steacy, S., et al., 2002. Stress Accumulation and Increased Seismic Risk in Eastern Turkey. Earth and Planetary Science Letters, 195(3/4): 291–298. https://doi.org/10.1016/s0012-821x(01)00592-1
    Okada, Y., 1985. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4): 1135–1154. https://doi.org/10.1785/bssa0750041135
    Pousse-Beltran, L., Nissen, E., Bergman, E. A., et al., 2020. The 2020 MW6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophysical Research Letters, 47(13): e2020GL088136. https://doi.org/10.1029/2020gl088136
    Provost, F., Karabacak, V., Malet, J. P., et al., 2024. High-Resolution Co-Seismic Fault Offsets of the 2023 Türkiye Earthquake Ruptures Using Satellite Imagery. Scientific Reports, 14(1): 6834. https://doi.org/10.1038/s41598-024-55009-5
    Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 111(B5): B05411. https://doi.org/10.1029/2005jb004051
    Reitman, N. G., Briggs, R. W., Barnhart, W. D., et al., 2023. Fault Rupture Mapping of the 6 February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence from Satellite Data. U. S. Geological Survey Data Release, ver. 1.1
    Simão, N. M., Nalbant, S. S., Sunbul, F., et al., 2016. Central and Eastern Anatolian Crustal Deformation Rate and Velocity Fields Derived from GPS and Earthquake Data. Earth and Planetary Science Letters, 433: 89–98. https://doi.org/10.1016/j.epsl.2015.10.041
    Wang, K., Fialko, Y., 2014. Space Geodetic Observations and Models of Postseismic Deformation due to the 2005 M7.6 Kashmir (Pakistan) Earthquake. Journal of Geophysical Research: Solid Earth, 119(9): 7306–7318. https://doi.org/10.1002/2014jb011122
    Wang, K., Xu, X. H., Hu, Y., 2024. Kinematics of the 2023 Kahramanmaraş Earthquake Doublet: Biased Near-Fault Data and Shallow Slip Deficit. Seismological Research Letters, https://doi.org/10.1785/0220240062
    Wang, R., Parolai, S., Ge, M., et al., 2013. The 2011 MW9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bulletin of the Seismological Society of America, 103(2B): 1336–1347. https://doi.org/10.1785/0120110264
    Weiss, J. R., Walters, R. J., Morishita, Y., et al., 2020. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 47(17): e2020GL087376. https://doi.org/10.1029/2020gl087376
    Werner, C., Wegmüller, U., Strozzi, T., et al., 2000. Gamma Sar and Interferometric Processing Software. Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 1620: 1620
    Wessel, P., Smith, W. H. F., Scharroo, R., et al., 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45): 409–410. https://doi.org/10.1002/2013eo450001
    Xu, C. J., Zhou, L. X., Yin, Z., 2017. Construction and Geodesy Slip Inversion Analysis of 2013 MS7.0 Lushan in China Earthquake's Curved Fault Model. Geomatics and Information Science of Wuhan University, 42(11): 1665–1672 (in Chinese with English Abstract)
    Xu, L., Aoki, Y., Wang, J. Q., et al., 2024. The 2023 MW7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard. Seismological Research Letters, 95(2A): 562–573. https://doi.org/10.1785/0220230146
    Xu, W. B., Feng, G. C., Meng, L. S., et al., 2018. Transpressional Rupture Cascade of the 2016 MW7.8 Kaikoura Earthquake, New Zealand. Journal of Geophysical Research: Solid Earth, 123(3): 2396–2409. https://doi.org/10.1002/2017jb015168
    Xu, W. B., Liu, X. G., Bürgmann, R., et al., 2022. Space Geodetic Evidence of Basement-Involved Thick-Skinned Orogeny and Fault Frictional Heterogeneity of the Papuan Fold Belt, Papua New Guinea. Journal of Geophysical Research: Solid Earth, 127(8): e2022JB024227. https://doi.org/10.1029/2022jb024227
    Xu, X. H., Tong, X. P., Sandwell, D. T., et al., 2016. Refining the Shallow Slip Deficit. Geophysical Journal International, 204(3): 1867–1886. https://doi.org/10.1093/gji/ggv563
    Zhang, Y. J., Tang, X. W., Liu, D. C., et al., 2023. Geometric Controls on Cascading Rupture of the 2023 Kahramanmaraş Earthquake Doublet. Nature Geoscience, 16: 1054–1060. https://doi.org/10.1038/s41561-023-01283-3
    Zhao, L., Xu, W., Xie, L., et al., 2023. Fault Geometry and Low Frictional Control of the Near-Field Postseismic Deformation of the 2021 MW7.3 Maduo Earthquake. Tectonophysics, 863: 230000 (in Chinese with English Abstract) doi: 10.1016/j.tecto.2023.230000
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(23) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return