| Aktug, B., Ozener, H., Dogru, A., et al., 2016. Slip Rates and Seismic Potential on the East Anatolian Fault System Using an Improved GPS Velocity Field. Journal of Geodynamics, 94: 1–12.  https://doi.org/10.1016/j.jog.2016.01.001 | 
		
				
				| Barbot, S., Luo, H., Wang, T., et al., 2023. Slip Distribution of the February 6, 2023 MW7.8 and MW7.6, Kahramanmaraş, Turkey Earthquake Sequence in the East Anatolian Fault Zone. Seismica, 2(3): 1–17.  https://doi.org/10.26443/seismica.v2i3.502 | 
		
				
				| Bayrak, E., Yılmaz, Ş., Softa, M., et al., 2015. Earthquake Hazard Analysis for East Anatolian Fault Zone, Turkey. Natural Hazards, 76(2): 1063–1077.  https://doi.org/10.1007/s11069-014-1541-5 | 
		
				
				| Bletery, Q., Cavalié, O., Nocquet, J. M., et al., 2020. Distribution of Interseismic Coupling along the North and East Anatolian Faults Inferred from InSAR and GPS Data. Geophysical Research Letters, 47(16): e2020GL087775.  https://doi.org/10.1029/2020gl087775 | 
		
				
				| Blewitt, G., Hammond, W., Kreemer, C., 2018. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, 99,  https://doi.org/10.1029/2018eo104623 | 
		
				
				| Cakir, Z., Doğan, U., Akoğlu, A. M., et al., 2023. Arrest of the MW6.8 January 24, 2020 Elaziğ (Turkey) Earthquake by Shallow Fault Creep. Earth and Planetary Science Letters, 608: 118085.  https://doi.org/10.1016/j.epsl.2023.118085 | 
		
				
				| Chen, C. W., Zebker, H. A., 2002. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1709–1719.  https://doi.org/10.1109/tgrs.2002.802453 | 
		
				
				| Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 MW7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297–303.  https://doi.org/10.1007/s12583-023-1316-6 | 
		
				
				| Cunningham, W. D., Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society of London Special Publications, 290(1): 1–12.  https://doi.org/10.1144/sp290.1 | 
		
				
				| Duman, T. Y., Emre, Ö., 2013. The East Anatolian Fault: Geometry, Segmentation and Jog Characteristics. Geological Society, London, Special Publications, 372(1): 495–529.  https://doi.org/10.1144/sp372.14 | 
		
				
				| Fang, N., Sun, K., Huang, C., et al., 2024. Joint Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 MS6.2 Jishishan Earthquake. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/j.whugis20240036 (in Chinese with English Abstract) | 
		
				
				| Fialko, Y., Sandwell, D., Simons, M., et al., 2005. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit. Nature, 435(7040): 295–299.  https://doi.org/10.1038/nature03425 | 
		
				
				| Gao, H., Liao, M., Feng, G., 2021. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sensing, 13(9): 1678. https://www.mdpi.com/2072-4292/13/9/1678 doi:  10.3390/rs13091678 | 
		
				
				| Goldstein, R. M., Werner, C. L., 1998. Radar Interferogram Filtering for Geophysical Applications. Geophysical Research Letters, 25(21): 4035–4038.  https://doi.org/10.1029/1998gl900033 | 
		
				
				| He, K. F., Wen, Y. M., Xu, C. J., et al., 2022. Fault Geometry and Slip Distribution of the 2021 MW7.4 Maduo, China, Earthquake Inferred from InSAR Measurements and Relocated Aftershocks. Seismological Research Letters, 93(1): 8–20.  https://doi.org/10.1785/0220210204 | 
		
				
				| He, L. J., Feng, G. C., Xu, W. B., et al., 2023. Coseismic Kinematics of the 2023 Kahramanmaras, Turkey Earthquake Sequence from InSAR and Optical Data. Geophysical Research Letters, 50(17): e2023GL104693.  https://doi.org/10.1029/2023gl104693 | 
		
				
				| He, P., Wen, Y. M., Wang, X. H., et al., 2024. The N-S Direction Strike-Slip Activities in the Pamir Hinterland under Oblique Convergence: The 2015 and 2023 Earthquakes. Geophysical Journal International, 238(2): 1150–1163.  https://doi.org/10.1093/gji/ggae214 | 
		
				
				| Hu, J., Li, Z. W., Ding, X. L., et al., 2014. Resolving Three-Dimensional Surface Displacements from InSAR Measurements: A Review. Earth-Science Reviews, 133: 1–17.  https://doi.org/10.1016/j.earscirev.2014.02.005 | 
		
				
				| Jia, Z., Jin, Z. Y., Marchandon, M., et al., 2023. The Complex Dynamics of the 2023 Kahramanmaraş, Turkey, MW7.8–7.7 Earthquake Doublet. Science, 381(6661): 985–990.  https://doi.org/10.1126/science.adi0685 | 
		
				
				| Jiang, K., Xu, W. B., Xie, L., 2024. Unwrap Intractable C-Band Coseismic Interferograms: An Improved SNAPHU Method with Range Offset Gradients as Prior Information. Journal of Geophysical Research: Solid Earth, 129(10): e2024JB028826.  https://doi.org/10.1029/2024jb028826 | 
		
				
				| Jin, Z. Y., Fialko, Y., 2021. Coseismic and Early Postseismic Deformation due to the 2021 M7.4 Maduo (China) Earthquake. Geophysical Research Letters, 48(21): e2021GL095213.  https://doi.org/10.1029/2021gl095213 | 
		
				
				| Jónsson, S., 2002. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bulletin of the Seismological Society of America, 92(4): 1377–1389.  https://doi.org/10.1785/0120000922 | 
		
				
				| Kaneko, Y., Fialko, Y., 2011. Shallow Slip Deficit Due to Large Strike-Slip Earthquakes in Dynamic Rupture Simulations with Elasto-Plastic Off-Fault Response. Geophysical Journal International, 186(3): 1389–1403.  https://doi.org/10.1111/j.1365-246x.2011.05117.x | 
		
				
				| Kusky, T. M., Bozkurt, E., Meng, J. N., et al., 2023. Twin Earthquakes Devastate Southeast Türkiye and Syria: First Report from the Epicenters. Journal of Earth Science, 34(2): 291–296.  https://doi.org/10.1007/s12583-023-1317-5 | 
		
				
				| Li, Z. W., Xu, W. B., Hu, J., et al., 2022. Partial Geoscience Parameters Inversion from InSAR Observation. Acta Geodaetica et Cartographica Sinica, 51(7): 1458–1475 (in Chinese with English Abstract) | 
		
				
				| Lomax, A., 2023. Precise, NLL-SSST-Coherence Hypocenter Catalog for the 2023 MW7.8 and MW7.6 SE Turkey Earthquake Sequence. v3.0 [Data Set], Zenodo, https://doi.org/10.5281/zenodo.8089273 | 
		
				
				| Ma, Z. F., Li, C. L., Jiang, Y., et al., 2024. Space Geodetic Insights to the Dramatic Stress Rotation Induced by the February 2023 Turkey-Syria Earthquake Doublet. Geophysical Research Letters, 51(6): e2023GL107788.  https://doi.org/10.1029/2023gl107788 | 
		
				
				| Melgar, D., Geng, J. H., Crowell, B. W., et al., 2015. Seismogeodesy of the 2014 MW6.1 Napa Earthquake, California: Rapid Response and Modeling of Fast Rupture on a Dipping Strike-Slip Fault. Journal of Geophysical Research: Solid Earth, 120(7): 5013–5033.  https://doi.org/10.1002/2015jb011921 | 
		
				
				| Merryman Boncori, J. P., 2019. Measuring Coseismic Deformation with Spaceborne Synthetic Aperture Radar: A Review. Frontiers in Earth Science, 7: 16.  https://doi.org/10.3389/feart.2019.00016 | 
		
				
				| Nalbant, S. S., McCloskey, J., Steacy, S., et al., 2002. Stress Accumulation and Increased Seismic Risk in Eastern Turkey. Earth and Planetary Science Letters, 195(3/4): 291–298.  https://doi.org/10.1016/s0012-821x(01)00592-1 | 
		
				
				| Okada, Y., 1985. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4): 1135–1154.  https://doi.org/10.1785/bssa0750041135 | 
		
				
				| Pousse-Beltran, L., Nissen, E., Bergman, E. A., et al., 2020. The 2020 MW6.8 Elazığ (Turkey) Earthquake Reveals Rupture Behavior of the East Anatolian Fault. Geophysical Research Letters, 47(13): e2020GL088136.  https://doi.org/10.1029/2020gl088136 | 
		
				
				| Provost, F., Karabacak, V., Malet, J. P., et al., 2024. High-Resolution Co-Seismic Fault Offsets of the 2023 Türkiye Earthquake Ruptures Using Satellite Imagery. Scientific Reports, 14(1): 6834.  https://doi.org/10.1038/s41598-024-55009-5 | 
		
				
				| Reilinger, R., McClusky, S., Vernant, P., et al., 2006. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. Journal of Geophysical Research: Solid Earth, 111(B5): B05411.  https://doi.org/10.1029/2005jb004051 | 
		
				
				| Reitman, N. G., Briggs, R. W., Barnhart, W. D., et al., 2023. Fault Rupture Mapping of the 6 February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence from Satellite Data. U. S. Geological Survey Data Release, ver. 1.1 | 
		
				
				| Simão, N. M., Nalbant, S. S., Sunbul, F., et al., 2016. Central and Eastern Anatolian Crustal Deformation Rate and Velocity Fields Derived from GPS and Earthquake Data. Earth and Planetary Science Letters, 433: 89–98.  https://doi.org/10.1016/j.epsl.2015.10.041 | 
		
				
				| Wang, K., Fialko, Y., 2014. Space Geodetic Observations and Models of Postseismic Deformation due to the 2005 M7.6 Kashmir (Pakistan) Earthquake. Journal of Geophysical Research: Solid Earth, 119(9): 7306–7318.  https://doi.org/10.1002/2014jb011122 | 
		
				
				| Wang, K., Xu, X. H., Hu, Y., 2024. Kinematics of the 2023 Kahramanmaraş Earthquake Doublet: Biased Near-Fault Data and Shallow Slip Deficit. Seismological Research Letters,  https://doi.org/10.1785/0220240062 | 
		
				
				| Wang, R., Parolai, S., Ge, M., et al., 2013. The 2011 MW9.0 Tohoku Earthquake: Comparison of GPS and Strong-Motion Data. Bulletin of the Seismological Society of America, 103(2B): 1336–1347.  https://doi.org/10.1785/0120110264 | 
		
				
				| Weiss, J. R., Walters, R. J., Morishita, Y., et al., 2020. High-Resolution Surface Velocities and Strain for Anatolia from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 47(17): e2020GL087376.  https://doi.org/10.1029/2020gl087376 | 
		
				
				| Werner, C., Wegmüller, U., Strozzi, T., et al., 2000. Gamma Sar and Interferometric Processing Software. Proceedings of the Ers-Envisat Symposium,  Gothenburg,  Sweden, 1620: 1620 | 
		
				
				| Wessel, P., Smith, W. H. F., Scharroo, R., et al., 2013. Generic Mapping Tools: Improved Version Released. Eos, Transactions American Geophysical Union, 94(45): 409–410.  https://doi.org/10.1002/2013eo450001 | 
		
				
				| Xu, C. J., Zhou, L. X., Yin, Z., 2017. Construction and Geodesy Slip Inversion Analysis of 2013 MS7.0 Lushan in China Earthquake's Curved Fault Model. Geomatics and Information Science of Wuhan University, 42(11): 1665–1672 (in Chinese with English Abstract) | 
		
				
				| Xu, L., Aoki, Y., Wang, J. Q., et al., 2024. The 2023 MW7.8 and 7.6 Earthquake Doublet in Southeast Türkiye: Coseismic and Early Postseismic Deformation, Faulting Model, and Potential Seismic Hazard. Seismological Research Letters, 95(2A): 562–573.  https://doi.org/10.1785/0220230146 | 
		
				
				| Xu, W. B., Feng, G. C., Meng, L. S., et al., 2018. Transpressional Rupture Cascade of the 2016 MW7.8 Kaikoura Earthquake, New Zealand. Journal of Geophysical Research: Solid Earth, 123(3): 2396–2409.  https://doi.org/10.1002/2017jb015168 | 
		
				
				| Xu, W. B., Liu, X. G., Bürgmann, R., et al., 2022. Space Geodetic Evidence of Basement-Involved Thick-Skinned Orogeny and Fault Frictional Heterogeneity of the Papuan Fold Belt, Papua New Guinea. Journal of Geophysical Research: Solid Earth, 127(8): e2022JB024227.  https://doi.org/10.1029/2022jb024227 | 
		
				
				| Xu, X. H., Tong, X. P., Sandwell, D. T., et al., 2016. Refining the Shallow Slip Deficit. Geophysical Journal International, 204(3): 1867–1886.  https://doi.org/10.1093/gji/ggv563 | 
		
				
				| Zhang, Y. J., Tang, X. W., Liu, D. C., et al., 2023. Geometric Controls on Cascading Rupture of the 2023 Kahramanmaraş Earthquake Doublet. Nature Geoscience, 16: 1054–1060.  https://doi.org/10.1038/s41561-023-01283-3 | 
		
				
				| Zhao, L., Xu, W., Xie, L., et al., 2023. Fault Geometry and Low Frictional Control of the Near-Field Postseismic Deformation of the 2021 MW7.3 Maduo Earthquake. Tectonophysics, 863: 230000 (in Chinese with English Abstract) doi:  10.1016/j.tecto.2023.230000 |